1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2018-2020 Marvell International Ltd.
4 */
5
6 /*
7 * Simple allocate only memory allocator. Used to allocate memory at
8 * application start time.
9 */
10
11 #include <asm/global_data.h>
12
13 #include <linux/compat.h>
14 #include <linux/io.h>
15 #include <linux/types.h>
16
17 #include <mach/octeon-model.h>
18 #include <mach/cvmx-bootmem.h>
19 #include <mach/cvmx-coremask.h>
20 #include <mach/cvmx-regs.h>
21
22 DECLARE_GLOBAL_DATA_PTR;
23
24 #define CVMX_MIPS32_SPACE_KSEG0 1L
25 #define CVMX_MIPS_SPACE_XKPHYS 2LL
26
27 #define CVMX_ADD_SEG(seg, add) ((((u64)(seg)) << 62) | (add))
28 #define CVMX_ADD_SEG32(seg, add) (((u32)(seg) << 31) | (u32)(add))
29
30 /**
31 * This is the physical location of a struct cvmx_bootmem_desc
32 * structure in Octeon's memory. Note that dues to addressing
33 * limits or runtime environment it might not be possible to
34 * create a C pointer to this structure.
35 */
36 static u64 cvmx_bootmem_desc_addr;
37
38 /**
39 * This macro returns the size of a member of a structure.
40 * Logically it is the same as "sizeof(s::field)" in C++, but
41 * C lacks the "::" operator.
42 */
43 #define SIZEOF_FIELD(s, field) sizeof(((s *)NULL)->field)
44
45 /**
46 * This macro returns a member of the struct cvmx_bootmem_desc
47 * structure. These members can't be directly addressed as
48 * they might be in memory not directly reachable. In the case
49 * where bootmem is compiled with LINUX_HOST, the structure
50 * itself might be located on a remote Octeon. The argument
51 * "field" is the member name of the struct cvmx_bootmem_desc to read.
52 * Regardless of the type of the field, the return type is always
53 * a u64.
54 */
55 #define CVMX_BOOTMEM_DESC_GET_FIELD(field) \
56 __cvmx_bootmem_desc_get(cvmx_bootmem_desc_addr, \
57 offsetof(struct cvmx_bootmem_desc, field), \
58 SIZEOF_FIELD(struct cvmx_bootmem_desc, field))
59
60 /**
61 * This macro writes a member of the struct cvmx_bootmem_desc
62 * structure. These members can't be directly addressed as
63 * they might be in memory not directly reachable. In the case
64 * where bootmem is compiled with LINUX_HOST, the structure
65 * itself might be located on a remote Octeon. The argument
66 * "field" is the member name of the struct cvmx_bootmem_desc to write.
67 */
68 #define CVMX_BOOTMEM_DESC_SET_FIELD(field, value) \
69 __cvmx_bootmem_desc_set(cvmx_bootmem_desc_addr, \
70 offsetof(struct cvmx_bootmem_desc, field), \
71 SIZEOF_FIELD(struct cvmx_bootmem_desc, field), \
72 value)
73
74 /**
75 * This macro returns a member of the
76 * struct cvmx_bootmem_named_block_desc structure. These members can't
77 * be directly addressed as they might be in memory not directly
78 * reachable. In the case where bootmem is compiled with
79 * LINUX_HOST, the structure itself might be located on a remote
80 * Octeon. The argument "field" is the member name of the
81 * struct cvmx_bootmem_named_block_desc to read. Regardless of the type
82 * of the field, the return type is always a u64. The "addr"
83 * parameter is the physical address of the structure.
84 */
85 #define CVMX_BOOTMEM_NAMED_GET_FIELD(addr, field) \
86 __cvmx_bootmem_desc_get(addr, \
87 offsetof(struct cvmx_bootmem_named_block_desc, field), \
88 SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field))
89
90 /**
91 * This macro writes a member of the struct cvmx_bootmem_named_block_desc
92 * structure. These members can't be directly addressed as
93 * they might be in memory not directly reachable. In the case
94 * where bootmem is compiled with LINUX_HOST, the structure
95 * itself might be located on a remote Octeon. The argument
96 * "field" is the member name of the
97 * struct cvmx_bootmem_named_block_desc to write. The "addr" parameter
98 * is the physical address of the structure.
99 */
100 #define CVMX_BOOTMEM_NAMED_SET_FIELD(addr, field, value) \
101 __cvmx_bootmem_desc_set(addr, \
102 offsetof(struct cvmx_bootmem_named_block_desc, field), \
103 SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field), \
104 value)
105
106 /**
107 * This function is the implementation of the get macros defined
108 * for individual structure members. The argument are generated
109 * by the macros inorder to read only the needed memory.
110 *
111 * @param base 64bit physical address of the complete structure
112 * @param offset Offset from the beginning of the structure to the member being
113 * accessed.
114 * @param size Size of the structure member.
115 *
116 * @return Value of the structure member promoted into a u64.
117 */
__cvmx_bootmem_desc_get(u64 base,int offset,int size)118 static inline u64 __cvmx_bootmem_desc_get(u64 base, int offset,
119 int size)
120 {
121 base = (1ull << 63) | (base + offset);
122 switch (size) {
123 case 4:
124 return cvmx_read64_uint32(base);
125 case 8:
126 return cvmx_read64_uint64(base);
127 default:
128 return 0;
129 }
130 }
131
132 /**
133 * This function is the implementation of the set macros defined
134 * for individual structure members. The argument are generated
135 * by the macros in order to write only the needed memory.
136 *
137 * @param base 64bit physical address of the complete structure
138 * @param offset Offset from the beginning of the structure to the member being
139 * accessed.
140 * @param size Size of the structure member.
141 * @param value Value to write into the structure
142 */
__cvmx_bootmem_desc_set(u64 base,int offset,int size,u64 value)143 static inline void __cvmx_bootmem_desc_set(u64 base, int offset, int size,
144 u64 value)
145 {
146 base = (1ull << 63) | (base + offset);
147 switch (size) {
148 case 4:
149 cvmx_write64_uint32(base, value);
150 break;
151 case 8:
152 cvmx_write64_uint64(base, value);
153 break;
154 default:
155 break;
156 }
157 }
158
159 /**
160 * This function returns the address of the bootmem descriptor lock.
161 *
162 * @return 64-bit address in KSEG0 of the bootmem descriptor block
163 */
__cvmx_bootmem_get_lock_addr(void)164 static inline u64 __cvmx_bootmem_get_lock_addr(void)
165 {
166 return (1ull << 63) |
167 (cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc, lock));
168 }
169
170 /**
171 * This function retrieves the string name of a named block. It is
172 * more complicated than a simple memcpy() since the named block
173 * descriptor may not be directly accessible.
