1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Scatterlist Cryptographic API.
4 *
5 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
7 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
8 *
9 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
10 * and Nettle, by Niels Möller.
11 */
12 #ifndef _LINUX_CRYPTO_H
13 #define _LINUX_CRYPTO_H
14
15 #include <linux/atomic.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/bug.h>
19 #include <linux/refcount.h>
20 #include <linux/slab.h>
21 #include <linux/completion.h>
22
23 /*
24 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
25 * arbitrary modules to be loaded. Loading from userspace may still need the
26 * unprefixed names, so retains those aliases as well.
27 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
28 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
29 * expands twice on the same line. Instead, use a separate base name for the
30 * alias.
31 */
32 #define MODULE_ALIAS_CRYPTO(name) \
33 __MODULE_INFO(alias, alias_userspace, name); \
34 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
35
36 /*
37 * Algorithm masks and types.
38 */
39 #define CRYPTO_ALG_TYPE_MASK 0x0000000f
40 #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
41 #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
42 #define CRYPTO_ALG_TYPE_AEAD 0x00000003
43 #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
44 #define CRYPTO_ALG_TYPE_KPP 0x00000008
45 #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
46 #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
47 #define CRYPTO_ALG_TYPE_RNG 0x0000000c
48 #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
49 #define CRYPTO_ALG_TYPE_HASH 0x0000000e
50 #define CRYPTO_ALG_TYPE_SHASH 0x0000000e
51 #define CRYPTO_ALG_TYPE_AHASH 0x0000000f
52
53 #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
54 #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
55 #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
56
57 #define CRYPTO_ALG_LARVAL 0x00000010
58 #define CRYPTO_ALG_DEAD 0x00000020
59 #define CRYPTO_ALG_DYING 0x00000040
60 #define CRYPTO_ALG_ASYNC 0x00000080
61
62 /*
63 * Set if the algorithm (or an algorithm which it uses) requires another
64 * algorithm of the same type to handle corner cases.
65 */
66 #define CRYPTO_ALG_NEED_FALLBACK 0x00000100
67
68 /*
69 * Set if the algorithm has passed automated run-time testing. Note that
70 * if there is no run-time testing for a given algorithm it is considered
71 * to have passed.
72 */
73
74 #define CRYPTO_ALG_TESTED 0x00000400
75
76 /*
77 * Set if the algorithm is an instance that is built from templates.
78 */
79 #define CRYPTO_ALG_INSTANCE 0x00000800
80
81 /* Set this bit if the algorithm provided is hardware accelerated but
82 * not available to userspace via instruction set or so.
83 */
84 #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
85
86 /*
87 * Mark a cipher as a service implementation only usable by another
88 * cipher and never by a normal user of the kernel crypto API
89 */
90 #define CRYPTO_ALG_INTERNAL 0x00002000
91
92 /*
93 * Set if the algorithm has a ->setkey() method but can be used without
94 * calling it first, i.e. there is a default key.
95 */
96 #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
97
98 /*
99 * Don't trigger module loading
100 */
101 #define CRYPTO_NOLOAD 0x00008000
102
103 /*
104 * The algorithm may allocate memory during request processing, i.e. during
105 * encryption, decryption, or hashing. Users can request an algorithm with this
106 * flag unset if they can't handle memory allocation failures.
107 *
108 * This flag is currently only implemented for algorithms of type "skcipher",
109 * "aead", "ahash", "shash", and "cipher". Algorithms of other types might not
110 * have this flag set even if they allocate memory.
111 *
112 * In some edge cases, algorithms can allocate memory regardless of this flag.
113 * To avoid these cases, users must obey the following usage constraints:
114 * skcipher:
115 * - The IV buffer and all scatterlist elements must be aligned to the
116 * algorithm's alignmask.
117 * - If the data were to be divided into chunks of size
118 * crypto_skcipher_walksize() (with any remainder going at the end), no
119 * chunk can cross a page boundary or a scatterlist element boundary.
120 * aead:
121 * - The IV buffer and all scatterlist elements must be aligned to the
122 * algorithm's alignmask.
