1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Chromium OS cros_ec driver
4  *
5  * Copyright (c) 2012 The Chromium OS Authors.
6  */
7 
8 /*
9  * This is the interface to the Chrome OS EC. It provides keyboard functions,
10  * power control and battery management. Quite a few other functions are
11  * provided to enable the EC software to be updated, talk to the EC's I2C bus
12  * and store a small amount of data in a memory which persists while the EC
13  * is not reset.
14  */
15 
16 #define LOG_CATEGORY UCLASS_CROS_EC
17 
18 #include <common.h>
19 #include <command.h>
20 #include <dm.h>
21 #include <flash.h>
22 #include <i2c.h>
23 #include <cros_ec.h>
24 #include <fdtdec.h>
25 #include <log.h>
26 #include <malloc.h>
27 #include <spi.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <asm/io.h>
31 #include <asm-generic/gpio.h>
32 #include <dm/device-internal.h>
33 #include <dm/of_extra.h>
34 #include <dm/uclass-internal.h>
35 
36 #ifdef DEBUG_TRACE
37 #define debug_trace(fmt, b...)	debug(fmt, #b)
38 #else
39 #define debug_trace(fmt, b...)
40 #endif
41 
42 enum {
43 	/* Timeout waiting for a flash erase command to complete */
44 	CROS_EC_CMD_TIMEOUT_MS	= 5000,
45 	/* Timeout waiting for a synchronous hash to be recomputed */
46 	CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
47 
48 	/* Wait 10 ms between attempts to check if EC's hash is ready */
49 	CROS_EC_HASH_CHECK_DELAY_MS = 10,
50 
51 };
52 
53 #define INVALID_HCMD 0xFF
54 
55 /*
56  * Map UHEPI masks to non UHEPI commands in order to support old EC FW
57  * which does not support UHEPI command.
58  */
59 static const struct {
60 	u8 set_cmd;
61 	u8 clear_cmd;
62 	u8 get_cmd;
63 } event_map[] = {
64 	[EC_HOST_EVENT_MAIN] = {
65 		INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR,
66 		INVALID_HCMD,
67 	},
68 	[EC_HOST_EVENT_B] = {
69 		INVALID_HCMD, EC_CMD_HOST_EVENT_CLEAR_B,
70 		EC_CMD_HOST_EVENT_GET_B,
71 	},
72 	[EC_HOST_EVENT_SCI_MASK] = {
73 		EC_CMD_HOST_EVENT_SET_SCI_MASK, INVALID_HCMD,
74 		EC_CMD_HOST_EVENT_GET_SCI_MASK,
75 	},
76 	[EC_HOST_EVENT_SMI_MASK] = {
77 		EC_CMD_HOST_EVENT_SET_SMI_MASK, INVALID_HCMD,
78 		EC_CMD_HOST_EVENT_GET_SMI_MASK,
79 	},
80 	[EC_HOST_EVENT_ALWAYS_REPORT_MASK] = {
81 		INVALID_HCMD, INVALID_HCMD, INVALID_HCMD,
82 	},
83 	[EC_HOST_EVENT_ACTIVE_WAKE_MASK] = {
84 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
85 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
86 	},
87 	[EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX] = {
88 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
89 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
90 	},
91 	[EC_HOST_EVENT_LAZY_WAKE_MASK_S3] = {
92 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
93 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
94 	},
95 	[EC_HOST_EVENT_LAZY_WAKE_MASK_S5] = {
96 		EC_CMD_HOST_EVENT_SET_WAKE_MASK, INVALID_HCMD,
97 		EC_CMD_HOST_EVENT_GET_WAKE_MASK,
98 	},
99 };
100 
cros_ec_dump_data(const char * name,int cmd,const uint8_t * data,int len)101 void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
102 {
103 #ifdef DEBUG
104 	int i;
105 
106 	printf("%s: ", name);
107 	if (cmd != -1)
108 		printf("cmd=%#x: ", cmd);
109 	for (i = 0; i < len; i++)
110 		printf("%02x ", data[i]);
111 	printf("\n");
112 #endif
113 }
114 
115 /*
116  * Calculate a simple 8-bit checksum of a data block
117  *
118  * @param data	Data block to checksum
119  * @param size	Size of data block in bytes
120  * @return checksum value (0 to 255)
121  */
cros_ec_calc_checksum(const uint8_t * data,int size)122 int cros_ec_calc_checksum(const uint8_t *data, int size)
123 {
124 	int csum, i;
125 
126 	for (i = csum = 0; i < size; i++)
127 		csum += data[i];
128 	return csum & 0xff;
129 }
130 
131 /**
132  * Create a request packet for protocol version 3.
133  *
134  * The packet is stored in the device's internal output buffer.
135  *
136  * @param dev		CROS-EC device
137  * @param cmd		Command to send (EC_CMD_...)
138  * @param cmd_version	Version of command to send (EC_VER_...)
139  * @param dout          Output data (may be NULL If dout_len=0)
140  * @param dout_len      Size of output data in bytes
141  * @return packet size in bytes, or <0 if error.
142  */
create_proto3_request(struct cros_ec_dev * cdev,int cmd,int cmd_version,const void * dout,int dout_len)143 static int create_proto3_request(struct cros_ec_dev *cdev,
144 				 int cmd, int cmd_version,
145 				 const void *dout, int dout_len)
146 {
147 	struct ec_host_request *rq = (struct ec_host_request *)cdev->dout;
148 	int out_bytes = dout_len + sizeof(*rq);
149 
150 	/* Fail if output size is too big */
151 	if (out_bytes > (int)sizeof(cdev->dout)) {
152 		debug("%s: Cannot send %d bytes\n", __func__, dout_len);
153 		return -EC_RES_REQUEST_TRUNCATED;
154 	}
155 
156 	/* Fill in request packet */
157 	rq->struct_version = EC_HOST_REQUEST_VERSION;
158 	rq->checksum = 0;
159 	rq->command = cmd;
160 	rq->command_version = cmd_version;
161 	rq->reserved = 0;
162 	rq->data_len = dout_len;
163 
164 	/* Copy data after header */
165 	memcpy(rq + 1, dout, dout_len);
166 
167 	/* Write checksum field so the entire packet sums to 0 */
168 	rq->checksum = (uint8_t)(-cros_ec_calc_checksum(cdev->dout, out_bytes));
169 
170 	cros_ec_dump_data("out", cmd, cdev->dout, out_bytes);
171 
172 	/* Return size of request packet */
173 	return out_bytes;
174 }
175 
176 /**
177  * Prepare the device to receive a protocol version 3 response.
178  *
179  * @param dev		CROS-EC device
180  * @param din_len       Maximum size of response in bytes
181  * @return maximum expected number of bytes in response, or <0 if error.
182  */
prepare_proto3_response_buffer(struct cros_ec_dev * cdev,int din_len)183 static int prepare_proto3_response_buffer(struct cros_ec_dev *cdev, int din_len)
184 {
185 	int in_bytes = din_len + sizeof(struct ec_host_response);
186 
187 	/* Fail if input size is too big */
188 	if (in_bytes > (int)sizeof(cdev->din)) {
189 		debug("%s: Cannot receive %d bytes\n", __func__, din_len);
190 		return -EC_RES_RESPONSE_TOO_BIG;
191 	}
192 
193 	/* Return expected size of response packet */
194 	return in_bytes;
195 }
196 
197 /**
198  * Handle a protocol version 3 response packet.
199  *
200  * The packet must already be stored in the device's internal input buffer.
201  *
202  * @param dev		CROS-EC device
203  * @param dinp          Returns pointer to response data
204  * @param din_len       Maximum size of response in bytes
205  * @return number of bytes of response data, or <0 if error. Note that error
206  * codes can be from errno.h or -ve EC_RES_INVALID_CHECKSUM values (and they
207  * overlap!)
