1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Marvell International Ltd.
4  */
5 
6 /*
7  * Simple allocate only memory allocator. Used to allocate memory at
8  * application start time.
9  */
10 
11 #include <asm/global_data.h>
12 
13 #include <linux/compat.h>
14 #include <linux/io.h>
15 #include <linux/types.h>
16 
17 #include <mach/octeon-model.h>
18 #include <mach/cvmx-bootmem.h>
19 #include <mach/cvmx-coremask.h>
20 #include <mach/cvmx-regs.h>
21 
22 DECLARE_GLOBAL_DATA_PTR;
23 
24 #define CVMX_MIPS32_SPACE_KSEG0		1L
25 #define CVMX_MIPS_SPACE_XKPHYS		2LL
26 
27 #define CVMX_ADD_SEG(seg, add)		((((u64)(seg)) << 62) | (add))
28 #define CVMX_ADD_SEG32(seg, add)	(((u32)(seg) << 31) | (u32)(add))
29 
30 /**
31  * This is the physical location of a struct cvmx_bootmem_desc
32  * structure in Octeon's memory. Note that dues to addressing
33  * limits or runtime environment it might not be possible to
34  * create a C pointer to this structure.
35  */
36 static u64 cvmx_bootmem_desc_addr;
37 
38 /**
39  * This macro returns the size of a member of a structure.
40  * Logically it is the same as "sizeof(s::field)" in C++, but
41  * C lacks the "::" operator.
42  */
43 #define SIZEOF_FIELD(s, field) sizeof(((s *)NULL)->field)
44 
45 /**
46  * This macro returns a member of the struct cvmx_bootmem_desc
47  * structure. These members can't be directly addressed as
48  * they might be in memory not directly reachable. In the case
49  * where bootmem is compiled with LINUX_HOST, the structure
50  * itself might be located on a remote Octeon. The argument
51  * "field" is the member name of the struct cvmx_bootmem_desc to read.
52  * Regardless of the type of the field, the return type is always
53  * a u64.
54  */
55 #define CVMX_BOOTMEM_DESC_GET_FIELD(field)				\
56 	__cvmx_bootmem_desc_get(cvmx_bootmem_desc_addr,			\
57 				offsetof(struct cvmx_bootmem_desc, field), \
58 				SIZEOF_FIELD(struct cvmx_bootmem_desc, field))
59 
60 /**
61  * This macro writes a member of the struct cvmx_bootmem_desc
62  * structure. These members can't be directly addressed as
63  * they might be in memory not directly reachable. In the case
64  * where bootmem is compiled with LINUX_HOST, the structure
65  * itself might be located on a remote Octeon. The argument
66  * "field" is the member name of the struct cvmx_bootmem_desc to write.
67  */
68 #define CVMX_BOOTMEM_DESC_SET_FIELD(field, value)			\
69 	__cvmx_bootmem_desc_set(cvmx_bootmem_desc_addr,			\
70 				offsetof(struct cvmx_bootmem_desc, field), \
71 				SIZEOF_FIELD(struct cvmx_bootmem_desc, field), \
72 				value)
73 
74 /**
75  * This macro returns a member of the
76  * struct cvmx_bootmem_named_block_desc structure. These members can't
77  * be directly addressed as they might be in memory not directly
78  * reachable. In the case where bootmem is compiled with
79  * LINUX_HOST, the structure itself might be located on a remote
80  * Octeon. The argument "field" is the member name of the
81  * struct cvmx_bootmem_named_block_desc to read. Regardless of the type
82  * of the field, the return type is always a u64. The "addr"
83  * parameter is the physical address of the structure.
84  */
85 #define CVMX_BOOTMEM_NAMED_GET_FIELD(addr, field)			\
86 	__cvmx_bootmem_desc_get(addr,					\
87 		offsetof(struct cvmx_bootmem_named_block_desc,  field),	\
88 		SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field))
89 
90 /**
91  * This macro writes a member of the struct cvmx_bootmem_named_block_desc
92  * structure. These members can't be directly addressed as
93  * they might be in memory not directly reachable. In the case
94  * where bootmem is compiled with LINUX_HOST, the structure
95  * itself might be located on a remote Octeon. The argument
96  * "field" is the member name of the
97  * struct cvmx_bootmem_named_block_desc to write. The "addr" parameter
98  * is the physical address of the structure.