174 *
175 * @param addr Physical address of the named block descriptor
176 * @param str String to receive the named block string name
177 * @param len Length of the string buffer, which must match the length
178 * stored in the bootmem descriptor.
179 */
CVMX_BOOTMEM_NAMED_GET_NAME(u64 addr,char * str,int len)180 static void CVMX_BOOTMEM_NAMED_GET_NAME(u64 addr, char *str, int len)
181 {
182 int l = len;
183 char *ptr = str;
184
185 addr |= (1ull << 63);
186 addr += offsetof(struct cvmx_bootmem_named_block_desc, name);
187 while (l) {
188 /*
189 * With big-endian in memory byte order, this gives uniform
190 * results for the CPU in either big or Little endian mode.
191 */
192 u64 blob = cvmx_read64_uint64(addr);
193 int sa = 56;
194
195 addr += sizeof(u64);
196 while (l && sa >= 0) {
197 *ptr++ = (char)(blob >> sa);
198 l--;
199 sa -= 8;
200 }
201 }
202 str[len] = 0;
203 }
204
205 /**
206 * This function stores the string name of a named block. It is
207 * more complicated than a simple memcpy() since the named block
208 * descriptor may not be directly accessible.
209 *
210 * @param addr Physical address of the named block descriptor
211 * @param str String to store into the named block string name
212 * @param len Length of the string buffer, which must match the length
213 * stored in the bootmem descriptor.
214 */
CVMX_BOOTMEM_NAMED_SET_NAME(u64 addr,const char * str,int len)215 void CVMX_BOOTMEM_NAMED_SET_NAME(u64 addr, const char *str, int len)
216 {
217 int l = len;
218
219 addr |= (1ull << 63);
220 addr += offsetof(struct cvmx_bootmem_named_block_desc, name);
221
222 while (l) {
223 /*
224 * With big-endian in memory byte order, this gives uniform
225 * results for the CPU in either big or Little endian mode.
226 */
227 u64 blob = 0;
228 int sa = 56;
229
230 while (l && sa >= 0) {
231 u64 c = (u8)(*str++);
232
233 l--;
234 if (l == 0)
235 c = 0;
236 blob |= c << sa;
237 sa -= 8;
238 }
239 cvmx_write64_uint64(addr, blob);
240 addr += sizeof(u64);
241 }
242 }
243
244 /* See header file for descriptions of functions */
245
246 /*
247 * Wrapper functions are provided for reading/writing the size and next block
248 * values as these may not be directly addressible (in 32 bit applications, for
249 * instance.)
250 *
251 * Offsets of data elements in bootmem list, must match
252 * struct cvmx_bootmem_block_header
253 */
254 #define NEXT_OFFSET 0
255 #define SIZE_OFFSET 8
256
cvmx_bootmem_phy_set_size(u64 addr,u64 size)257 static void cvmx_bootmem_phy_set_size(u64 addr, u64 size)
258 {
259 cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
260 }
261
cvmx_bootmem_phy_set_next(u64 addr,u64 next)262 static void cvmx_bootmem_phy_set_next(u64 addr, u64 next)
263 {
264 cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
265 }
266
cvmx_bootmem_phy_get_size(u64 addr)267 static u64 cvmx_bootmem_phy_get_size(u64 addr)
268 {
269 return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63));
270 }
271
cvmx_bootmem_phy_get_next(u64 addr)272 static u64 cvmx_bootmem_phy_get_next(u64 addr)
273 {
274 return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63));
275 }
276
277 /**
278 * Check the version information on the bootmem descriptor
279 *
280 * @param exact_match
281 * Exact major version to check against. A zero means
282 * check that the version supports named blocks.
283 *
284 * @return Zero if the version is correct. Negative if the version is
285 * incorrect. Failures also cause a message to be displayed.
286 */
__cvmx_bootmem_check_version(int exact_match)287 static int __cvmx_bootmem_check_version(int exact_match)
288 {
289 int major_version;
290
291 major_version = CVMX_BOOTMEM_DESC_GET_FIELD(major_version);
292 if (major_version > 3 ||
293 (exact_match && major_version) != exact_match) {
294 debug("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: 0x%llx\n",
295 major_version,
296 (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version),
297 CAST_ULL(cvmx_bootmem_desc_addr));
298 return -1;
299 } else {
300 return 0;
301 }
302 }
303
304 /**
305 * Get the low level bootmem descriptor lock. If no locking
306 * is specified in the flags, then nothing is done.
307 *
308 * @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
309 * nothing. This is used to support nested bootmem calls.
310 */
__cvmx_bootmem_lock(u32 flags)311 static inline void __cvmx_bootmem_lock(u32 flags)
312 {
313 if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) {
314 /*
315 * Unfortunately we can't use the normal cvmx-spinlock code as
316 * the memory for the bootmem descriptor may be not accessible
317 * by a C pointer. We use a 64bit XKPHYS address to access the
318 * memory directly
319 */
320 u64 lock_addr = (1ull << 63) |
321 (cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc,
322 lock));
323 unsigned int tmp;
324
325 __asm__ __volatile__(".set noreorder\n"
326 "1: ll %[tmp], 0(%[addr])\n"
327 " bnez %[tmp], 1b\n"
328 " li %[tmp], 1\n"
329 " sc %[tmp], 0(%[addr])\n"
330 " beqz %[tmp], 1b\n"
331 " nop\n"
332 ".set reorder\n"
333 : [tmp] "=&r"(tmp)
334 : [addr] "r"(lock_addr)
335 : "memory");
336 }
337 }
338
339 /**
340 * Release the low level bootmem descriptor lock. If no locking
341 * is specified in the flags, then nothing is done.
342 *
343 * @param flags CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
344 * nothing. This is used to support nested bootmem calls.
345 */
__cvmx_bootmem_unlock(u32 flags)346 static inline void __cvmx_bootmem_unlock(u32 flags)
347 {
348 if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) {
349 /*
350 * Unfortunately we can't use the normal cvmx-spinlock code as
351 * the memory for the bootmem descriptor may be not accessible
352 * by a C pointer. We use a 64bit XKPHYS address to access the
353 * memory directly
354 */
355 u64 lock_addr = __cvmx_bootmem_get_lock_addr();
356
357 CVMX_SYNCW;
358 __asm__ __volatile__("sw $0, 0(%[addr])\n"
359 : : [addr] "r"(lock_addr)
360 : "memory");
361 CVMX_SYNCW;
362 }
363 }
364
365 /*
366 * Some of the cvmx-bootmem functions dealing with C pointers are not
367 * supported when we are compiling for CVMX_BUILD_FOR_LINUX_HOST. This
368 * ifndef removes these functions when they aren't needed.