208  */
handle_proto3_response(struct cros_ec_dev * dev,uint8_t ** dinp,int din_len)209 static int handle_proto3_response(struct cros_ec_dev *dev,
210 				  uint8_t **dinp, int din_len)
211 {
212 	struct ec_host_response *rs = (struct ec_host_response *)dev->din;
213 	int in_bytes;
214 	int csum;
215 
216 	cros_ec_dump_data("in-header", -1, dev->din, sizeof(*rs));
217 
218 	/* Check input data */
219 	if (rs->struct_version != EC_HOST_RESPONSE_VERSION) {
220 		debug("%s: EC response version mismatch\n", __func__);
221 		return -EC_RES_INVALID_RESPONSE;
222 	}
223 
224 	if (rs->reserved) {
225 		debug("%s: EC response reserved != 0\n", __func__);
226 		return -EC_RES_INVALID_RESPONSE;
227 	}
228 
229 	if (rs->data_len > din_len) {
230 		debug("%s: EC returned too much data\n", __func__);
231 		return -EC_RES_RESPONSE_TOO_BIG;
232 	}
233 
234 	cros_ec_dump_data("in-data", -1, dev->din + sizeof(*rs), rs->data_len);
235 
236 	/* Update in_bytes to actual data size */
237 	in_bytes = sizeof(*rs) + rs->data_len;
238 
239 	/* Verify checksum */
240 	csum = cros_ec_calc_checksum(dev->din, in_bytes);
241 	if (csum) {
242 		debug("%s: EC response checksum invalid: 0x%02x\n", __func__,
243 		      csum);
244 		return -EC_RES_INVALID_CHECKSUM;
245 	}
246 
247 	/* Return error result, if any */
248 	if (rs->result)
249 		return -(int)rs->result;
250 
251 	/* If we're still here, set response data pointer and return length */
252 	*dinp = (uint8_t *)(rs + 1);
253 
254 	return rs->data_len;
255 }
256 
send_command_proto3(struct cros_ec_dev * cdev,int cmd,int cmd_version,const void * dout,int dout_len,uint8_t ** dinp,int din_len)257 static int send_command_proto3(struct cros_ec_dev *cdev,
258 			       int cmd, int cmd_version,
259 			       const void *dout, int dout_len,
260 			       uint8_t **dinp, int din_len)
261 {
262 	struct dm_cros_ec_ops *ops;
263 	int out_bytes, in_bytes;
264 	int rv;
265 
266 	/* Create request packet */
267 	out_bytes = create_proto3_request(cdev, cmd, cmd_version,
268 					  dout, dout_len);
269 	if (out_bytes < 0)
270 		return out_bytes;
271 
272 	/* Prepare response buffer */
273 	in_bytes = prepare_proto3_response_buffer(cdev, din_len);
274 	if (in_bytes < 0)
275 		return in_bytes;
276 
277 	ops = dm_cros_ec_get_ops(cdev->dev);
278 	rv = ops->packet ? ops->packet(cdev->dev, out_bytes, in_bytes) :
279 			-ENOSYS;
280 	if (rv < 0)
281 		return rv;
282 
283 	/* Process the response */
284 	return handle_proto3_response(cdev, dinp, din_len);
285 }
286 
send_command(struct cros_ec_dev * dev,uint cmd,int cmd_version,const void * dout,int dout_len,uint8_t ** dinp,int din_len)287 static int send_command(struct cros_ec_dev *dev, uint cmd, int cmd_version,
288 			const void *dout, int dout_len,
289 			uint8_t **dinp, int din_len)
290 {
291 	struct dm_cros_ec_ops *ops;
292 	int ret = -1;
293 
294 	/* Handle protocol version 3 support */
295 	if (dev->protocol_version == 3) {
296 		return send_command_proto3(dev, cmd, cmd_version,
297 					   dout, dout_len, dinp, din_len);
298 	}
299 
300 	ops = dm_cros_ec_get_ops(dev->dev);
301 	ret = ops->command(dev->dev, cmd, cmd_version,
302 			   (const uint8_t *)dout, dout_len, dinp, din_len);
303 
304 	return ret;
305 }
306 
307 /**
308  * Send a command to the CROS-EC device and return the reply.
309  *
310  * The device's internal input/output buffers are used.
311  *
312  * @param dev		CROS-EC device
313  * @param cmd		Command to send (EC_CMD_...)
314  * @param cmd_version	Version of command to send (EC_VER_...)
315  * @param dout          Output data (may be NULL If dout_len=0)
316  * @param dout_len      Size of output data in bytes
317  * @param dinp          Response data (may be NULL If din_len=0).
318  *			If not NULL, it will be updated to point to the data
319  *			and will always be double word aligned (64-bits)
320  * @param din_len       Maximum size of response in bytes
321  * @return number of bytes in response, or -ve on error
322  */
ec_command_inptr(struct udevice * dev,uint cmd,int cmd_version,const void * dout,int dout_len,uint8_t ** dinp,int din_len)323 static int ec_command_inptr(struct udevice *dev, uint cmd,
324 			    int cmd_version, const void *dout, int dout_len,
325 			    uint8_t **dinp, int din_len)
326 {
327 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
328 	uint8_t *din = NULL;
329 	int len;
330 
331 	len = send_command(cdev, cmd, cmd_version, dout, dout_len, &din,
332 			   din_len);
333 
334 	/* If the command doesn't complete, wait a while */
335 	if (len == -EC_RES_IN_PROGRESS) {
336 		struct ec_response_get_comms_status *resp = NULL;
337 		ulong start;
338 
339 		/* Wait for command to complete */
340 		start = get_timer(0);
341 		do {
342 			int ret;
343 
344 			mdelay(50);	/* Insert some reasonable delay */
345 			ret = send_command(cdev, EC_CMD_GET_COMMS_STATUS, 0,
346 					   NULL, 0,
347 					   (uint8_t **)&resp, sizeof(*resp));
348 			if (ret < 0)
349 				return ret;
350 
351 			if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
352 				debug("%s: Command %#02x timeout\n",
353 				      __func__, cmd);
354 				return -EC_RES_TIMEOUT;
355 			}
356 		} while (resp->flags & EC_COMMS_STATUS_PROCESSING);
357 
358 		/* OK it completed, so read the status response */
359 		/* not sure why it was 0 for the last argument */
360 		len = send_command(cdev, EC_CMD_RESEND_RESPONSE, 0, NULL, 0,
361 				   &din, din_len);
362 	}
363 
364 	debug("%s: len=%d, din=%p\n", __func__, len, din);
365 	if (dinp) {
366 		/* If we have any data to return, it must be 64bit-aligned */
367 		assert(len <= 0 || !((uintptr_t)din & 7));
368 		*dinp = din;
369 	}
370 
371 	return len;
372 }
373 
374 /**
375  * Send a command to the CROS-EC device and return the reply.
376  *
377  * The device's internal input/output buffers are used.
378  *
379  * @param dev		CROS-EC device
380  * @param cmd		Command to send (EC_CMD_...)
381  * @param cmd_version	Version of command to send (EC_VER_...)
382  * @param dout          Output data (may be NULL If dout_len=0)
383  * @param dout_len      Size of output data in bytes
384  * @param din           Response data (may be NULL If din_len=0).
385  *			It not NULL, it is a place for ec_command() to copy the
386  *      data to.
387  * @param din_len       Maximum size of response in bytes
388  * @return number of bytes in response, or -ve on error
389  */
ec_command(struct udevice * dev,uint cmd,int cmd_version,const void * dout,int dout_len,void * din,int din_len)390 static int ec_command(struct udevice *dev, uint cmd, int cmd_version,
391 		      const void *dout, int dout_len,
392 		      void *din, int din_len)
393 {
394 	uint8_t *in_buffer;
395 	int len;
396 
397 	assert((din_len == 0) || din);
398 	len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
399 			       &in_buffer, din_len);
400 	if (len > 0) {
401 		/*
402 		 * If we were asked to put it somewhere, do so, otherwise just
403 		 * disregard the result.