123 * - The first scatterlist element must contain all the associated data,
124 * and its pages must be !PageHighMem.
125 * - If the plaintext/ciphertext were to be divided into chunks of size
126 * crypto_aead_walksize() (with the remainder going at the end), no chunk
127 * can cross a page boundary or a scatterlist element boundary.
128 * ahash:
129 * - The result buffer must be aligned to the algorithm's alignmask.
130 * - crypto_ahash_finup() must not be used unless the algorithm implements
131 * ->finup() natively.
132 */
133 #define CRYPTO_ALG_ALLOCATES_MEMORY 0x00010000
134
135 /*
136 * Transform masks and values (for crt_flags).
137 */
138 #define CRYPTO_TFM_NEED_KEY 0x00000001
139
140 #define CRYPTO_TFM_REQ_MASK 0x000fff00
141 #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100
142 #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
143 #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
144
145 /*
146 * Miscellaneous stuff.
147 */
148 #define CRYPTO_MAX_ALG_NAME 128
149
150 /*
151 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
152 * declaration) is used to ensure that the crypto_tfm context structure is
153 * aligned correctly for the given architecture so that there are no alignment
154 * faults for C data types. On architectures that support non-cache coherent
155 * DMA, such as ARM or arm64, it also takes into account the minimal alignment
156 * that is required to ensure that the context struct member does not share any
157 * cachelines with the rest of the struct. This is needed to ensure that cache
158 * maintenance for non-coherent DMA (cache invalidation in particular) does not
159 * affect data that may be accessed by the CPU concurrently.
160 */
161 #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
162
163 #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
164
165 struct scatterlist;
166 struct crypto_async_request;
167 struct crypto_tfm;
168 struct crypto_type;
169
170 typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
171
172 /**
173 * DOC: Block Cipher Context Data Structures
174 *
175 * These data structures define the operating context for each block cipher
176 * type.
177 */
178
179 struct crypto_async_request {
180 struct list_head list;
181 crypto_completion_t complete;
182 void *data;
183 struct crypto_tfm *tfm;
184
185 u32 flags;
186 };
187
188 /**
189 * DOC: Block Cipher Algorithm Definitions
190 *
191 * These data structures define modular crypto algorithm implementations,
192 * managed via crypto_register_alg() and crypto_unregister_alg().
193 */
194
195 /**
196 * struct cipher_alg - single-block symmetric ciphers definition
197 * @cia_min_keysize: Minimum key size supported by the transformation. This is
198 * the smallest key length supported by this transformation
199 * algorithm. This must be set to one of the pre-defined
200 * values as this is not hardware specific. Possible values
201 * for this field can be found via git grep "_MIN_KEY_SIZE"
202 * include/crypto/
203 * @cia_max_keysize: Maximum key size supported by the transformation. This is
204 * the largest key length supported by this transformation
205 * algorithm. This must be set to one of the pre-defined values
206 * as this is not hardware specific. Possible values for this
207 * field can be found via git grep "_MAX_KEY_SIZE"
208 * include/crypto/
209 * @cia_setkey: Set key for the transformation. This function is used to either
210 * program a supplied key into the hardware or store the key in the
211 * transformation context for programming it later. Note that this
212 * function does modify the transformation context. This function
213 * can be called multiple times during the existence of the
214 * transformation object, so one must make sure the key is properly
215 * reprogrammed into the hardware. This function is also
216 * responsible for checking the key length for validity.
217 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
218 * single block of data, which must be @cra_blocksize big. This
219 * always operates on a full @cra_blocksize and it is not possible
220 * to encrypt a block of smaller size. The supplied buffers must
221 * therefore also be at least of @cra_blocksize size. Both the
222 * input and output buffers are always aligned to @cra_alignmask.