369 *
370 * This functions takes an address range and adjusts it as necessary
371 * to match the ABI that is currently being used. This is required to
372 * ensure that bootmem_alloc* functions only return valid pointers for
373 * 32 bit ABIs
374 */
__cvmx_validate_mem_range(u64 * min_addr_ptr,u64 * max_addr_ptr)375 static int __cvmx_validate_mem_range(u64 *min_addr_ptr,
376 u64 *max_addr_ptr)
377 {
378 u64 max_phys = (1ull << 29) - 0x10; /* KSEG0 */
379
380 *min_addr_ptr = min_t(u64, max_t(u64, *min_addr_ptr, 0x0), max_phys);
381 if (!*max_addr_ptr) {
382 *max_addr_ptr = max_phys;
383 } else {
384 *max_addr_ptr = max_t(u64, min_t(u64, *max_addr_ptr,
385 max_phys), 0x0);
386 }
387
388 return 0;
389 }
390
cvmx_bootmem_phy_alloc_range(u64 size,u64 alignment,u64 min_addr,u64 max_addr)391 u64 cvmx_bootmem_phy_alloc_range(u64 size, u64 alignment,
392 u64 min_addr, u64 max_addr)
393 {
394 s64 address;
395
396 __cvmx_validate_mem_range(&min_addr, &max_addr);
397 address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
398 alignment, 0);
399 if (address > 0)
400 return address;
401 else
402 return 0;
403 }
404
cvmx_bootmem_alloc_range(u64 size,u64 alignment,u64 min_addr,u64 max_addr)405 void *cvmx_bootmem_alloc_range(u64 size, u64 alignment,
406 u64 min_addr, u64 max_addr)
407 {
408 s64 address;
409
410 __cvmx_validate_mem_range(&min_addr, &max_addr);
411 address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
412 alignment, 0);
413
414 if (address > 0)
415 return cvmx_phys_to_ptr(address);
416 else
417 return NULL;
418 }
419
cvmx_bootmem_alloc_address(u64 size,u64 address,u64 alignment)420 void *cvmx_bootmem_alloc_address(u64 size, u64 address,
421 u64 alignment)
422 {
423 return cvmx_bootmem_alloc_range(size, alignment, address,
424 address + size);
425 }
426
cvmx_bootmem_alloc_node(u64 node,u64 size,u64 alignment)427 void *cvmx_bootmem_alloc_node(u64 node, u64 size, u64 alignment)
428 {
429 return cvmx_bootmem_alloc_range(size, alignment,
430 node << CVMX_NODE_MEM_SHIFT,
431 ((node + 1) << CVMX_NODE_MEM_SHIFT) - 1);
432 }
433
cvmx_bootmem_alloc(u64 size,u64 alignment)434 void *cvmx_bootmem_alloc(u64 size, u64 alignment)
435 {
436 return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
437 }
438
cvmx_bootmem_alloc_named_range_once(u64 size,u64 min_addr,u64 max_addr,u64 align,const char * name,void (* init)(void *))439 void *cvmx_bootmem_alloc_named_range_once(u64 size, u64 min_addr,
440 u64 max_addr, u64 align,
441 const char *name,
442 void (*init)(void *))
443 {
444 u64 named_block_desc_addr;
445 void *ptr;
446 s64 addr;
447
448 __cvmx_bootmem_lock(0);
449
450 __cvmx_validate_mem_range(&min_addr, &max_addr);
451 named_block_desc_addr =
452 cvmx_bootmem_phy_named_block_find(name,
453 CVMX_BOOTMEM_FLAG_NO_LOCKING);
454
455 if (named_block_desc_addr) {
456 addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_desc_addr,
457 base_addr);
458 __cvmx_bootmem_unlock(0);
459 return cvmx_phys_to_ptr(addr);
460 }
461
462 addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
463 align, name,
464 CVMX_BOOTMEM_FLAG_NO_LOCKING);
465
466 if (addr < 0) {
467 __cvmx_bootmem_unlock(0);
468 return NULL;
469 }
470 ptr = cvmx_phys_to_ptr(addr);
471
472 if (init)
473 init(ptr);
474 else
475 memset(ptr, 0, size);
476
477 __cvmx_bootmem_unlock(0);
478 return ptr;
479 }
480
cvmx_bootmem_alloc_named_range_flags(u64 size,u64 min_addr,u64 max_addr,u64 align,const char * name,u32 flags)481 void *cvmx_bootmem_alloc_named_range_flags(u64 size, u64 min_addr,
482 u64 max_addr, u64 align,
483 const char *name, u32 flags)
484 {
485 s64 addr;
486
487 __cvmx_validate_mem_range(&min_addr, &max_addr);
488 addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
489 align, name, flags);
490 if (addr >= 0)
491 return cvmx_phys_to_ptr(addr);
492 else
493 return NULL;
494 }
495
cvmx_bootmem_alloc_named_range(u64 size,u64 min_addr,u64 max_addr,u64 align,const char * name)496 void *cvmx_bootmem_alloc_named_range(u64 size, u64 min_addr,
497 u64 max_addr, u64 align,
498 const char *name)
499 {
500 return cvmx_bootmem_alloc_named_range_flags(size, min_addr, max_addr,
501 align, name, 0);
502 }
503
cvmx_bootmem_alloc_named_address(u64 size,u64 address,const char * name)504 void *cvmx_bootmem_alloc_named_address(u64 size, u64 address,
505 const char *name)
506 {
507 return cvmx_bootmem_alloc_named_range(size, address, address + size,
508 0, name);
509 }
510
cvmx_bootmem_alloc_named(u64 size,u64 alignment,const char * name)511 void *cvmx_bootmem_alloc_named(u64 size, u64 alignment,
512 const char *name)
513 {
514 return cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name);
515 }
516
cvmx_bootmem_alloc_named_flags(u64 size,u64 alignment,const char * name,u32 flags)517 void *cvmx_bootmem_alloc_named_flags(u64 size, u64 alignment,
518 const char *name, u32 flags)
519 {
520 return cvmx_bootmem_alloc_named_range_flags(size, 0, 0, alignment,
521 name, flags);
522 }
523
cvmx_bootmem_free_named(const char * name)524 int cvmx_bootmem_free_named(const char *name)
525 {
526 return cvmx_bootmem_phy_named_block_free(name, 0);
527 }
528
529 /**
530 * Find a named block with flags
531 *
532 * @param name is the block name
533 * @param flags indicates the need to use locking during search
534 * @return pointer to named block descriptor
535 *
536 * Note: this function returns a pointer to a static structure,
537 * and is therefore not re-entrant.
538 * Making this function re-entrant will break backward compatibility.