404 		 */
405 		if (din && in_buffer) {
406 			assert(len <= din_len);
407 			if (len > din_len)
408 				return -ENOSPC;
409 			memmove(din, in_buffer, len);
410 		}
411 	}
412 	return len;
413 }
414 
cros_ec_scan_keyboard(struct udevice * dev,struct mbkp_keyscan * scan)415 int cros_ec_scan_keyboard(struct udevice *dev, struct mbkp_keyscan *scan)
416 {
417  	if (ec_command(dev, EC_CMD_MKBP_STATE, 0, NULL, 0, scan,
418 		       sizeof(scan->data)) != sizeof(scan->data))
419 		return -1;
420 
421 	return 0;
422 }
423 
cros_ec_get_next_event(struct udevice * dev,struct ec_response_get_next_event * event)424 int cros_ec_get_next_event(struct udevice *dev,
425 			   struct ec_response_get_next_event *event)
426 {
427 	int ret;
428 
429 	ret = ec_command(dev, EC_CMD_GET_NEXT_EVENT, 0, NULL, 0,
430 			 event, sizeof(*event));
431 	if (ret < 0)
432 		return ret;
433 	else if (ret != sizeof(*event))
434 		return -EC_RES_INVALID_RESPONSE;
435 
436 	return 0;
437 }
438 
cros_ec_read_id(struct udevice * dev,char * id,int maxlen)439 int cros_ec_read_id(struct udevice *dev, char *id, int maxlen)
440 {
441 	struct ec_response_get_version *r;
442 	int ret;
443 
444 	ret = ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
445 			       (uint8_t **)&r, sizeof(*r));
446 	if (ret != sizeof(*r)) {
447 		log_err("Got rc %d, expected %u\n", ret, (uint)sizeof(*r));
448 		return -1;
449 	}
450 
451 	if (maxlen > (int)sizeof(r->version_string_ro))
452 		maxlen = sizeof(r->version_string_ro);
453 
454 	switch (r->current_image) {
455 	case EC_IMAGE_RO:
456 		memcpy(id, r->version_string_ro, maxlen);
457 		break;
458 	case EC_IMAGE_RW:
459 		memcpy(id, r->version_string_rw, maxlen);
460 		break;
461 	default:
462 		log_err("Invalid EC image %d\n", r->current_image);
463 		return -1;
464 	}
465 
466 	id[maxlen - 1] = '\0';
467 	return 0;
468 }
469 
cros_ec_read_version(struct udevice * dev,struct ec_response_get_version ** versionp)470 int cros_ec_read_version(struct udevice *dev,
471 			 struct ec_response_get_version **versionp)
472 {
473 	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
474 			(uint8_t **)versionp, sizeof(**versionp))
475 			!= sizeof(**versionp))
476 		return -1;
477 
478 	return 0;
479 }
480 
cros_ec_read_build_info(struct udevice * dev,char ** strp)481 int cros_ec_read_build_info(struct udevice *dev, char **strp)
482 {
483 	if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
484 			(uint8_t **)strp, EC_PROTO2_MAX_PARAM_SIZE) < 0)
485 		return -1;
486 
487 	return 0;
488 }
489 
cros_ec_read_current_image(struct udevice * dev,enum ec_current_image * image)490 int cros_ec_read_current_image(struct udevice *dev,
491 			       enum ec_current_image *image)
492 {
493 	struct ec_response_get_version *r;
494 
495 	if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
496 			(uint8_t **)&r, sizeof(*r)) != sizeof(*r))
497 		return -1;
498 
499 	*image = r->current_image;
500 	return 0;
501 }
502 
cros_ec_wait_on_hash_done(struct udevice * dev,struct ec_params_vboot_hash * p,struct ec_response_vboot_hash * hash)503 static int cros_ec_wait_on_hash_done(struct udevice *dev,
504 				     struct ec_params_vboot_hash *p,
505 				     struct ec_response_vboot_hash *hash)
506 {
507 	ulong start;
508 
509 	start = get_timer(0);
510 	while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
511 		mdelay(CROS_EC_HASH_CHECK_DELAY_MS);
512 
513 		p->cmd = EC_VBOOT_HASH_GET;
514 
515 		if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, p, sizeof(*p), hash,
516 			       sizeof(*hash)) < 0)
517 			return -1;
518 
519 		if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
520 			debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
521 			return -EC_RES_TIMEOUT;
522 		}
523 	}
524 	return 0;
525 }
526 
cros_ec_read_hash(struct udevice * dev,uint hash_offset,struct ec_response_vboot_hash * hash)527 int cros_ec_read_hash(struct udevice *dev, uint hash_offset,
528 		      struct ec_response_vboot_hash *hash)
529 {
530 	struct ec_params_vboot_hash p;
531 	int rv;
532 
533 	p.cmd = EC_VBOOT_HASH_GET;
534 	p.offset = hash_offset;
535 	if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
536 		       hash, sizeof(*hash)) < 0)
537 		return -1;
538 
539 	/* If the EC is busy calculating the hash, fidget until it's done. */
540 	rv = cros_ec_wait_on_hash_done(dev, &p, hash);
541 	if (rv)
542 		return rv;
543 
544 	/* If the hash is valid, we're done. Otherwise, we have to kick it off
545 	 * again and wait for it to complete. Note that we explicitly assume
546 	 * that hashing zero bytes is always wrong, even though that would
547 	 * produce a valid hash value. */
548 	if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
549 		return 0;
550 
551 	debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
552 	      __func__, hash->status, hash->size);
553 
554 	p.cmd = EC_VBOOT_HASH_START;
555 	p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
556 	p.nonce_size = 0;
557 	p.offset = hash_offset;
558 
559 	if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
560 		       hash, sizeof(*hash)) < 0)
561 		return -1;
562 
563 	rv = cros_ec_wait_on_hash_done(dev, &p, hash);
564 	if (rv)
565 		return rv;
566 	if (hash->status != EC_VBOOT_HASH_STATUS_DONE) {
567 		log_err("Hash did not complete, status=%d\n", hash->status);
568 		return -EIO;
569 	}
570 
571 	debug("%s: hash done\n", __func__);
572 
573 	return 0;
574 }
575 
cros_ec_invalidate_hash(struct udevice * dev)576 static int cros_ec_invalidate_hash(struct udevice *dev)
577 {
578 	struct ec_params_vboot_hash p;
579 	struct ec_response_vboot_hash *hash;
580 
581 	/* We don't have an explict command for the EC to discard its current
582 	 * hash value, so we'll just tell it to calculate one that we know is
583 	 * wrong (we claim that hashing zero bytes is always invalid).
584 	 */
585 	p.cmd = EC_VBOOT_HASH_RECALC;
586 	p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
587 	p.nonce_size = 0;
588 	p.offset = 0;
589 	p.size = 0;
590 
591 	debug("%s:\n", __func__);
592 
593 	if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
594 		       (uint8_t **)&hash, sizeof(*hash)) < 0)
595 		return -1;
596 
597 	/* No need to wait for it to finish */
598 	return 0;
599 }
600 
cros_ec_hello(struct udevice * dev,uint * handshakep)601 int cros_ec_hello(struct udevice *dev, uint *handshakep)
602 {
603 	struct ec_params_hello req;
604 	struct ec_response_hello *resp;
605 
606 	req.in_data = 0x12345678;
607 	if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
608 			     (uint8_t **)&resp, sizeof(*resp)) < 0)
609 		return -EIO;
610 	if (resp->out_data != req.in_data + 0x01020304) {
611 		printf("Received invalid handshake %x\n", resp->out_data);
612 		if (handshakep)
613 			*handshakep = req.in_data;
614 		return -ENOTSYNC;
615 	}
616 
617 	return 0;
618 }
619 
cros_ec_reboot(struct udevice * dev,enum ec_reboot_cmd cmd,uint8_t flags)620 int cros_ec_reboot(struct udevice *dev, enum ec_reboot_cmd cmd, uint8_t flags)
621 {
622 	struct ec_params_reboot_ec p;
623 
624 	p.cmd = cmd;
625 	p.flags = flags;
626 
627 	if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
628 			< 0)
629 		return -1;
630 
631 	if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
632 		ulong start;
633 
634 		/*
635 		 * EC reboot will take place immediately so delay to allow it
636 		 * to complete.  Note that some reboot types (EC_REBOOT_COLD)
637 		 * will reboot the AP as well, in which case we won't actually
638 		 * get to this point.