223 * In case either of the input or output buffer supplied by user
224 * of the crypto API is not aligned to @cra_alignmask, the crypto
225 * API will re-align the buffers. The re-alignment means that a
226 * new buffer will be allocated, the data will be copied into the
227 * new buffer, then the processing will happen on the new buffer,
228 * then the data will be copied back into the original buffer and
229 * finally the new buffer will be freed. In case a software
230 * fallback was put in place in the @cra_init call, this function
231 * might need to use the fallback if the algorithm doesn't support
232 * all of the key sizes. In case the key was stored in
233 * transformation context, the key might need to be re-programmed
234 * into the hardware in this function. This function shall not
235 * modify the transformation context, as this function may be
236 * called in parallel with the same transformation object.
237 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
238 * @cia_encrypt, and the conditions are exactly the same.
239 *
240 * All fields are mandatory and must be filled.
241 */
242 struct cipher_alg {
243 unsigned int cia_min_keysize;
244 unsigned int cia_max_keysize;
245 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
246 unsigned int keylen);
247 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
248 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
249 };
250
251 /**
252 * struct compress_alg - compression/decompression algorithm
253 * @coa_compress: Compress a buffer of specified length, storing the resulting
254 * data in the specified buffer. Return the length of the
255 * compressed data in dlen.
256 * @coa_decompress: Decompress the source buffer, storing the uncompressed
257 * data in the specified buffer. The length of the data is
258 * returned in dlen.
259 *
260 * All fields are mandatory.
261 */
262 struct compress_alg {
263 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
264 unsigned int slen, u8 *dst, unsigned int *dlen);
265 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
266 unsigned int slen, u8 *dst, unsigned int *dlen);
267 };
268
269 #ifdef CONFIG_CRYPTO_STATS
270 /*
271 * struct crypto_istat_aead - statistics for AEAD algorithm
272 * @encrypt_cnt: number of encrypt requests
273 * @encrypt_tlen: total data size handled by encrypt requests
274 * @decrypt_cnt: number of decrypt requests
275 * @decrypt_tlen: total data size handled by decrypt requests
276 * @err_cnt: number of error for AEAD requests
277 */
278 struct crypto_istat_aead {
279 atomic64_t encrypt_cnt;
280 atomic64_t encrypt_tlen;
281 atomic64_t decrypt_cnt;
282 atomic64_t decrypt_tlen;
283 atomic64_t err_cnt;
284 };
285
286 /*
287 * struct crypto_istat_akcipher - statistics for akcipher algorithm
288 * @encrypt_cnt: number of encrypt requests
289 * @encrypt_tlen: total data size handled by encrypt requests
290 * @decrypt_cnt: number of decrypt requests
291 * @decrypt_tlen: total data size handled by decrypt requests
292 * @verify_cnt: number of verify operation
293 * @sign_cnt: number of sign requests
294 * @err_cnt: number of error for akcipher requests
295 */
296 struct crypto_istat_akcipher {
297 atomic64_t encrypt_cnt;
298 atomic64_t encrypt_tlen;
299 atomic64_t decrypt_cnt;
300 atomic64_t decrypt_tlen;
301 atomic64_t verify_cnt;
302 atomic64_t sign_cnt;
303 atomic64_t err_cnt;
304 };
305
306 /*
307 * struct crypto_istat_cipher - statistics for cipher algorithm
308 * @encrypt_cnt: number of encrypt requests
309 * @encrypt_tlen: total data size handled by encrypt requests
310 * @decrypt_cnt: number of decrypt requests
311 * @decrypt_tlen: total data size handled by decrypt requests
312 * @err_cnt: number of error for cipher requests
313 */
314 struct crypto_istat_cipher {
315 atomic64_t encrypt_cnt;
316 atomic64_t encrypt_tlen;
317 atomic64_t decrypt_cnt;
318 atomic64_t decrypt_tlen;
319 atomic64_t err_cnt;
320 };
321
322 /*
323 * struct crypto_istat_compress - statistics for compress algorithm
324 * @compress_cnt: number of compress requests
325 * @compress_tlen: total data size handled by compress requests
326 * @decompress_cnt: number of decompress requests
327 * @decompress_tlen: total data size handled by decompress requests
328 * @err_cnt: number of error for compress requests
329 */
330 struct crypto_istat_compress {