539 */
540 const struct cvmx_bootmem_named_block_desc *
__cvmx_bootmem_find_named_block_flags(const char * name,u32 flags)541 __cvmx_bootmem_find_named_block_flags(const char *name, u32 flags)
542 {
543 static struct cvmx_bootmem_named_block_desc desc;
544 u64 named_addr = cvmx_bootmem_phy_named_block_find(name, flags);
545
546 if (named_addr) {
547 desc.base_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr,
548 base_addr);
549 desc.size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
550 strncpy(desc.name, name, sizeof(desc.name));
551 desc.name[sizeof(desc.name) - 1] = 0;
552 return &desc;
553 } else {
554 return NULL;
555 }
556 }
557
558 const struct cvmx_bootmem_named_block_desc *
cvmx_bootmem_find_named_block(const char * name)559 cvmx_bootmem_find_named_block(const char *name)
560 {
561 return __cvmx_bootmem_find_named_block_flags(name, 0);
562 }
563
cvmx_bootmem_print_named(void)564 void cvmx_bootmem_print_named(void)
565 {
566 cvmx_bootmem_phy_named_block_print();
567 }
568
cvmx_bootmem_init(u64 mem_desc_addr)569 int cvmx_bootmem_init(u64 mem_desc_addr)
570 {
571 if (!cvmx_bootmem_desc_addr)
572 cvmx_bootmem_desc_addr = mem_desc_addr;
573
574 return 0;
575 }
576
cvmx_bootmem_available_mem(u64 min_block_size)577 u64 cvmx_bootmem_available_mem(u64 min_block_size)
578 {
579 return cvmx_bootmem_phy_available_mem(min_block_size);
580 }
581
582 /*
583 * The cvmx_bootmem_phy* functions below return 64 bit physical
584 * addresses, and expose more features that the cvmx_bootmem_functions
585 * above. These are required for full memory space access in 32 bit
586 * applications, as well as for using some advance features. Most
587 * applications should not need to use these.
588 */
589
cvmx_bootmem_phy_alloc(u64 req_size,u64 address_min,u64 address_max,u64 alignment,u32 flags)590 s64 cvmx_bootmem_phy_alloc(u64 req_size, u64 address_min,
591 u64 address_max, u64 alignment,
592 u32 flags)
593 {
594 u64 head_addr, ent_addr, ent_size;
595 u64 target_ent_addr = 0, target_prev_addr = 0;
596 u64 target_size = ~0ull;
597 u64 free_start, free_end;
598 u64 next_addr, prev_addr = 0;
599 u64 new_ent_addr = 0, new_ent_size;
600 u64 desired_min_addr, usable_max;
601 u64 align, align_mask;
602
603 debug("%s: req_size: 0x%llx, min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
604 __func__, CAST_ULL(req_size), CAST_ULL(address_min),
605 CAST_ULL(address_max), CAST_ULL(alignment));
606
607 if (__cvmx_bootmem_check_version(0))
608 return -1;
609
610 /*
611 * Do a variety of checks to validate the arguments. The
612 * allocator code will later assume that these checks have
613 * been made. We validate that the requested constraints are
614 * not self-contradictory before we look through the list of
615 * available memory
616 */
617
618 /* 0 is not a valid req_size for this allocator */
619 if (!req_size)
620 return -1;
621
622 /* Round req_size up to multiple of minimum alignment bytes */
623 req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
624 ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
625
626 /* Make sure alignment is power of 2, and at least the minimum */
627 for (align = CVMX_BOOTMEM_ALIGNMENT_SIZE;
628 align < (1ull << 48);
629 align <<= 1) {
630 if (align >= alignment)
631 break;
632 }
633
634 align_mask = ~(align - 1);
635
636 /*
637 * Adjust address minimum based on requested alignment (round
638 * up to meet alignment). Do this here so we can reject
639 * impossible requests up front. (NOP for address_min == 0)
640 */
641 address_min = (address_min + (align - 1)) & align_mask;
642
643 /*
644 * Convert !0 address_min and 0 address_max to special case of
645 * range that specifies an exact memory block to allocate. Do
646 * this before other checks and adjustments so that this
647 * tranformation will be validated
648 */
649 if (address_min && !address_max)
650 address_max = address_min + req_size;
651 else if (!address_min && !address_max)
652 address_max = ~0ull; /* If no limits given, use max */
653
654 /*
655 * Reject inconsistent args. We have adjusted these, so this
656 * may fail due to our internal changes even if this check
657 * would pass for the values the user supplied.
658 */
659 if (req_size > address_max - address_min)
660 return -1;
661
662 __cvmx_bootmem_lock(flags);
663
664 /* Walk through the list entries to find the right fit */
665 head_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
666
667 for (ent_addr = head_addr;
668 ent_addr != 0ULL && ent_addr < address_max;
669 prev_addr = ent_addr,
670 ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) {
671 /* Raw free block size */
672 ent_size = cvmx_bootmem_phy_get_size(ent_addr);
673 next_addr = cvmx_bootmem_phy_get_next(ent_addr);
674
675 /* Validate the free list ascending order */
676 if (ent_size < CVMX_BOOTMEM_ALIGNMENT_SIZE ||
677 (next_addr && ent_addr > next_addr)) {
678 debug("ERROR: %s: bad free list ent: %#llx, next: %#llx\n",
679 __func__, CAST_ULL(ent_addr),
680 CAST_ULL(next_addr));
681 goto error_out;
682 }
683
684 /* adjust free block edges for alignment */
685 free_start = (ent_addr + align - 1) & align_mask;
686 free_end = (ent_addr + ent_size) & align_mask;
687
688 /* check that free block is large enough */
689 if ((free_start + req_size) > free_end)
690 continue;
691
692 /* check that desired start is within the free block */
693 if (free_end < address_min || free_start > address_max)
694 continue;
695 if ((free_end - address_min) < req_size)
696 continue;
697 if ((address_max - free_start) < req_size)
698 continue;
699
700 /* Found usebale free block */
701 target_ent_addr = ent_addr;
702 target_prev_addr = prev_addr;
703 target_size = ent_size;
704
705 /* Continue looking for highest/best block that fits */
706 }
707
708 /* Bail if the search has resulted in no eligible free blocks */
709 if (target_ent_addr == 0) {
710 debug("%s: eligible free block not found\n", __func__);
711 goto error_out;
712 }
713
714 /* Found the free block to allocate from */