639 		 */
640 		mdelay(50);
641 		start = get_timer(0);
642 		while (cros_ec_hello(dev, NULL)) {
643 			if (get_timer(start) > 3000) {
644 				log_err("EC did not return from reboot\n");
645 				return -ETIMEDOUT;
646 			}
647 			mdelay(5);
648 		}
649 	}
650 
651 	return 0;
652 }
653 
cros_ec_interrupt_pending(struct udevice * dev)654 int cros_ec_interrupt_pending(struct udevice *dev)
655 {
656 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
657 
658 	/* no interrupt support : always poll */
659 	if (!dm_gpio_is_valid(&cdev->ec_int))
660 		return -ENOENT;
661 
662 	return dm_gpio_get_value(&cdev->ec_int);
663 }
664 
cros_ec_info(struct udevice * dev,struct ec_response_mkbp_info * info)665 int cros_ec_info(struct udevice *dev, struct ec_response_mkbp_info *info)
666 {
667 	if (ec_command(dev, EC_CMD_MKBP_INFO, 0, NULL, 0, info,
668 		       sizeof(*info)) != sizeof(*info))
669 		return -1;
670 
671 	return 0;
672 }
673 
cros_ec_get_event_mask(struct udevice * dev,uint type,uint32_t * mask)674 int cros_ec_get_event_mask(struct udevice *dev, uint type, uint32_t *mask)
675 {
676 	struct ec_response_host_event_mask rsp;
677 	int ret;
678 
679 	ret = ec_command(dev, type, 0, NULL, 0, &rsp, sizeof(rsp));
680 	if (ret < 0)
681 		return ret;
682 	else if (ret != sizeof(rsp))
683 		return -EINVAL;
684 
685 	*mask = rsp.mask;
686 
687 	return 0;
688 }
689 
cros_ec_set_event_mask(struct udevice * dev,uint type,uint32_t mask)690 int cros_ec_set_event_mask(struct udevice *dev, uint type, uint32_t mask)
691 {
692 	struct ec_params_host_event_mask req;
693 	int ret;
694 
695 	req.mask = mask;
696 
697 	ret = ec_command(dev, type, 0, &req, sizeof(req), NULL, 0);
698 	if (ret < 0)
699 		return ret;
700 
701 	return 0;
702 }
703 
cros_ec_get_host_events(struct udevice * dev,uint32_t * events_ptr)704 int cros_ec_get_host_events(struct udevice *dev, uint32_t *events_ptr)
705 {
706 	struct ec_response_host_event_mask *resp;
707 
708 	/*
709 	 * Use the B copy of the event flags, because the main copy is already
710 	 * used by ACPI/SMI.
711 	 */
712 	if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
713 		       (uint8_t **)&resp, sizeof(*resp)) < (int)sizeof(*resp))
714 		return -1;
715 
716 	if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
717 		return -1;
718 
719 	*events_ptr = resp->mask;
720 	return 0;
721 }
722 
cros_ec_clear_host_events(struct udevice * dev,uint32_t events)723 int cros_ec_clear_host_events(struct udevice *dev, uint32_t events)
724 {
725 	struct ec_params_host_event_mask params;
726 
727 	params.mask = events;
728 
729 	/*
730 	 * Use the B copy of the event flags, so it affects the data returned
731 	 * by cros_ec_get_host_events().
732 	 */
733 	if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
734 		       &params, sizeof(params), NULL, 0) < 0)
735 		return -1;
736 
737 	return 0;
738 }
739 
cros_ec_flash_protect(struct udevice * dev,uint32_t set_mask,uint32_t set_flags,struct ec_response_flash_protect * resp)740 int cros_ec_flash_protect(struct udevice *dev, uint32_t set_mask,
741 			  uint32_t set_flags,
742 			  struct ec_response_flash_protect *resp)
743 {
744 	struct ec_params_flash_protect params;
745 
746 	params.mask = set_mask;
747 	params.flags = set_flags;
748 
749 	if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
750 		       &params, sizeof(params),
751 		       resp, sizeof(*resp)) != sizeof(*resp))
752 		return -1;
753 
754 	return 0;
755 }
756 
cros_ec_entering_mode(struct udevice * dev,int mode)757 int cros_ec_entering_mode(struct udevice *dev, int mode)
758 {
759 	int rc;
760 
761 	rc = ec_command(dev, EC_CMD_ENTERING_MODE, 0, &mode, sizeof(mode),
762 			NULL, 0);
763 	if (rc)
764 		return -1;
765 	return 0;
766 }
767 
cros_ec_check_version(struct udevice * dev)768 static int cros_ec_check_version(struct udevice *dev)
769 {
770 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
771 	struct ec_params_hello req;
772 
773 	struct dm_cros_ec_ops *ops;
774 	int ret;
775 
776 	ops = dm_cros_ec_get_ops(dev);
777 	if (ops->check_version) {
778 		ret = ops->check_version(dev);
779 		if (ret)
780 			return ret;
781 	}
782 
783 	/*
784 	 * TODO(sjg@chromium.org).
785 	 * There is a strange oddity here with the EC. We could just ignore
786 	 * the response, i.e. pass the last two parameters as NULL and 0.
787 	 * In this case we won't read back very many bytes from the EC.
788 	 * On the I2C bus the EC gets upset about this and will try to send
789 	 * the bytes anyway. This means that we will have to wait for that
790 	 * to complete before continuing with a new EC command.
791 	 *
792 	 * This problem is probably unique to the I2C bus.
793 	 *
794 	 * So for now, just read all the data anyway.
795 	 */
796 
797 	/* Try sending a version 3 packet */
798 	cdev->protocol_version = 3;
799 	req.in_data = 0;
800 	ret = cros_ec_hello(dev, NULL);
801 	if (!ret || ret == -ENOTSYNC)
802 		return 0;
803 
804 	/* Try sending a version 2 packet */
805 	cdev->protocol_version = 2;
806 	ret = cros_ec_hello(dev, NULL);
807 	if (!ret || ret == -ENOTSYNC)
808 		return 0;
809 
810 	/*
811 	 * Fail if we're still here, since the EC doesn't understand any
812 	 * protcol version we speak.  Version 1 interface without command
813 	 * version is no longer supported, and we don't know about any new
814 	 * protocol versions.
815 	 */
816 	cdev->protocol_version = 0;
817 	printf("%s: ERROR: old EC interface not supported\n", __func__);
818 	return -1;
819 }
820 
cros_ec_test(struct udevice * dev)821 int cros_ec_test(struct udevice *dev)
822 {
823 	uint out_data;
824 	int ret;
825 
826 	ret = cros_ec_hello(dev, &out_data);
827 	if (ret == -ENOTSYNC) {
828 		printf("Received invalid handshake %x\n", out_data);
829 		return ret;
830 	} else if (ret) {
831 		printf("ec_command_inptr() returned error\n");
832 		return ret;
833 	}
834 
835 	return 0;
836 }
837 
cros_ec_flash_offset(struct udevice * dev,enum ec_flash_region region,uint32_t * offset,uint32_t * size)838 int cros_ec_flash_offset(struct udevice *dev, enum ec_flash_region region,
839 		      uint32_t *offset, uint32_t *size)
840 {
841 	struct ec_params_flash_region_info p;
842 	struct ec_response_flash_region_info *r;
843 	int ret;
844 
845 	p.region = region;
846 	ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
847 			 EC_VER_FLASH_REGION_INFO,
848 			 &p, sizeof(p), (uint8_t **)&r, sizeof(*r));
849 	if (ret != sizeof(*r))
850 		return -1;
851 
852 	if (offset)
853 		*offset = r->offset;
854 	if (size)
855 		*size = r->size;
856 
857 	return 0;
858 }
859 
cros_ec_flash_erase(struct udevice * dev,uint32_t offset,uint32_t size)860 int cros_ec_flash_erase(struct udevice *dev, uint32_t offset, uint32_t size)
861 {
862 	struct ec_params_flash_erase p;
863 
864 	p.offset = offset;
865 	p.size = size;
866 	return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
867 			NULL, 0);
868 }
869 
870 /**
871  * Write a single block to the flash
872  *
873  * Write a block of data to the EC flash. The size must not exceed the flash
874  * write block size which you can obtain from cros_ec_flash_write_burst_size().