331 atomic64_t compress_cnt;
332 atomic64_t compress_tlen;
333 atomic64_t decompress_cnt;
334 atomic64_t decompress_tlen;
335 atomic64_t err_cnt;
336 };
337
338 /*
339 * struct crypto_istat_hash - statistics for has algorithm
340 * @hash_cnt: number of hash requests
341 * @hash_tlen: total data size hashed
342 * @err_cnt: number of error for hash requests
343 */
344 struct crypto_istat_hash {
345 atomic64_t hash_cnt;
346 atomic64_t hash_tlen;
347 atomic64_t err_cnt;
348 };
349
350 /*
351 * struct crypto_istat_kpp - statistics for KPP algorithm
352 * @setsecret_cnt: number of setsecrey operation
353 * @generate_public_key_cnt: number of generate_public_key operation
354 * @compute_shared_secret_cnt: number of compute_shared_secret operation
355 * @err_cnt: number of error for KPP requests
356 */
357 struct crypto_istat_kpp {
358 atomic64_t setsecret_cnt;
359 atomic64_t generate_public_key_cnt;
360 atomic64_t compute_shared_secret_cnt;
361 atomic64_t err_cnt;
362 };
363
364 /*
365 * struct crypto_istat_rng: statistics for RNG algorithm
366 * @generate_cnt: number of RNG generate requests
367 * @generate_tlen: total data size of generated data by the RNG
368 * @seed_cnt: number of times the RNG was seeded
369 * @err_cnt: number of error for RNG requests
370 */
371 struct crypto_istat_rng {
372 atomic64_t generate_cnt;
373 atomic64_t generate_tlen;
374 atomic64_t seed_cnt;
375 atomic64_t err_cnt;
376 };
377 #endif /* CONFIG_CRYPTO_STATS */
378
379 #define cra_cipher cra_u.cipher
380 #define cra_compress cra_u.compress
381
382 /**
383 * struct crypto_alg - definition of a cryptograpic cipher algorithm
384 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
385 * CRYPTO_ALG_* flags for the flags which go in here. Those are
386 * used for fine-tuning the description of the transformation
387 * algorithm.
388 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
389 * of the smallest possible unit which can be transformed with
390 * this algorithm. The users must respect this value.
391 * In case of HASH transformation, it is possible for a smaller
392 * block than @cra_blocksize to be passed to the crypto API for
393 * transformation, in case of any other transformation type, an
394 * error will be returned upon any attempt to transform smaller
395 * than @cra_blocksize chunks.
396 * @cra_ctxsize: Size of the operational context of the transformation. This
397 * value informs the kernel crypto API about the memory size
398 * needed to be allocated for the transformation context.
399 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
400 * buffer containing the input data for the algorithm must be
401 * aligned to this alignment mask. The data buffer for the
402 * output data must be aligned to this alignment mask. Note that
403 * the Crypto API will do the re-alignment in software, but
404 * only under special conditions and there is a performance hit.
405 * The re-alignment happens at these occasions for different
406 * @cra_u types: cipher -- For both input data and output data
407 * buffer; ahash -- For output hash destination buf; shash --
408 * For output hash destination buf.
409 * This is needed on hardware which is flawed by design and
410 * cannot pick data from arbitrary addresses.
411 * @cra_priority: Priority of this transformation implementation. In case
412 * multiple transformations with same @cra_name are available to
413 * the Crypto API, the kernel will use the one with highest
414 * @cra_priority.
415 * @cra_name: Generic name (usable by multiple implementations) of the
416 * transformation algorithm. This is the name of the transformation
417 * itself. This field is used by the kernel when looking up the
418 * providers of particular transformation.
419 * @cra_driver_name: Unique name of the transformation provider. This is the
420 * name of the provider of the transformation. This can be any
421 * arbitrary value, but in the usual case, this contains the
422 * name of the chip or provider and the name of the
423 * transformation algorithm.
424 * @cra_type: Type of the cryptographic transformation. This is a pointer to
425 * struct crypto_type, which implements callbacks common for all
426 * transformation types. There are multiple options, such as
427 * &crypto_skcipher_type, &crypto_ahash_type, &crypto_rng_type.