715 ent_addr = target_ent_addr;
716 prev_addr = target_prev_addr;
717 ent_size = target_size;
718
719 debug("%s: using free block at %#010llx size %#llx\n",
720 __func__, CAST_ULL(ent_addr), CAST_ULL(ent_size));
721
722 /* Always allocate from the end of a free block */
723 usable_max = min_t(u64, address_max, ent_addr + ent_size);
724 desired_min_addr = usable_max - req_size;
725 desired_min_addr &= align_mask;
726
727 /* Split current free block into up to 3 free blocks */
728
729 /* Check for head room */
730 if (desired_min_addr > ent_addr) {
731 /* Create a new free block at the allocation address */
732 new_ent_addr = desired_min_addr;
733 new_ent_size = ent_size - (desired_min_addr - ent_addr);
734
735 cvmx_bootmem_phy_set_next(new_ent_addr,
736 cvmx_bootmem_phy_get_next(ent_addr));
737 cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size);
738
739 /* Split out head room into a new free block */
740 ent_size -= new_ent_size;
741 cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
742 cvmx_bootmem_phy_set_size(ent_addr, ent_size);
743
744 debug("%s: splitting head, addr %#llx size %#llx\n",
745 __func__, CAST_ULL(ent_addr), CAST_ULL(ent_size));
746
747 /* Make the allocation target the current free block */
748 prev_addr = ent_addr;
749 ent_addr = new_ent_addr;
750 ent_size = new_ent_size;
751 }
752
753 /* Check for tail room */
754 if ((desired_min_addr + req_size) < (ent_addr + ent_size)) {
755 new_ent_addr = ent_addr + req_size;
756 new_ent_size = ent_size - req_size;
757
758 /* Create a new free block from tail room */
759 cvmx_bootmem_phy_set_next(new_ent_addr,
760 cvmx_bootmem_phy_get_next(ent_addr));
761 cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size);
762
763 debug("%s: splitting tail, addr %#llx size %#llx\n",
764 __func__, CAST_ULL(new_ent_addr), CAST_ULL(new_ent_size));
765
766 /* Adjust the current block to exclude tail room */
767 ent_size = ent_size - new_ent_size;
768 cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
769 cvmx_bootmem_phy_set_size(ent_addr, ent_size);
770 }
771
772 /* The current free block IS the allocation target */
773 if (desired_min_addr != ent_addr || ent_size != req_size)
774 debug("ERROR: %s: internal error - addr %#llx %#llx size %#llx %#llx\n",
775 __func__, CAST_ULL(desired_min_addr), CAST_ULL(ent_addr),
776 CAST_ULL(ent_size), CAST_ULL(req_size));
777
778 /* Remove the current free block from list */
779 if (prev_addr) {
780 cvmx_bootmem_phy_set_next(prev_addr,
781 cvmx_bootmem_phy_get_next(ent_addr));
782 } else {
783 /* head of list being returned, so update head ptr */
784 CVMX_BOOTMEM_DESC_SET_FIELD(head_addr,
785 cvmx_bootmem_phy_get_next(ent_addr));
786 }
787
788 __cvmx_bootmem_unlock(flags);
789 debug("%s: allocated size: %#llx, at addr: %#010llx\n",
790 __func__,
791 CAST_ULL(req_size),
792 CAST_ULL(desired_min_addr));
793
794 return desired_min_addr;
795
796 error_out:
797 /* Requested memory not found or argument error */
798 __cvmx_bootmem_unlock(flags);
799 return -1;
800 }
801
__cvmx_bootmem_phy_free(u64 phy_addr,u64 size,u32 flags)802 int __cvmx_bootmem_phy_free(u64 phy_addr, u64 size, u32 flags)
803 {
804 u64 cur_addr;
805 u64 prev_addr = 0; /* zero is invalid */
806 int retval = 0;
807
808 debug("%s addr: %#llx, size: %#llx\n", __func__,
809 CAST_ULL(phy_addr), CAST_ULL(size));
810
811 if (__cvmx_bootmem_check_version(0))
812 return 0;
813
814 /* 0 is not a valid size for this allocator */
815 if (!size || !phy_addr)
816 return 0;
817
818 /* Round size up to mult of minimum alignment bytes */
819 size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
820 ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
821
822 __cvmx_bootmem_lock(flags);
823 cur_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
824 if (cur_addr == 0 || phy_addr < cur_addr) {
825 /* add at front of list - special case with changing head ptr */
826 if (cur_addr && phy_addr + size > cur_addr)
827 goto bootmem_free_done; /* error, overlapping section */
828 else if (phy_addr + size == cur_addr) {
829 /* Add to front of existing first block */
830 cvmx_bootmem_phy_set_next(phy_addr,
831 cvmx_bootmem_phy_get_next(cur_addr));
832 cvmx_bootmem_phy_set_size(phy_addr,
833 cvmx_bootmem_phy_get_size(cur_addr) + size);
834 CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
835
836 } else {
837 /* New block before first block */
838 /* OK if cur_addr is 0 */
839 cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
840 cvmx_bootmem_phy_set_size(phy_addr, size);
841 CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
842 }
843 retval = 1;
844 goto bootmem_free_done;
845 }
846
847 /* Find place in list to add block */
848 while (cur_addr && phy_addr > cur_addr) {
849 prev_addr = cur_addr;
850 cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
851 }
852
853 if (!cur_addr) {
854 /*
855 * We have reached the end of the list, add on to end, checking
856 * to see if we need to combine with last block
857 */
858 if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) {
859 cvmx_bootmem_phy_set_size(prev_addr,
860 cvmx_bootmem_phy_get_size(prev_addr) + size);
861 } else {
862 cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
863 cvmx_bootmem_phy_set_size(phy_addr, size);
864 cvmx_bootmem_phy_set_next(phy_addr, 0);
865 }
866 retval = 1;
867 goto bootmem_free_done;
868 } else {
869 /*
870 * insert between prev and cur nodes, checking for merge with
871 * either/both
872 */
873 if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) {
874 /* Merge with previous */
875 cvmx_bootmem_phy_set_size(prev_addr,
876 cvmx_bootmem_phy_get_size(prev_addr) + size);
877 if (phy_addr + size == cur_addr) {
878 /* Also merge with current */
879 cvmx_bootmem_phy_set_size(prev_addr,
880 cvmx_bootmem_phy_get_size(cur_addr) +
881 cvmx_bootmem_phy_get_size(prev_addr));
882 cvmx_bootmem_phy_set_next(prev_addr,
883 cvmx_bootmem_phy_get_next(cur_addr));
884 }
885 retval = 1;
886 goto bootmem_free_done;