875  *
876  * The offset starts at 0. You can obtain the region information from
877  * cros_ec_flash_offset() to find out where to write for a particular region.
878  *
879  * Attempting to write to the region where the EC is currently running from
880  * will result in an error.
881  *
882  * @param dev		CROS-EC device
883  * @param data		Pointer to data buffer to write
884  * @param offset	Offset within flash to write to.
885  * @param size		Number of bytes to write
886  * @return 0 if ok, -1 on error
887  */
cros_ec_flash_write_block(struct udevice * dev,const uint8_t * data,uint32_t offset,uint32_t size)888 static int cros_ec_flash_write_block(struct udevice *dev, const uint8_t *data,
889 				     uint32_t offset, uint32_t size)
890 {
891 	struct ec_params_flash_write *p;
892 	int ret;
893 
894 	p = malloc(sizeof(*p) + size);
895 	if (!p)
896 		return -ENOMEM;
897 
898 	p->offset = offset;
899 	p->size = size;
900 	assert(data && p->size <= EC_FLASH_WRITE_VER0_SIZE);
901 	memcpy(p + 1, data, p->size);
902 
903 	ret = ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
904 			  p, sizeof(*p) + size, NULL, 0) >= 0 ? 0 : -1;
905 
906 	free(p);
907 
908 	return ret;
909 }
910 
911 /**
912  * Return optimal flash write burst size
913  */
cros_ec_flash_write_burst_size(struct udevice * dev)914 static int cros_ec_flash_write_burst_size(struct udevice *dev)
915 {
916 	return EC_FLASH_WRITE_VER0_SIZE;
917 }
918 
919 /**
920  * Check if a block of data is erased (all 0xff)
921  *
922  * This function is useful when dealing with flash, for checking whether a
923  * data block is erased and thus does not need to be programmed.
924  *
925  * @param data		Pointer to data to check (must be word-aligned)
926  * @param size		Number of bytes to check (must be word-aligned)
927  * @return 0 if erased, non-zero if any word is not erased
928  */
cros_ec_data_is_erased(const uint32_t * data,int size)929 static int cros_ec_data_is_erased(const uint32_t *data, int size)
930 {
931 	assert(!(size & 3));
932 	size /= sizeof(uint32_t);
933 	for (; size > 0; size -= 4, data++)
934 		if (*data != -1U)
935 			return 0;
936 
937 	return 1;
938 }
939 
940 /**
941  * Read back flash parameters
942  *
943  * This function reads back parameters of the flash as reported by the EC
944  *
945  * @param dev  Pointer to device
946  * @param info Pointer to output flash info struct
947  */
cros_ec_read_flashinfo(struct udevice * dev,struct ec_response_flash_info * info)948 int cros_ec_read_flashinfo(struct udevice *dev,
949 			   struct ec_response_flash_info *info)
950 {
951 	int ret;
952 
953 	ret = ec_command(dev, EC_CMD_FLASH_INFO, 0,
954 			 NULL, 0, info, sizeof(*info));
955 	if (ret < 0)
956 		return ret;
957 
958 	return ret < sizeof(*info) ? -1 : 0;
959 }
960 
cros_ec_flash_write(struct udevice * dev,const uint8_t * data,uint32_t offset,uint32_t size)961 int cros_ec_flash_write(struct udevice *dev, const uint8_t *data,
962 			uint32_t offset, uint32_t size)
963 {
964 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
965 	uint32_t burst = cros_ec_flash_write_burst_size(dev);
966 	uint32_t end, off;
967 	int ret;
968 
969 	if (!burst)
970 		return -EINVAL;
971 
972 	/*
973 	 * TODO: round up to the nearest multiple of write size.  Can get away
974 	 * without that on link right now because its write size is 4 bytes.
975 	 */
976 	end = offset + size;
977 	for (off = offset; off < end; off += burst, data += burst) {
978 		uint32_t todo;
979 
980 		/* If the data is empty, there is no point in programming it */
981 		todo = min(end - off, burst);
982 		if (cdev->optimise_flash_write &&
983 		    cros_ec_data_is_erased((uint32_t *)data, todo))
984 			continue;
985 
986 		ret = cros_ec_flash_write_block(dev, data, off, todo);
987 		if (ret)
988 			return ret;
989 	}
990 
991 	return 0;
992 }
993 
994 /**
995  * Run verification on a slot
996  *
997  * @param me     CrosEc instance
998  * @param region Region to run verification on
999  * @return 0 if success or not applicable. Non-zero if verification failed.
1000  */
cros_ec_efs_verify(struct udevice * dev,enum ec_flash_region region)1001 int cros_ec_efs_verify(struct udevice *dev, enum ec_flash_region region)
1002 {
1003 	struct ec_params_efs_verify p;
1004 	int rv;
1005 
1006 	log_info("EFS: EC is verifying updated image...\n");
1007 	p.region = region;
1008 
1009 	rv = ec_command(dev, EC_CMD_EFS_VERIFY, 0, &p, sizeof(p), NULL, 0);
1010 	if (rv >= 0) {
1011 		log_info("EFS: Verification success\n");
1012 		return 0;
1013 	}
1014 	if (rv == -EC_RES_INVALID_COMMAND) {
1015 		log_info("EFS: EC doesn't support EFS_VERIFY command\n");
1016 		return 0;
1017 	}
1018 	log_info("EFS: Verification failed\n");
1019 
1020 	return rv;
1021 }
1022 
1023 /**
1024  * Read a single block from the flash
1025  *
1026  * Read a block of data from the EC flash. The size must not exceed the flash
1027  * write block size which you can obtain from cros_ec_flash_write_burst_size().
1028  *
1029  * The offset starts at 0. You can obtain the region information from
1030  * cros_ec_flash_offset() to find out where to read for a particular region.
1031  *
1032  * @param dev		CROS-EC device
1033  * @param data		Pointer to data buffer to read into
1034  * @param offset	Offset within flash to read from
1035  * @param size		Number of bytes to read
1036  * @return 0 if ok, -1 on error
1037  */
cros_ec_flash_read_block(struct udevice * dev,uint8_t * data,uint32_t offset,uint32_t size)1038 static int cros_ec_flash_read_block(struct udevice *dev, uint8_t *data,
1039 				    uint32_t offset, uint32_t size)
1040 {
1041 	struct ec_params_flash_read p;
1042 
1043 	p.offset = offset;
1044 	p.size = size;
1045 
1046 	return ec_command(dev, EC_CMD_FLASH_READ, 0,
1047 			  &p, sizeof(p), data, size) >= 0 ? 0 : -1;
1048 }
1049 
cros_ec_flash_read(struct udevice * dev,uint8_t * data,uint32_t offset,uint32_t size)1050 int cros_ec_flash_read(struct udevice *dev, uint8_t *data, uint32_t offset,
1051 		       uint32_t size)
1052 {
1053 	uint32_t burst = cros_ec_flash_write_burst_size(dev);
1054 	uint32_t end, off;
1055 	int ret;
1056 
1057 	end = offset + size;
1058 	for (off = offset; off < end; off += burst, data += burst) {
1059 		ret = cros_ec_flash_read_block(dev, data, off,
1060 					    min(end - off, burst));
1061 		if (ret)
1062 			return ret;
1063 	}
1064 
1065 	return 0;
1066 }
1067 
cros_ec_flash_update_rw(struct udevice * dev,const uint8_t * image,int image_size)1068 int cros_ec_flash_update_rw(struct udevice *dev, const uint8_t *image,
1069 			    int image_size)
1070 {
1071 	uint32_t rw_offset, rw_size;
1072 	int ret;
1073 
1074 	if (cros_ec_flash_offset(dev, EC_FLASH_REGION_ACTIVE, &rw_offset,
1075 		&rw_size))
1076 		return -1;
1077 	if (image_size > (int)rw_size)
1078 		return -1;
1079 
1080 	/* Invalidate the existing hash, just in case the AP reboots
1081 	 * unexpectedly during the update. If that happened, the EC RW firmware
1082 	 * would be invalid, but the EC would still have the original hash.