99  */
100 #define CVMX_BOOTMEM_NAMED_SET_FIELD(addr, field, value)		\
101 	__cvmx_bootmem_desc_set(addr,					\
102 		offsetof(struct cvmx_bootmem_named_block_desc, field),	\
103 		SIZEOF_FIELD(struct cvmx_bootmem_named_block_desc, field), \
104 				value)
105 
106 /**
107  * This function is the implementation of the get macros defined
108  * for individual structure members. The argument are generated
109  * by the macros inorder to read only the needed memory.
110  *
111  * @param base   64bit physical address of the complete structure
112  * @param offset Offset from the beginning of the structure to the member being
113  *               accessed.
114  * @param size   Size of the structure member.
115  *
116  * @return Value of the structure member promoted into a u64.
117  */
__cvmx_bootmem_desc_get(u64 base,int offset,int size)118 static inline u64 __cvmx_bootmem_desc_get(u64 base, int offset,
119 					  int size)
120 {
121 	base = (1ull << 63) | (base + offset);
122 	switch (size) {
123 	case 4:
124 		return cvmx_read64_uint32(base);
125 	case 8:
126 		return cvmx_read64_uint64(base);
127 	default:
128 		return 0;
129 	}
130 }
131 
132 /**
133  * This function is the implementation of the set macros defined
134  * for individual structure members. The argument are generated
135  * by the macros in order to write only the needed memory.
136  *
137  * @param base   64bit physical address of the complete structure
138  * @param offset Offset from the beginning of the structure to the member being
139  *               accessed.
140  * @param size   Size of the structure member.
141  * @param value  Value to write into the structure
142  */
__cvmx_bootmem_desc_set(u64 base,int offset,int size,u64 value)143 static inline void __cvmx_bootmem_desc_set(u64 base, int offset, int size,
144 					   u64 value)
145 {
146 	base = (1ull << 63) | (base + offset);
147 	switch (size) {
148 	case 4:
149 		cvmx_write64_uint32(base, value);
150 		break;
151 	case 8:
152 		cvmx_write64_uint64(base, value);
153 		break;
154 	default:
155 		break;
156 	}
157 }
158 
159 /**
160  * This function returns the address of the bootmem descriptor lock.
161  *
162  * @return 64-bit address in KSEG0 of the bootmem descriptor block
163  */
__cvmx_bootmem_get_lock_addr(void)164 static inline u64 __cvmx_bootmem_get_lock_addr(void)
165 {
166 	return (1ull << 63) |
167 		(cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc, lock));
168 }
169 
170 /**
171  * This function retrieves the string name of a named block. It is
172  * more complicated than a simple memcpy() since the named block
173  * descriptor may not be directly accessible.
174  *
175  * @param addr   Physical address of the named block descriptor
176  * @param str    String to receive the named block string name
177  * @param len    Length of the string buffer, which must match the length
178  *               stored in the bootmem descriptor.
179  */
CVMX_BOOTMEM_NAMED_GET_NAME(u64 addr,char * str,int len)180 static void CVMX_BOOTMEM_NAMED_GET_NAME(u64 addr, char *str, int len)
181 {
182 	int l = len;
183 	char *ptr = str;
184 
185 	addr |= (1ull << 63);
186 	addr += offsetof(struct cvmx_bootmem_named_block_desc, name);
187 	while (l) {
188 		/*
189 		 * With big-endian in memory byte order, this gives uniform
190 		 * results for the CPU in either big or Little endian mode.
191 		 */
192 		u64 blob = cvmx_read64_uint64(addr);
193 		int sa = 56;
194 
195 		addr += sizeof(u64);
196 		while (l && sa >= 0) {
197 			*ptr++ = (char)(blob >> sa);
198 			l--;
199 			sa -= 8;
200 		}
201 	}
202 	str[len] = 0;
203 }
204 
205 /**
206  * This function stores the string name of a named block. It is
207  * more complicated than a simple memcpy() since the named block
208  * descriptor may not be directly accessible.
209  *
210  * @param addr   Physical address of the named block descriptor
211  * @param str    String to store into the named block string name
212  * @param len    Length of the string buffer, which must match the length
213  *               stored in the bootmem descriptor.