887 } else if (phy_addr + size == cur_addr) {
888 /* Merge with current */
889 cvmx_bootmem_phy_set_size(phy_addr,
890 cvmx_bootmem_phy_get_size(cur_addr) + size);
891 cvmx_bootmem_phy_set_next(phy_addr,
892 cvmx_bootmem_phy_get_next(cur_addr));
893 cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
894 retval = 1;
895 goto bootmem_free_done;
896 }
897
898 /* It is a standalone block, add in between prev and cur */
899 cvmx_bootmem_phy_set_size(phy_addr, size);
900 cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
901 cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
902 }
903 retval = 1;
904
905 bootmem_free_done:
906 __cvmx_bootmem_unlock(flags);
907 return retval;
908 }
909
cvmx_bootmem_phy_list_print(void)910 void cvmx_bootmem_phy_list_print(void)
911 {
912 u64 addr;
913
914 addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
915 printf("\n\n\nPrinting bootmem block list, descriptor: 0x%llx, head is 0x%llx\n",
916 CAST_ULL(cvmx_bootmem_desc_addr), CAST_ULL(addr));
917 printf("Descriptor version: %d.%d\n",
918 (int)CVMX_BOOTMEM_DESC_GET_FIELD(major_version),
919 (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version));
920 if (CVMX_BOOTMEM_DESC_GET_FIELD(major_version) > 3)
921 debug("Warning: Bootmem descriptor version is newer than expected\n");
922
923 if (!addr)
924 printf("mem list is empty!\n");
925
926 while (addr) {
927 printf("Block address: 0x%08llx, size: 0x%08llx, next: 0x%08llx\n", CAST_ULL(addr),
928 CAST_ULL(cvmx_bootmem_phy_get_size(addr)),
929 CAST_ULL(cvmx_bootmem_phy_get_next(addr)));
930 addr = cvmx_bootmem_phy_get_next(addr);
931 }
932 printf("\n\n");
933 }
934
cvmx_bootmem_phy_available_mem(u64 min_block_size)935 u64 cvmx_bootmem_phy_available_mem(u64 min_block_size)
936 {
937 u64 addr;
938
939 u64 available_mem = 0;
940
941 __cvmx_bootmem_lock(0);
942 addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
943 while (addr) {
944 if (cvmx_bootmem_phy_get_size(addr) >= min_block_size)
945 available_mem += cvmx_bootmem_phy_get_size(addr);
946 addr = cvmx_bootmem_phy_get_next(addr);
947 }
948 __cvmx_bootmem_unlock(0);
949 return available_mem;
950 }
951
cvmx_bootmem_phy_named_block_find(const char * name,u32 flags)952 u64 cvmx_bootmem_phy_named_block_find(const char *name, u32 flags)
953 {
954 u64 result = 0;
955
956 debug("%s: %s\n", __func__, name);
957
958 __cvmx_bootmem_lock(flags);
959 if (!__cvmx_bootmem_check_version(3)) {
960 int i;
961 u64 named_block_array_addr =
962 CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
963 int num_blocks =
964 CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
965 int name_length =
966 CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
967 u64 named_addr = named_block_array_addr;
968
969 for (i = 0; i < num_blocks; i++) {
970 u64 named_size =
971 CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
972 if (name && named_size) {
973 char name_tmp[name_length + 1];
974
975 CVMX_BOOTMEM_NAMED_GET_NAME(named_addr,
976 name_tmp,
977 name_length);
978 if (!strncmp(name, name_tmp, name_length)) {
979 result = named_addr;
980 break;
981 }
982 } else if (!name && !named_size) {
983 result = named_addr;
984 break;
985 }
986
987 named_addr +=
988 sizeof(struct cvmx_bootmem_named_block_desc);
989 }
990 }
991 __cvmx_bootmem_unlock(flags);
992 return result;
993 }
994
cvmx_bootmem_phy_named_block_free(const char * name,u32 flags)995 int cvmx_bootmem_phy_named_block_free(const char *name, u32 flags)
996 {
997 u64 named_block_addr;
998
999 if (__cvmx_bootmem_check_version(3))
1000 return 0;
1001
1002 debug("%s: %s\n", __func__, name);
1003
1004 /*
1005 * Take lock here, as name lookup/block free/name free need to be
1006 * atomic
1007 */
1008 __cvmx_bootmem_lock(flags);
1009
1010 named_block_addr = cvmx_bootmem_phy_named_block_find(name,
1011 CVMX_BOOTMEM_FLAG_NO_LOCKING);
1012 if (named_block_addr) {
1013 u64 named_addr =
1014 CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr,
1015 base_addr);
1016 u64 named_size =
1017 CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
1018
1019 debug("%s: %s, base: 0x%llx, size: 0x%llx\n",
1020 __func__, name, CAST_ULL(named_addr),
1021 CAST_ULL(named_size));
1022
1023 __cvmx_bootmem_phy_free(named_addr, named_size,
1024 CVMX_BOOTMEM_FLAG_NO_LOCKING);
1025
1026 /* Set size to zero to indicate block not used. */
1027 CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_addr, size, 0);
1028 }
1029
1030 __cvmx_bootmem_unlock(flags);
1031 return !!named_block_addr; /* 0 on failure, 1 on success */
1032 }
1033
cvmx_bootmem_phy_named_block_alloc(u64 size,u64 min_addr,u64 max_addr,u64 alignment,const char * name,u32 flags)1034 s64 cvmx_bootmem_phy_named_block_alloc(u64 size, u64 min_addr,
1035 u64 max_addr,
1036 u64 alignment, const char *name,
1037 u32 flags)
1038 {
1039 s64 addr_allocated;
1040 u64 named_block_desc_addr;
1041
1042 debug("%s: size: 0x%llx, min: 0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
1043 __func__, CAST_ULL(size), CAST_ULL(min_addr), CAST_ULL(max_addr),
1044 CAST_ULL(alignment), name);
1045
1046 if (__cvmx_bootmem_check_version(3))
1047 return -1;
1048
1049 /*
1050 * Take lock here, as name lookup/block alloc/name add need to be
1051 * atomic
1052 */
1053 __cvmx_bootmem_lock(flags);
1054
1055 named_block_desc_addr =
1056 cvmx_bootmem_phy_named_block_find(name, flags |
1057 CVMX_BOOTMEM_FLAG_NO_LOCKING);
1058 if (named_block_desc_addr) {
1059 __cvmx_bootmem_unlock(flags);
1060 return -1;
1061 }
1062
1063 /* Get pointer to first available named block descriptor */
1064 named_block_desc_addr =
1065 cvmx_bootmem_phy_named_block_find(NULL, flags |
1066 CVMX_BOOTMEM_FLAG_NO_LOCKING);
1067 if (!named_block_desc_addr) {
1068 __cvmx_bootmem_unlock(flags);
1069 return -1;
1070 }
1071
1072 /*
1073 * Round size up to mult of minimum alignment bytes
1074 * We need the actual size allocated to allow for blocks to be
1075 * coallesced when they are freed. The alloc routine does the
1076 * same rounding up on all allocations.