1083 	 */
1084 	ret = cros_ec_invalidate_hash(dev);
1085 	if (ret)
1086 		return ret;
1087 
1088 	/*
1089 	 * Erase the entire RW section, so that the EC doesn't see any garbage
1090 	 * past the new image if it's smaller than the current image.
1091 	 *
1092 	 * TODO: could optimize this to erase just the current image, since
1093 	 * presumably everything past that is 0xff's.  But would still need to
1094 	 * round up to the nearest multiple of erase size.
1095 	 */
1096 	ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
1097 	if (ret)
1098 		return ret;
1099 
1100 	/* Write the image */
1101 	ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
1102 	if (ret)
1103 		return ret;
1104 
1105 	return 0;
1106 }
1107 
cros_ec_get_sku_id(struct udevice * dev)1108 int cros_ec_get_sku_id(struct udevice *dev)
1109 {
1110 	struct ec_sku_id_info *r;
1111 	int ret;
1112 
1113 	ret = ec_command_inptr(dev, EC_CMD_GET_SKU_ID, 0, NULL, 0,
1114 			       (uint8_t **)&r, sizeof(*r));
1115 	if (ret != sizeof(*r))
1116 		return -ret;
1117 
1118 	return r->sku_id;
1119 }
1120 
cros_ec_read_nvdata(struct udevice * dev,uint8_t * block,int size)1121 int cros_ec_read_nvdata(struct udevice *dev, uint8_t *block, int size)
1122 {
1123 	struct ec_params_vbnvcontext p;
1124 	int len;
1125 
1126 	if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
1127 		return -EINVAL;
1128 
1129 	p.op = EC_VBNV_CONTEXT_OP_READ;
1130 
1131 	len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
1132 			 &p, sizeof(uint32_t) + size, block, size);
1133 	if (len != size) {
1134 		log_err("Expected %d bytes, got %d\n", size, len);
1135 		return -EIO;
1136 	}
1137 
1138 	return 0;
1139 }
1140 
cros_ec_write_nvdata(struct udevice * dev,const uint8_t * block,int size)1141 int cros_ec_write_nvdata(struct udevice *dev, const uint8_t *block, int size)
1142 {
1143 	struct ec_params_vbnvcontext p;
1144 	int len;
1145 
1146 	if (size != EC_VBNV_BLOCK_SIZE && size != EC_VBNV_BLOCK_SIZE_V2)
1147 		return -EINVAL;
1148 	p.op = EC_VBNV_CONTEXT_OP_WRITE;
1149 	memcpy(p.block, block, size);
1150 
1151 	len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
1152 			&p, sizeof(uint32_t) + size, NULL, 0);
1153 	if (len < 0)
1154 		return -1;
1155 
1156 	return 0;
1157 }
1158 
cros_ec_battery_cutoff(struct udevice * dev,uint8_t flags)1159 int cros_ec_battery_cutoff(struct udevice *dev, uint8_t flags)
1160 {
1161 	struct ec_params_battery_cutoff p;
1162 	int len;
1163 
1164 	p.flags = flags;
1165 	len = ec_command(dev, EC_CMD_BATTERY_CUT_OFF, 1, &p, sizeof(p),
1166 			 NULL, 0);
1167 
1168 	if (len < 0)
1169 		return -1;
1170 	return 0;
1171 }
1172 
cros_ec_set_ldo(struct udevice * dev,uint8_t index,uint8_t state)1173 int cros_ec_set_ldo(struct udevice *dev, uint8_t index, uint8_t state)
1174 {
1175 	struct ec_params_ldo_set params;
1176 
1177 	params.index = index;
1178 	params.state = state;
1179 
1180 	if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, &params, sizeof(params),
1181 			     NULL, 0))
1182 		return -1;
1183 
1184 	return 0;
1185 }
1186 
cros_ec_get_ldo(struct udevice * dev,uint8_t index,uint8_t * state)1187 int cros_ec_get_ldo(struct udevice *dev, uint8_t index, uint8_t *state)
1188 {
1189 	struct ec_params_ldo_get params;
1190 	struct ec_response_ldo_get *resp;
1191 
1192 	params.index = index;
1193 
1194 	if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, &params, sizeof(params),
1195 			     (uint8_t **)&resp, sizeof(*resp)) !=
1196 			     sizeof(*resp))
1197 		return -1;
1198 
1199 	*state = resp->state;
1200 
1201 	return 0;
1202 }
1203 
cros_ec_register(struct udevice * dev)1204 int cros_ec_register(struct udevice *dev)
1205 {
1206 	struct cros_ec_dev *cdev = dev_get_uclass_priv(dev);
1207 	char id[MSG_BYTES];
1208 
1209 	cdev->dev = dev;
1210 	gpio_request_by_name(dev, "ec-interrupt", 0, &cdev->ec_int,
1211 			     GPIOD_IS_IN);
1212 	cdev->optimise_flash_write = dev_read_bool(dev, "optimise-flash-write");
1213 
1214 	if (cros_ec_check_version(dev)) {
1215 		debug("%s: Could not detect CROS-EC version\n", __func__);
1216 		return -CROS_EC_ERR_CHECK_VERSION;
1217 	}
1218 
1219 	if (cros_ec_read_id(dev, id, sizeof(id))) {
1220 		debug("%s: Could not read KBC ID\n", __func__);
1221 		return -CROS_EC_ERR_READ_ID;
1222 	}
1223 
1224 	/* Remember this device for use by the cros_ec command */
1225 	debug("Google Chrome EC v%d CROS-EC driver ready, id '%s'\n",
1226 	      cdev->protocol_version, id);
1227 
1228 	return 0;
1229 }
1230 
cros_ec_decode_ec_flash(struct udevice * dev,struct fdt_cros_ec * config)1231 int cros_ec_decode_ec_flash(struct udevice *dev, struct fdt_cros_ec *config)
1232 {
1233 	ofnode flash_node, node;
1234 
1235 	flash_node = dev_read_subnode(dev, "flash");
1236 	if (!ofnode_valid(flash_node)) {
1237 		debug("Failed to find flash node\n");
1238 		return -1;
1239 	}
1240 
1241 	if (ofnode_read_fmap_entry(flash_node,  &config->flash)) {
1242 		debug("Failed to decode flash node in chrome-ec\n");
1243 		return -1;
1244 	}
1245 
1246 	config->flash_erase_value = ofnode_read_s32_default(flash_node,
1247 							    "erase-value", -1);
1248 	ofnode_for_each_subnode(node, flash_node) {
1249 		const char *name = ofnode_get_name(node);
1250 		enum ec_flash_region region;
1251 
1252 		if (0 == strcmp(name, "ro")) {
1253 			region = EC_FLASH_REGION_RO;
1254 		} else if (0 == strcmp(name, "rw")) {
1255 			region = EC_FLASH_REGION_ACTIVE;
1256 		} else if (0 == strcmp(name, "wp-ro")) {
1257 			region = EC_FLASH_REGION_WP_RO;
1258 		} else {
1259 			debug("Unknown EC flash region name '%s'\n", name);
1260 			return -1;
1261 		}
1262 
1263 		if (ofnode_read_fmap_entry(node, &config->region[region])) {
1264 			debug("Failed to decode flash region in chrome-ec'\n");
1265 			return -1;
1266 		}
1267 	}
1268 
1269 	return 0;
1270 }
1271 
cros_ec_i2c_tunnel(struct udevice * dev,int port,struct i2c_msg * in,int nmsgs)1272 int cros_ec_i2c_tunnel(struct udevice *dev, int port, struct i2c_msg *in,
1273 		       int nmsgs)
1274 {
1275 	union {
1276 		struct ec_params_i2c_passthru p;
1277 		uint8_t outbuf[EC_PROTO2_MAX_PARAM_SIZE];
1278 	} params;
1279 	union {
1280 		struct ec_response_i2c_passthru r;
1281 		uint8_t inbuf[EC_PROTO2_MAX_PARAM_SIZE];
1282 	} response;
1283 	struct ec_params_i2c_passthru *p = &params.p;
1284 	struct ec_response_i2c_passthru *r = &response.r;
1285 	struct ec_params_i2c_passthru_msg *msg;
1286 	uint8_t *pdata, *read_ptr = NULL;
1287 	int read_len;
1288 	int size;
1289 	int rv;
1290 	int i;
1291 