214  */
CVMX_BOOTMEM_NAMED_SET_NAME(u64 addr,const char * str,int len)215 void CVMX_BOOTMEM_NAMED_SET_NAME(u64 addr, const char *str, int len)
216 {
217 	int l = len;
218 
219 	addr |= (1ull << 63);
220 	addr += offsetof(struct cvmx_bootmem_named_block_desc, name);
221 
222 	while (l) {
223 		/*
224 		 * With big-endian in memory byte order, this gives uniform
225 		 * results for the CPU in either big or Little endian mode.
226 		 */
227 		u64 blob = 0;
228 		int sa = 56;
229 
230 		while (l && sa >= 0) {
231 			u64 c = (u8)(*str++);
232 
233 			l--;
234 			if (l == 0)
235 				c = 0;
236 			blob |= c << sa;
237 			sa -= 8;
238 		}
239 		cvmx_write64_uint64(addr, blob);
240 		addr += sizeof(u64);
241 	}
242 }
243 
244 /* See header file for descriptions of functions */
245 
246 /*
247  * Wrapper functions are provided for reading/writing the size and next block
248  * values as these may not be directly addressible (in 32 bit applications, for
249  * instance.)
250  *
251  * Offsets of data elements in bootmem list, must match
252  * struct cvmx_bootmem_block_header
253  */
254 #define NEXT_OFFSET 0
255 #define SIZE_OFFSET 8
256 
cvmx_bootmem_phy_set_size(u64 addr,u64 size)257 static void cvmx_bootmem_phy_set_size(u64 addr, u64 size)
258 {
259 	cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
260 }
261 
cvmx_bootmem_phy_set_next(u64 addr,u64 next)262 static void cvmx_bootmem_phy_set_next(u64 addr, u64 next)
263 {
264 	cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
265 }
266 
cvmx_bootmem_phy_get_size(u64 addr)267 static u64 cvmx_bootmem_phy_get_size(u64 addr)
268 {
269 	return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63));
270 }
271 
cvmx_bootmem_phy_get_next(u64 addr)272 static u64 cvmx_bootmem_phy_get_next(u64 addr)
273 {
274 	return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63));
275 }
276 
277 /**
278  * Check the version information on the bootmem descriptor
279  *
280  * @param exact_match
281  *               Exact major version to check against. A zero means
282  *               check that the version supports named blocks.
283  *
284  * @return Zero if the version is correct. Negative if the version is
285  *         incorrect. Failures also cause a message to be displayed.
286  */
__cvmx_bootmem_check_version(int exact_match)287 static int __cvmx_bootmem_check_version(int exact_match)
288 {
289 	int major_version;
290 
291 	major_version = CVMX_BOOTMEM_DESC_GET_FIELD(major_version);
292 	if (major_version > 3 ||
293 	    (exact_match && major_version) != exact_match) {
294 		debug("ERROR: Incompatible bootmem descriptor version: %d.%d at addr: 0x%llx\n",
295 		      major_version,
296 		      (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version),
297 		      CAST_ULL(cvmx_bootmem_desc_addr));
298 		return -1;
299 	} else {
300 		return 0;
301 	}
302 }
303 
304 /**
305  * Get the low level bootmem descriptor lock. If no locking
306  * is specified in the flags, then nothing is done.
307  *
308  * @param flags  CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
309  *               nothing. This is used to support nested bootmem calls.
310  */
__cvmx_bootmem_lock(u32 flags)311 static inline void __cvmx_bootmem_lock(u32 flags)
312 {
313 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) {
314 		/*
315 		 * Unfortunately we can't use the normal cvmx-spinlock code as
316 		 * the memory for the bootmem descriptor may be not accessible
317 		 * by a C pointer. We use a 64bit XKPHYS address to access the
318 		 * memory directly
319 		 */
320 		u64 lock_addr = (1ull << 63) |
321 			(cvmx_bootmem_desc_addr + offsetof(struct cvmx_bootmem_desc,
322 							   lock));
323 		unsigned int tmp;
324 
325 		__asm__ __volatile__(".set noreorder\n"
326 				     "1: ll   %[tmp], 0(%[addr])\n"
327 				     "   bnez %[tmp], 1b\n"
328 				     "   li   %[tmp], 1\n"
329 				     "   sc   %[tmp], 0(%[addr])\n"
330 				     "   beqz %[tmp], 1b\n"
331 				     "   nop\n"
332 				     ".set reorder\n"
333 				     : [tmp] "=&r"(tmp)
334 				     : [addr] "r"(lock_addr)
335 				     : "memory");
336 	}
337 }
338 
339 /**
340  * Release the low level bootmem descriptor lock. If no locking
341  * is specified in the flags, then nothing is done.