428 * This field might be empty. In that case, there are no common
429 * callbacks. This is the case for: cipher, compress, shash.
430 * @cra_u: Callbacks implementing the transformation. This is a union of
431 * multiple structures. Depending on the type of transformation selected
432 * by @cra_type and @cra_flags above, the associated structure must be
433 * filled with callbacks. This field might be empty. This is the case
434 * for ahash, shash.
435 * @cra_init: Initialize the cryptographic transformation object. This function
436 * is used to initialize the cryptographic transformation object.
437 * This function is called only once at the instantiation time, right
438 * after the transformation context was allocated. In case the
439 * cryptographic hardware has some special requirements which need to
440 * be handled by software, this function shall check for the precise
441 * requirement of the transformation and put any software fallbacks
442 * in place.
443 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
444 * counterpart to @cra_init, used to remove various changes set in
445 * @cra_init.
446 * @cra_u.cipher: Union member which contains a single-block symmetric cipher
447 * definition. See @struct @cipher_alg.
448 * @cra_u.compress: Union member which contains a (de)compression algorithm.
449 * See @struct @compress_alg.
450 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
451 * @cra_list: internally used
452 * @cra_users: internally used
453 * @cra_refcnt: internally used
454 * @cra_destroy: internally used
455 *
456 * @stats: union of all possible crypto_istat_xxx structures
457 * @stats.aead: statistics for AEAD algorithm
458 * @stats.akcipher: statistics for akcipher algorithm
459 * @stats.cipher: statistics for cipher algorithm
460 * @stats.compress: statistics for compress algorithm
461 * @stats.hash: statistics for hash algorithm
462 * @stats.rng: statistics for rng algorithm
463 * @stats.kpp: statistics for KPP algorithm
464 *
465 * The struct crypto_alg describes a generic Crypto API algorithm and is common
466 * for all of the transformations. Any variable not documented here shall not
467 * be used by a cipher implementation as it is internal to the Crypto API.
468 */
469 struct crypto_alg {
470 struct list_head cra_list;
471 struct list_head cra_users;
472
473 u32 cra_flags;
474 unsigned int cra_blocksize;
475 unsigned int cra_ctxsize;
476 unsigned int cra_alignmask;
477
478 int cra_priority;
479 refcount_t cra_refcnt;
480
481 char cra_name[CRYPTO_MAX_ALG_NAME];
482 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
483
484 const struct crypto_type *cra_type;
485
486 union {
487 struct cipher_alg cipher;
488 struct compress_alg compress;
489 } cra_u;
490
491 int (*cra_init)(struct crypto_tfm *tfm);
492 void (*cra_exit)(struct crypto_tfm *tfm);
493 void (*cra_destroy)(struct crypto_alg *alg);
494
495 struct module *cra_module;
496
497 #ifdef CONFIG_CRYPTO_STATS
498 union {
499 struct crypto_istat_aead aead;
500 struct crypto_istat_akcipher akcipher;
501 struct crypto_istat_cipher cipher;
502 struct crypto_istat_compress compress;
503 struct crypto_istat_hash hash;
504 struct crypto_istat_rng rng;
505 struct crypto_istat_kpp kpp;
506 } stats;
507 #endif /* CONFIG_CRYPTO_STATS */
508
509 } CRYPTO_MINALIGN_ATTR;
510
511 #ifdef CONFIG_CRYPTO_STATS
512 void crypto_stats_init(struct crypto_alg *alg);
513 void crypto_stats_get(struct crypto_alg *alg);
514 void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
515 void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
516 void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
517 void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
518 void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
519 void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
520 void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
521 void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
522 void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
523 void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
524 void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
525 void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
526 void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
527 void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
528 void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
529 void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
530 void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
531 #else
crypto_stats_init(struct crypto_alg * alg)532 static inline void crypto_stats_init(struct crypto_alg *alg)