1292 	p->port = port;
1293 
1294 	p->num_msgs = nmsgs;
1295 	size = sizeof(*p) + p->num_msgs * sizeof(*msg);
1296 
1297 	/* Create a message to write the register address and optional data */
1298 	pdata = (uint8_t *)p + size;
1299 
1300 	read_len = 0;
1301 	for (i = 0, msg = p->msg; i < nmsgs; i++, msg++, in++) {
1302 		bool is_read = in->flags & I2C_M_RD;
1303 
1304 		msg->addr_flags = in->addr;
1305 		msg->len = in->len;
1306 		if (is_read) {
1307 			msg->addr_flags |= EC_I2C_FLAG_READ;
1308 			read_len += in->len;
1309 			read_ptr = in->buf;
1310 			if (sizeof(*r) + read_len > sizeof(response)) {
1311 				puts("Read length too big for buffer\n");
1312 				return -1;
1313 			}
1314 		} else {
1315 			if (pdata - (uint8_t *)p + in->len > sizeof(params)) {
1316 				puts("Params too large for buffer\n");
1317 				return -1;
1318 			}
1319 			memcpy(pdata, in->buf, in->len);
1320 			pdata += in->len;
1321 		}
1322 	}
1323 
1324 	rv = ec_command(dev, EC_CMD_I2C_PASSTHRU, 0, p, pdata - (uint8_t *)p,
1325 			r, sizeof(*r) + read_len);
1326 	if (rv < 0)
1327 		return rv;
1328 
1329 	/* Parse response */
1330 	if (r->i2c_status & EC_I2C_STATUS_ERROR) {
1331 		printf("Transfer failed with status=0x%x\n", r->i2c_status);
1332 		return -1;
1333 	}
1334 
1335 	if (rv < sizeof(*r) + read_len) {
1336 		puts("Truncated read response\n");
1337 		return -1;
1338 	}
1339 
1340 	/* We only support a single read message for each transfer */
1341 	if (read_len)
1342 		memcpy(read_ptr, r->data, read_len);
1343 
1344 	return 0;
1345 }
1346 
cros_ec_get_features(struct udevice * dev,u64 * featuresp)1347 int cros_ec_get_features(struct udevice *dev, u64 *featuresp)
1348 {
1349 	struct ec_response_get_features r;
1350 	int rv;
1351 
1352 	rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, NULL, 0, &r, sizeof(r));
1353 	if (rv != sizeof(r))
1354 		return -EIO;
1355 	*featuresp = r.flags[0] | (u64)r.flags[1] << 32;
1356 
1357 	return 0;
1358 }
1359 
cros_ec_check_feature(struct udevice * dev,uint feature)1360 int cros_ec_check_feature(struct udevice *dev, uint feature)
1361 {
1362 	struct ec_response_get_features r;
1363 	int rv;
1364 
1365 	rv = ec_command(dev, EC_CMD_GET_FEATURES, 0, NULL, 0, &r, sizeof(r));
1366 	if (rv != sizeof(r))
1367 		return -EIO;
1368 
1369 	if (feature >= 8 * sizeof(r.flags))
1370 		return -EINVAL;
1371 
1372 	return r.flags[feature / 32] & EC_FEATURE_MASK_0(feature) ? true :
1373 		 false;
1374 }
1375 
1376 /*
1377  * Query the EC for specified mask indicating enabled events.
1378  * The EC maintains separate event masks for SMI, SCI and WAKE.
1379  */
cros_ec_uhepi_cmd(struct udevice * dev,uint mask,uint action,uint64_t * value)1380 static int cros_ec_uhepi_cmd(struct udevice *dev, uint mask, uint action,
1381 			     uint64_t *value)
1382 {
1383 	int ret;
1384 	struct ec_params_host_event req;
1385 	struct ec_response_host_event rsp;
1386 
1387 	req.action = action;
1388 	req.mask_type = mask;
1389 	if (action != EC_HOST_EVENT_GET)
1390 		req.value = *value;
1391 	else
1392 		*value = 0;
1393 	ret = ec_command(dev, EC_CMD_HOST_EVENT, 0, &req, sizeof(req), &rsp,
1394 			 sizeof(rsp));
1395 
1396 	if (action != EC_HOST_EVENT_GET)
1397 		return ret;
1398 	if (ret == 0)
1399 		*value = rsp.value;
1400 
1401 	return ret;
1402 }
1403 
cros_ec_handle_non_uhepi_cmd(struct udevice * dev,uint hcmd,uint action,uint64_t * value)1404 static int cros_ec_handle_non_uhepi_cmd(struct udevice *dev, uint hcmd,
1405 					uint action, uint64_t *value)
1406 {
1407 	int ret = -1;
1408 	struct ec_params_host_event_mask req;
1409 	struct ec_response_host_event_mask rsp;
1410 
1411 	if (hcmd == INVALID_HCMD)
1412 		return ret;
1413 
1414 	if (action != EC_HOST_EVENT_GET)
1415 		req.mask = (uint32_t)*value;
1416 	else
1417 		*value = 0;
1418 
1419 	ret = ec_command(dev, hcmd, 0, &req, sizeof(req), &rsp, sizeof(rsp));
1420 	if (action != EC_HOST_EVENT_GET)
1421 		return ret;
1422 	if (ret == 0)
1423 		*value = rsp.mask;
1424 
1425 	return ret;
1426 }
1427 
cros_ec_is_uhepi_supported(struct udevice * dev)1428 bool cros_ec_is_uhepi_supported(struct udevice *dev)
1429 {
1430 #define UHEPI_SUPPORTED 1
1431 #define UHEPI_NOT_SUPPORTED 2
1432 	static int uhepi_support;
1433 
1434 	if (!uhepi_support) {
1435 		uhepi_support = cros_ec_check_feature(dev,
1436 			EC_FEATURE_UNIFIED_WAKE_MASKS) > 0 ? UHEPI_SUPPORTED :
1437 			UHEPI_NOT_SUPPORTED;
1438 		log_debug("Chrome EC: UHEPI %s\n",
1439 			  uhepi_support == UHEPI_SUPPORTED ? "supported" :
1440 			  "not supported");
1441 	}
1442 	return uhepi_support == UHEPI_SUPPORTED;
1443 }
1444 
cros_ec_get_mask(struct udevice * dev,uint type)1445 static int cros_ec_get_mask(struct udevice *dev, uint type)
1446 {
1447 	u64 value = 0;
1448 
1449 	if (cros_ec_is_uhepi_supported(dev)) {
1450 		cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_GET, &value);
1451 	} else {
1452 		assert(type < ARRAY_SIZE(event_map));
1453 		cros_ec_handle_non_uhepi_cmd(dev, event_map[type].get_cmd,
1454 					     EC_HOST_EVENT_GET, &value);
1455 	}
1456 	return value;
1457 }
1458 
cros_ec_clear_mask(struct udevice * dev,uint type,u64 mask)1459 static int cros_ec_clear_mask(struct udevice *dev, uint type, u64 mask)
1460 {
1461 	if (cros_ec_is_uhepi_supported(dev))
1462 		return cros_ec_uhepi_cmd(dev, type, EC_HOST_EVENT_CLEAR, &mask);
1463 
1464 	assert(type < ARRAY_SIZE(event_map));
1465 
1466 	return cros_ec_handle_non_uhepi_cmd(dev, event_map[type].clear_cmd,
1467 					    EC_HOST_EVENT_CLEAR, &mask);
1468 }
1469 
cros_ec_get_events_b(struct udevice * dev)1470 uint64_t cros_ec_get_events_b(struct udevice *dev)
1471 {
1472 	return cros_ec_get_mask(dev, EC_HOST_EVENT_B);
1473 }
1474 
cros_ec_clear_events_b(struct udevice * dev,uint64_t mask)1475 int cros_ec_clear_events_b(struct udevice *dev, uint64_t mask)
1476 {
1477 	log_debug("Chrome EC: clear events_b mask to 0x%016llx\n", mask);
1478 
1479 	return cros_ec_clear_mask(dev, EC_HOST_EVENT_B, mask);
1480 }
1481 
cros_ec_read_limit_power(struct udevice * dev,int * limit_powerp)1482 int cros_ec_read_limit_power(struct udevice *dev, int *limit_powerp)
1483 {
1484 	struct ec_params_charge_state p;
1485 	struct ec_response_charge_state r;
1486 	int ret;
1487 
1488 	p.cmd = CHARGE_STATE_CMD_GET_PARAM;
1489 	p.get_param.param = CS_PARAM_LIMIT_POWER;
1490 	ret = ec_command(dev, EC_CMD_CHARGE_STATE, 0, &p, sizeof(p),
1491 			 &r, sizeof(r));
1492 
1493 	/*
1494 	 * If our EC doesn't support the LIMIT_POWER parameter, assume that
1495 	 * LIMIT_POWER is not requested.