342  *
343  * @param flags  CVMX_BOOTMEM_FLAG_NO_LOCKING means this functions should do
344  *               nothing. This is used to support nested bootmem calls.
345  */
__cvmx_bootmem_unlock(u32 flags)346 static inline void __cvmx_bootmem_unlock(u32 flags)
347 {
348 	if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING)) {
349 		/*
350 		 * Unfortunately we can't use the normal cvmx-spinlock code as
351 		 * the memory for the bootmem descriptor may be not accessible
352 		 * by a C pointer. We use a 64bit XKPHYS address to access the
353 		 * memory directly
354 		 */
355 		u64 lock_addr = __cvmx_bootmem_get_lock_addr();
356 
357 		CVMX_SYNCW;
358 		__asm__ __volatile__("sw $0, 0(%[addr])\n"
359 				     : : [addr] "r"(lock_addr)
360 				     : "memory");
361 		CVMX_SYNCW;
362 	}
363 }
364 
365 /*
366  * Some of the cvmx-bootmem functions dealing with C pointers are not
367  * supported when we are compiling for CVMX_BUILD_FOR_LINUX_HOST. This
368  * ifndef removes these functions when they aren't needed.
369  *
370  * This functions takes an address range and adjusts it as necessary
371  * to match the ABI that is currently being used.  This is required to
372  * ensure that bootmem_alloc* functions only return valid pointers for
373  * 32 bit ABIs
374  */
__cvmx_validate_mem_range(u64 * min_addr_ptr,u64 * max_addr_ptr)375 static int __cvmx_validate_mem_range(u64 *min_addr_ptr,
376 				     u64 *max_addr_ptr)
377 {
378 	u64 max_phys = (1ull << 29) - 0x10;	/* KSEG0 */
379 
380 	*min_addr_ptr = min_t(u64, max_t(u64, *min_addr_ptr, 0x0), max_phys);
381 	if (!*max_addr_ptr) {
382 		*max_addr_ptr = max_phys;
383 	} else {
384 		*max_addr_ptr = max_t(u64, min_t(u64, *max_addr_ptr,
385 						 max_phys), 0x0);
386 	}
387 
388 	return 0;
389 }
390 
cvmx_bootmem_phy_alloc_range(u64 size,u64 alignment,u64 min_addr,u64 max_addr)391 u64 cvmx_bootmem_phy_alloc_range(u64 size, u64 alignment,
392 				 u64 min_addr, u64 max_addr)
393 {
394 	s64 address;
395 
396 	__cvmx_validate_mem_range(&min_addr, &max_addr);
397 	address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
398 					 alignment, 0);
399 	if (address > 0)
400 		return address;
401 	else
402 		return 0;
403 }
404 
cvmx_bootmem_alloc_range(u64 size,u64 alignment,u64 min_addr,u64 max_addr)405 void *cvmx_bootmem_alloc_range(u64 size, u64 alignment,
406 			       u64 min_addr, u64 max_addr)
407 {
408 	s64 address;
409 
410 	__cvmx_validate_mem_range(&min_addr, &max_addr);
411 	address = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
412 					 alignment, 0);
413 
414 	if (address > 0)
415 		return cvmx_phys_to_ptr(address);
416 	else
417 		return NULL;
418 }
419 
cvmx_bootmem_alloc_address(u64 size,u64 address,u64 alignment)420 void *cvmx_bootmem_alloc_address(u64 size, u64 address,
421 				 u64 alignment)
422 {
423 	return cvmx_bootmem_alloc_range(size, alignment, address,
424 					address + size);
425 }
426 
cvmx_bootmem_alloc_node(u64 node,u64 size,u64 alignment)427 void *cvmx_bootmem_alloc_node(u64 node, u64 size, u64 alignment)
428 {
429 	return cvmx_bootmem_alloc_range(size, alignment,
430 					node << CVMX_NODE_MEM_SHIFT,
431 					((node + 1) << CVMX_NODE_MEM_SHIFT) - 1);
432 }
433 