533 {}
crypto_stats_get(struct crypto_alg * alg)534 static inline void crypto_stats_get(struct crypto_alg *alg)
535 {}
crypto_stats_aead_encrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)536 static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
537 {}
crypto_stats_aead_decrypt(unsigned int cryptlen,struct crypto_alg * alg,int ret)538 static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
539 {}
crypto_stats_ahash_update(unsigned int nbytes,int ret,struct crypto_alg * alg)540 static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
541 {}
crypto_stats_ahash_final(unsigned int nbytes,int ret,struct crypto_alg * alg)542 static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
543 {}
crypto_stats_akcipher_encrypt(unsigned int src_len,int ret,struct crypto_alg * alg)544 static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
545 {}
crypto_stats_akcipher_decrypt(unsigned int src_len,int ret,struct crypto_alg * alg)546 static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
547 {}
crypto_stats_akcipher_sign(int ret,struct crypto_alg * alg)548 static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
549 {}
crypto_stats_akcipher_verify(int ret,struct crypto_alg * alg)550 static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
551 {}
crypto_stats_compress(unsigned int slen,int ret,struct crypto_alg * alg)552 static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
553 {}
crypto_stats_decompress(unsigned int slen,int ret,struct crypto_alg * alg)554 static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
555 {}
crypto_stats_kpp_set_secret(struct crypto_alg * alg,int ret)556 static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
557 {}
crypto_stats_kpp_generate_public_key(struct crypto_alg * alg,int ret)558 static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
559 {}
crypto_stats_kpp_compute_shared_secret(struct crypto_alg * alg,int ret)560 static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
561 {}
crypto_stats_rng_seed(struct crypto_alg * alg,int ret)562 static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
563 {}
crypto_stats_rng_generate(struct crypto_alg * alg,unsigned int dlen,int ret)564 static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
565 {}
crypto_stats_skcipher_encrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)566 static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
567 {}
crypto_stats_skcipher_decrypt(unsigned int cryptlen,int ret,struct crypto_alg * alg)568 static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
569 {}
570 #endif
571 /*
572 * A helper struct for waiting for completion of async crypto ops
573 */
574 struct crypto_wait {
575 struct completion completion;
576 int err;
577 };
578
579 /*
580 * Macro for declaring a crypto op async wait object on stack
581 */
582 #define DECLARE_CRYPTO_WAIT(_wait) \
583 struct crypto_wait _wait = { \
584 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
585
586 /*
587 * Async ops completion helper functioons
588 */
589 void crypto_req_done(struct crypto_async_request *req, int err);
590
crypto_wait_req(int err,struct crypto_wait * wait)591 static inline int crypto_wait_req(int err, struct crypto_wait *wait)
592 {
593 switch (err) {
594 case -EINPROGRESS:
595 case -EBUSY:
596 wait_for_completion(&wait->completion);
597 reinit_completion(&wait->completion);
598 err = wait->err;
599 break;
600 }
601
602 return err;
603 }
604
crypto_init_wait(struct crypto_wait * wait)605 static inline void crypto_init_wait(struct crypto_wait *wait)
606 {
607 init_completion(&wait->completion);
608 }
609
610 /*
611 * Algorithm registration interface.
612 */
613 int crypto_register_alg(struct crypto_alg *alg);
614 void crypto_unregister_alg(struct crypto_alg *alg);
615 int crypto_register_algs(struct crypto_alg *algs, int count);
616 void crypto_unregister_algs(struct crypto_alg *algs, int count);
617
618 /*
619 * Algorithm query interface.
620 */
621 int crypto_has_alg(const char *name, u32 type, u32 mask);
622
623 /*
624 * Transforms: user-instantiated objects which encapsulate algorithms
625 * and core processing logic. Managed via crypto_alloc_*() and
626 * crypto_free_*(), as well as the various helpers below.
627 */
628
629 struct crypto_tfm {
630
631 u32 crt_flags;
632
633 int node;
634
635 void (*exit)(struct crypto_tfm *tfm);
636
637 struct crypto_alg *__crt_alg;
638
639 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
640 };
641
642 struct crypto_comp {
643 struct crypto_tfm base;
644 };
645
646 /*
647 * Transform user interface.