1077 */
1078 size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
1079 ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
1080
1081 addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
1082 alignment,
1083 flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
1084 if (addr_allocated >= 0) {
1085 CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, base_addr,
1086 addr_allocated);
1087 CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, size, size);
1088 CVMX_BOOTMEM_NAMED_SET_NAME(named_block_desc_addr, name,
1089 CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len));
1090 }
1091
1092 __cvmx_bootmem_unlock(flags);
1093 return addr_allocated;
1094 }
1095
cvmx_bootmem_phy_named_block_print(void)1096 void cvmx_bootmem_phy_named_block_print(void)
1097 {
1098 int i;
1099 int printed = 0;
1100
1101 u64 named_block_array_addr =
1102 CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
1103 int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
1104 int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
1105 u64 named_block_addr = named_block_array_addr;
1106
1107 debug("%s: desc addr: 0x%llx\n",
1108 __func__, CAST_ULL(cvmx_bootmem_desc_addr));
1109
1110 if (__cvmx_bootmem_check_version(3))
1111 return;
1112
1113 printf("List of currently allocated named bootmem blocks:\n");
1114 for (i = 0; i < num_blocks; i++) {
1115 u64 named_size =
1116 CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
1117 if (named_size) {
1118 char name_tmp[name_length + 1];
1119 u64 named_addr =
1120 CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr,
1121 base_addr);
1122 CVMX_BOOTMEM_NAMED_GET_NAME(named_block_addr, name_tmp,
1123 name_length);
1124 printed++;
1125 printf("Name: %s, address: 0x%08llx, size: 0x%08llx, index: %d\n", name_tmp,
1126 CAST_ULL(named_addr),
1127 CAST_ULL(named_size), i);
1128 }
1129 named_block_addr +=
1130 sizeof(struct cvmx_bootmem_named_block_desc);
1131 }
1132
1133 if (!printed)
1134 printf("No named bootmem blocks exist.\n");
1135 }
1136
cvmx_bootmem_phy_mem_list_init(u64 mem_size,u32 low_reserved_bytes,struct cvmx_bootmem_desc * desc_buffer)1137 s64 cvmx_bootmem_phy_mem_list_init(u64 mem_size,
1138 u32 low_reserved_bytes,
1139 struct cvmx_bootmem_desc *desc_buffer)
1140 {
1141 u64 cur_block_addr;
1142 s64 addr;
1143 int i;
1144
1145 debug("%s (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n",
1146 __func__, desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr));
1147
1148 /*
1149 * Descriptor buffer needs to be in 32 bit addressable space to be
1150 * compatible with 32 bit applications
1151 */
1152 if (!desc_buffer) {
1153 debug("ERROR: no memory for cvmx_bootmem descriptor provided\n");
1154 return 0;
1155 }
1156
1157 if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
1158 mem_size = OCTEON_MAX_PHY_MEM_SIZE;
1159 debug("ERROR: requested memory size too large, truncating to maximum size\n");
1160 }
1161
1162 if (cvmx_bootmem_desc_addr)
1163 return 1;
1164
1165 /* Initialize cvmx pointer to descriptor */
1166 cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer));
1167
1168 /* Fill the bootmem descriptor */
1169 CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0);
1170 CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0);
1171 CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0);
1172 CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER);
1173 CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER);
1174 CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0);
1175 CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0);
1176
1177 /*
1178 * Set up global pointer to start of list, exclude low 64k for exception
1179 * vectors, space for global descriptor
1180 */
1181 cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes);
1182
1183 if (mem_size <= OCTEON_DDR0_SIZE) {
1184 __cvmx_bootmem_phy_free(cur_block_addr,
1185 mem_size - low_reserved_bytes, 0);
1186 goto frees_done;
1187 }
1188
1189 __cvmx_bootmem_phy_free(cur_block_addr,
1190 OCTEON_DDR0_SIZE - low_reserved_bytes, 0);
1191
1192 mem_size -= OCTEON_DDR0_SIZE;
1193
1194 /* Add DDR2 block next if present */
1195 if (mem_size > OCTEON_DDR1_SIZE) {
1196 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
1197 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
1198 mem_size - OCTEON_DDR1_SIZE, 0);
1199 } else {
1200 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
1201 }
1202 frees_done:
1203
1204 /* Initialize the named block structure */
1205 CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN);
1206 CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks,
1207 CVMX_BOOTMEM_NUM_NAMED_BLOCKS);
1208 CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0);
1209
1210 /* Allocate this near the top of the low 256 MBytes of memory */
1211 addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
1212 sizeof(struct cvmx_bootmem_named_block_desc),
1213 0, 0x10000000, 0,
1214 CVMX_BOOTMEM_FLAG_END_ALLOC);
1215 if (addr >= 0)
1216 CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr);
1217
1218 debug("%s: named_block_array_addr: 0x%llx)\n",
1219 __func__, CAST_ULL(addr));
1220
1221 if (addr < 0) {
1222 debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
1223 return 0;
1224 }
1225
1226 for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) {
1227 CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0);
1228 CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0);
1229 addr += sizeof(struct cvmx_bootmem_named_block_desc);
1230 }
1231
1232 return 1;
1233 }
1234
cvmx_bootmem_phy_mem_list_init_multi(u8 node_mask,u32 mem_sizes[],u32 low_reserved_bytes,struct cvmx_bootmem_desc * desc_buffer)1235 s64 cvmx_bootmem_phy_mem_list_init_multi(u8 node_mask,
1236 u32 mem_sizes[],
1237 u32 low_reserved_bytes,
1238 struct cvmx_bootmem_desc *desc_buffer)
1239 {
1240 u64 cur_block_addr;
1241 u64 mem_size;
1242 s64 addr;
1243 int i;
1244 int node;
1245 u64 node_base; /* Make u64 to reduce type casting */
1246
1247 mem_sizes[0] = gd->ram_size / (1024 * 1024);
1248
1249 debug("cvmx_bootmem_phy_mem_list_init (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n",
1250 desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr));
1251
1252 /*
1253 * Descriptor buffer needs to be in 32 bit addressable space to be
1254 * compatible with 32 bit applications
1255 */
1256 if (!desc_buffer) {