1496 	 */
1497 	if (ret == -EC_RES_INVALID_PARAM || ret == -EC_RES_INVALID_COMMAND) {
1498 		log_warning("PARAM_LIMIT_POWER not supported by EC\n");
1499 		return -ENOSYS;
1500 	}
1501 
1502 	if (ret != sizeof(r.get_param))
1503 		return -EINVAL;
1504 
1505 	*limit_powerp = r.get_param.value;
1506 	return 0;
1507 }
1508 
cros_ec_config_powerbtn(struct udevice * dev,uint32_t flags)1509 int cros_ec_config_powerbtn(struct udevice *dev, uint32_t flags)
1510 {
1511 	struct ec_params_config_power_button params;
1512 	int ret;
1513 
1514 	params.flags = flags;
1515 	ret = ec_command(dev, EC_CMD_CONFIG_POWER_BUTTON, 0,
1516 			 &params, sizeof(params), NULL, 0);
1517 	if (ret < 0)
1518 		return ret;
1519 
1520 	return 0;
1521 }
1522 
cros_ec_get_lid_shutdown_mask(struct udevice * dev)1523 int cros_ec_get_lid_shutdown_mask(struct udevice *dev)
1524 {
1525 	u32 mask;
1526 	int ret;
1527 
1528 	ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
1529 				     &mask);
1530 	if (ret < 0)
1531 		return ret;
1532 
1533 	return !!(mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED));
1534 }
1535 
cros_ec_set_lid_shutdown_mask(struct udevice * dev,int enable)1536 int cros_ec_set_lid_shutdown_mask(struct udevice *dev, int enable)
1537 {
1538 	u32 mask;
1539 	int ret;
1540 
1541 	ret = cros_ec_get_event_mask(dev, EC_CMD_HOST_EVENT_GET_SMI_MASK,
1542 				     &mask);
1543 	if (ret < 0)
1544 		return ret;
1545 
1546 	/* Set lid close event state in the EC SMI event mask */
1547 	if (enable)
1548 		mask |= EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
1549 	else
1550 		mask &= ~EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED);
1551 
1552 	ret = cros_ec_set_event_mask(dev, EC_CMD_HOST_EVENT_SET_SMI_MASK, mask);
1553 	if (ret < 0)
1554 		return ret;
1555 
1556 	printf("EC: %sabled lid close event\n", enable ? "en" : "dis");
1557 	return 0;
1558 }
1559 
cros_ec_vstore_supported(struct udevice * dev)1560 int cros_ec_vstore_supported(struct udevice *dev)
1561 {
1562 	return cros_ec_check_feature(dev, EC_FEATURE_VSTORE);
1563 }
1564 
cros_ec_vstore_info(struct udevice * dev,u32 * lockedp)1565 int cros_ec_vstore_info(struct udevice *dev, u32 *lockedp)
1566 {
1567 	struct ec_response_vstore_info *resp;
1568 
1569 	if (ec_command_inptr(dev, EC_CMD_VSTORE_INFO, 0, NULL, 0,
1570 			     (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
1571 		return -EIO;
1572 
1573 	if (lockedp)
1574 		*lockedp = resp->slot_locked;
1575 
1576 	return resp->slot_count;
1577 }
1578 
1579 /*
1580  * cros_ec_vstore_read - Read data from EC vstore slot
1581  *
1582  * @slot: vstore slot to read from
1583  * @data: buffer to store read data, must be EC_VSTORE_SLOT_SIZE bytes
1584  */
cros_ec_vstore_read(struct udevice * dev,int slot,uint8_t * data)1585 int cros_ec_vstore_read(struct udevice *dev, int slot, uint8_t *data)
1586 {
1587 	struct ec_params_vstore_read req;
1588 	struct ec_response_vstore_read *resp;
1589 
1590 	req.slot = slot;
1591 	if (ec_command_inptr(dev, EC_CMD_VSTORE_READ, 0, &req, sizeof(req),
1592 			     (uint8_t **)&resp, sizeof(*resp)) != sizeof(*resp))
1593 		return -EIO;
1594 
1595 	if (!data || req.slot >= EC_VSTORE_SLOT_MAX)
1596 		return -EINVAL;
1597 
1598 	memcpy(data, resp->data, sizeof(resp->data));
1599 
1600 	return 0;
1601 }
1602 
1603 /*
1604  * cros_ec_vstore_write - Save data into EC vstore slot
1605  *
1606  * @slot: vstore slot to write into
1607  * @data: data to write
1608  * @size: size of data in bytes
1609  *
1610  * Maximum size of data is EC_VSTORE_SLOT_SIZE.  It is the callers
1611  * responsibility to check the number of implemented slots by
1612  * querying the vstore info.
1613  */
cros_ec_vstore_write(struct udevice * dev,int slot,const uint8_t * data,size_t size)1614 int cros_ec_vstore_write(struct udevice *dev, int slot, const uint8_t *data,
1615 			 size_t size)
1616 {
1617 	struct ec_params_vstore_write req;
1618 
1619 	if (slot >= EC_VSTORE_SLOT_MAX || size > EC_VSTORE_SLOT_SIZE)
1620 		return -EINVAL;
1621 
1622 	req.slot = slot;
1623 	memcpy(req.data, data, size);
1624 
1625 	if (ec_command(dev, EC_CMD_VSTORE_WRITE, 0, &req, sizeof(req), NULL, 0))
1626 		return -EIO;
1627 
1628 	return 0;
1629 }
1630 
cros_ec_get_switches(struct udevice * dev)1631 int cros_ec_get_switches(struct udevice *dev)
1632 {
1633 	struct dm_cros_ec_ops *ops;
1634 	int ret;
1635 
1636 	ops = dm_cros_ec_get_ops(dev);
1637 	if (!ops->get_switches)
1638 		return -ENOSYS;
1639 
1640 	ret = ops->get_switches(dev);
1641 	if (ret < 0)
1642 		return log_msg_ret("get", ret);
1643 
1644 	return ret;
1645 }
1646 
1647 UCLASS_DRIVER(cros_ec) = {
1648 	.id		= UCLASS_CROS_EC,
1649 	.name		= "cros-ec",
1650 	.per_device_auto	= sizeof(struct cros_ec_dev),
1651 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
1652 	.post_bind	= dm_scan_fdt_dev,
1653 #endif
1654 	.flags		= DM_UC_FLAG_ALLOC_PRIV_DMA,
1655 };
1656