648 */
649
650 struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
651 void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
652
crypto_free_tfm(struct crypto_tfm * tfm)653 static inline void crypto_free_tfm(struct crypto_tfm *tfm)
654 {
655 return crypto_destroy_tfm(tfm, tfm);
656 }
657
658 int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
659
660 /*
661 * Transform helpers which query the underlying algorithm.
662 */
crypto_tfm_alg_name(struct crypto_tfm * tfm)663 static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
664 {
665 return tfm->__crt_alg->cra_name;
666 }
667
crypto_tfm_alg_driver_name(struct crypto_tfm * tfm)668 static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
669 {
670 return tfm->__crt_alg->cra_driver_name;
671 }
672
crypto_tfm_alg_priority(struct crypto_tfm * tfm)673 static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
674 {
675 return tfm->__crt_alg->cra_priority;
676 }
677
crypto_tfm_alg_type(struct crypto_tfm * tfm)678 static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
679 {
680 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
681 }
682
crypto_tfm_alg_blocksize(struct crypto_tfm * tfm)683 static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
684 {
685 return tfm->__crt_alg->cra_blocksize;
686 }
687
crypto_tfm_alg_alignmask(struct crypto_tfm * tfm)688 static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
689 {
690 return tfm->__crt_alg->cra_alignmask;
691 }
692
crypto_tfm_get_flags(struct crypto_tfm * tfm)693 static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
694 {
695 return tfm->crt_flags;
696 }
697
crypto_tfm_set_flags(struct crypto_tfm * tfm,u32 flags)698 static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
699 {
700 tfm->crt_flags |= flags;
701 }
702
crypto_tfm_clear_flags(struct crypto_tfm * tfm,u32 flags)703 static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
704 {
705 tfm->crt_flags &= ~flags;
706 }
707
crypto_tfm_ctx(struct crypto_tfm * tfm)708 static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
709 {
710 return tfm->__crt_ctx;
711 }
712
crypto_tfm_ctx_alignment(void)713 static inline unsigned int crypto_tfm_ctx_alignment(void)
714 {
715 struct crypto_tfm *tfm;
716 return __alignof__(tfm->__crt_ctx);
717 }
718
__crypto_comp_cast(struct crypto_tfm * tfm)719 static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
720 {
721 return (struct crypto_comp *)tfm;
722 }
723
crypto_alloc_comp(const char * alg_name,u32 type,u32 mask)724 static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
725 u32 type, u32 mask)
726 {
727 type &= ~CRYPTO_ALG_TYPE_MASK;
728 type |= CRYPTO_ALG_TYPE_COMPRESS;
729 mask |= CRYPTO_ALG_TYPE_MASK;
730
731 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
732 }
733
crypto_comp_tfm(struct crypto_comp * tfm)734 static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
735 {
736 return &tfm->base;
737 }
738
crypto_free_comp(struct crypto_comp * tfm)739 static inline void crypto_free_comp(struct crypto_comp *tfm)
740 {
741 crypto_free_tfm(crypto_comp_tfm(tfm));
742 }
743
crypto_has_comp(const char * alg_name,u32 type,u32 mask)744 static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
745 {
746 type &= ~CRYPTO_ALG_TYPE_MASK;
747 type |= CRYPTO_ALG_TYPE_COMPRESS;
748 mask |= CRYPTO_ALG_TYPE_MASK;
749
750 return crypto_has_alg(alg_name, type, mask);
751 }
752
crypto_comp_name(struct crypto_comp * tfm)753 static inline const char *crypto_comp_name(struct crypto_comp *tfm)
754 {
755 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
756 }
757
758 int crypto_comp_compress(struct crypto_comp *tfm,
759 const u8 *src, unsigned int slen,
760 u8 *dst, unsigned int *dlen);
761
762 int crypto_comp_decompress(struct crypto_comp *tfm,
763 const u8 *src, unsigned int slen,
764 u8 *dst, unsigned int *dlen);
765
766 #endif /* _LINUX_CRYPTO_H */
767
768