1257 debug("ERROR: no memory for cvmx_bootmem descriptor provided\n");
1258 return 0;
1259 }
1260
1261 cvmx_coremask_for_each_node(node, node_mask) {
1262 if ((mem_sizes[node] * 1024 * 1024) > OCTEON_MAX_PHY_MEM_SIZE) {
1263 mem_sizes[node] = OCTEON_MAX_PHY_MEM_SIZE /
1264 (1024 * 1024);
1265 debug("ERROR node#%lld: requested memory size too large, truncating to maximum size\n",
1266 CAST_ULL(node));
1267 }
1268 }
1269
1270 if (cvmx_bootmem_desc_addr)
1271 return 1;
1272
1273 /* Initialize cvmx pointer to descriptor */
1274 cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer));
1275
1276 /* Fill the bootmem descriptor */
1277 CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0);
1278 CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0);
1279 CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0);
1280 CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER);
1281 CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER);
1282 CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0);
1283 CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0);
1284
1285 cvmx_coremask_for_each_node(node, node_mask) {
1286 if (node != 0) /* do not reserve memory on remote nodes */
1287 low_reserved_bytes = 0;
1288
1289 mem_size = (u64)mem_sizes[node] * (1024 * 1024); /* MBytes */
1290
1291 /*
1292 * Set up global pointer to start of list, exclude low 64k
1293 * for exception vectors, space for global descriptor
1294 */
1295
1296 node_base = (u64)node << CVMX_NODE_MEM_SHIFT;
1297 cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes) |
1298 node_base;
1299
1300 if (mem_size <= OCTEON_DDR0_SIZE) {
1301 __cvmx_bootmem_phy_free(cur_block_addr,
1302 mem_size - low_reserved_bytes,
1303 0);
1304 continue;
1305 }
1306
1307 __cvmx_bootmem_phy_free(cur_block_addr,
1308 OCTEON_DDR0_SIZE - low_reserved_bytes,
1309 0);
1310
1311 mem_size -= OCTEON_DDR0_SIZE;
1312
1313 /* Add DDR2 block next if present */
1314 if (mem_size > OCTEON_DDR1_SIZE) {
1315 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE |
1316 node_base,
1317 OCTEON_DDR1_SIZE, 0);
1318 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE |
1319 node_base,
1320 mem_size - OCTEON_DDR1_SIZE, 0);
1321 } else {
1322 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE |
1323 node_base,
1324 mem_size, 0);
1325 }
1326 }
1327
1328 debug("%s: Initialize the named block\n", __func__);
1329
1330 /* Initialize the named block structure */
1331 CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN);
1332 CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks,
1333 CVMX_BOOTMEM_NUM_NAMED_BLOCKS);
1334 CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0);
1335
1336 /* Allocate this near the top of the low 256 MBytes of memory */
1337 addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
1338 sizeof(struct cvmx_bootmem_named_block_desc),
1339 0, 0x10000000, 0,
1340 CVMX_BOOTMEM_FLAG_END_ALLOC);
1341 if (addr >= 0)
1342 CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr);
1343
1344 debug("cvmx_bootmem_phy_mem_list_init: named_block_array_addr: 0x%llx)\n",
1345 CAST_ULL(addr));
1346
1347 if (addr < 0) {
1348 debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
1349 return 0;
1350 }
1351
1352 for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) {
1353 CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0);
1354 CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0);
1355 addr += sizeof(struct cvmx_bootmem_named_block_desc);
1356 }
1357
1358 // test-only: DEBUG ifdef???
1359 cvmx_bootmem_phy_list_print();
1360
1361 return 1;
1362 }
1363
cvmx_bootmem_reserve_memory(u64 start_addr,u64 size,const char * name,u32 flags)1364 int cvmx_bootmem_reserve_memory(u64 start_addr, u64 size,
1365 const char *name, u32 flags)
1366 {
1367 u64 addr;
1368 int rc = 1;
1369 static unsigned int block_num;
1370 char block_name[CVMX_BOOTMEM_NAME_LEN];
1371
1372 debug("%s: start %#llx, size: %#llx, name: %s, flags:%#x)\n",
1373 __func__, CAST_ULL(start_addr), CAST_ULL(size), name, flags);
1374
1375 if (__cvmx_bootmem_check_version(3))
1376 return 0;
1377
1378 addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
1379 if (!addr)
1380 return 0;
1381
1382 if (!name)
1383 name = "__cvmx_bootmem_reserved";
1384
1385 while (addr && rc) {
1386 u64 block_size = cvmx_bootmem_phy_get_size(addr);
1387 u64 reserve_size = 0;
1388
1389 if (addr >= start_addr && addr < start_addr + size) {
1390 reserve_size = size - (addr - start_addr);
1391 if (block_size < reserve_size)
1392 reserve_size = block_size;
1393 } else if (start_addr > addr &&
1394 start_addr < (addr + block_size)) {
1395 reserve_size = block_size - (start_addr - addr);
1396 }
1397
1398 if (reserve_size) {
1399 snprintf(block_name, sizeof(block_name),
1400 "%.32s_%012llx_%u",
1401 name, (unsigned long long)start_addr,
1402 (unsigned int)block_num);
1403
1404 debug("%s: Reserving 0x%llx bytes at address 0x%llx with name %s\n",
1405 __func__, CAST_ULL(reserve_size),
1406 CAST_ULL(addr), block_name);
1407
1408 if (cvmx_bootmem_phy_named_block_alloc(reserve_size,
1409 addr, 0, 0,
1410 block_name,
1411 flags) == -1) {
1412 debug("%s: Failed to reserve 0x%llx bytes at address 0x%llx\n",
1413 __func__, CAST_ULL(reserve_size),
1414 (unsigned long long)addr);
1415 rc = 0;
1416 break;
1417 }
1418
1419 debug("%s: Reserved 0x%llx bytes at address 0x%llx with name %s\n",
1420 __func__, CAST_ULL(reserve_size),
1421 CAST_ULL(addr), block_name);
1422 }
1423
1424 addr = cvmx_bootmem_phy_get_next(addr);
1425 block_num++;
1426 }
1427
1428 return rc;
1429 }
1430
cvmx_bootmem_lock(void)1431 void cvmx_bootmem_lock(void)
1432 {
1433 __cvmx_bootmem_lock(0);
1434 }
1435
cvmx_bootmem_unlock(void)1436 void cvmx_bootmem_unlock(void)
1437 {
1438 __cvmx_bootmem_unlock(0);
1439 }
1440
__cvmx_phys_addr_to_ptr(u64 phys,int size)1441 void *__cvmx_phys_addr_to_ptr(u64 phys, int size)
1442 {
1443 void *tmp;
1444
1445 if (sizeof(void *) == 8) {
1446 tmp = CASTPTR(void, CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, phys));
1447 } else {
1448 u32 phy32 = (u32)(phys & 0x7fffffffULL);
1449
1450 tmp = CASTPTR(void, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,
1451 phy32));
1452 }
1453
1454 return tmp;
1455 }
1456
__cvmx_bootmem_internal_get_desc_ptr(void)1457 void *__cvmx_bootmem_internal_get_desc_ptr(void)
1458 {
1459 return cvmx_phys_to_ptr(cvmx_bootmem_desc_addr);
1460 }
1461