cvmx_bootmem_alloc(u64 size,u64 alignment)434 void *cvmx_bootmem_alloc(u64 size, u64 alignment)
435 {
436 	return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
437 }
438 
cvmx_bootmem_alloc_named_range_once(u64 size,u64 min_addr,u64 max_addr,u64 align,const char * name,void (* init)(void *))439 void *cvmx_bootmem_alloc_named_range_once(u64 size, u64 min_addr,
440 					  u64 max_addr, u64 align,
441 					  const char *name,
442 					  void (*init)(void *))
443 {
444 	u64 named_block_desc_addr;
445 	void *ptr;
446 	s64 addr;
447 
448 	__cvmx_bootmem_lock(0);
449 
450 	__cvmx_validate_mem_range(&min_addr, &max_addr);
451 	named_block_desc_addr =
452 		cvmx_bootmem_phy_named_block_find(name,
453 						  CVMX_BOOTMEM_FLAG_NO_LOCKING);
454 
455 	if (named_block_desc_addr) {
456 		addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_desc_addr,
457 						    base_addr);
458 		__cvmx_bootmem_unlock(0);
459 		return cvmx_phys_to_ptr(addr);
460 	}
461 
462 	addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
463 						  align, name,
464 						  CVMX_BOOTMEM_FLAG_NO_LOCKING);
465 
466 	if (addr < 0) {
467 		__cvmx_bootmem_unlock(0);
468 		return NULL;
469 	}
470 	ptr = cvmx_phys_to_ptr(addr);
471 
472 	if (init)
473 		init(ptr);
474 	else
475 		memset(ptr, 0, size);
476 
477 	__cvmx_bootmem_unlock(0);
478 	return ptr;
479 }
480 
cvmx_bootmem_alloc_named_range_flags(u64 size,u64 min_addr,u64 max_addr,u64 align,const char * name,u32 flags)481 void *cvmx_bootmem_alloc_named_range_flags(u64 size, u64 min_addr,
482 					   u64 max_addr, u64 align,
483 					   const char *name, u32 flags)
484 {
485 	s64 addr;
486 
487 	__cvmx_validate_mem_range(&min_addr, &max_addr);
488 	addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
489 						  align, name, flags);
490 	if (addr >= 0)
491 		return cvmx_phys_to_ptr(addr);
492 	else
493 		return NULL;
494 }
495 
cvmx_bootmem_alloc_named_range(u64 size,u64 min_addr,u64 max_addr,u64 align,const char * name)496 void *cvmx_bootmem_alloc_named_range(u64 size, u64 min_addr,
497 				     u64 max_addr, u64 align,
498 				     const char *name)
499 {
500 	return cvmx_bootmem_alloc_named_range_flags(size, min_addr, max_addr,
501 						    align, name, 0);
502 }
503 
cvmx_bootmem_alloc_named_address(u64 size,u64 address,const char * name)504 void *cvmx_bootmem_alloc_named_address(u64 size, u64 address,
505 				       const char *name)
506 {
507 	return cvmx_bootmem_alloc_named_range(size, address, address + size,
508 					      0, name);
509 }
510 
cvmx_bootmem_alloc_named(u64 size,u64 alignment,const char * name)511 void *cvmx_bootmem_alloc_named(u64 size, u64 alignment,
512 			       const char *name)
513 {
514 	return cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name);
515 }
516 
cvmx_bootmem_alloc_named_flags(u64 size,u64 alignment,const char * name,u32 flags)517 void *cvmx_bootmem_alloc_named_flags(u64 size, u64 alignment,
518 				     const char *name, u32 flags)
519 {
520 	return cvmx_bootmem_alloc_named_range_flags(size, 0, 0, alignment,
521 						    name, flags);
522 }
523 
cvmx_bootmem_free_named(const char * name)524 int cvmx_bootmem_free_named(const char *name)
525 {
526 	return cvmx_bootmem_phy_named_block_free(name, 0);
527 }
528 
529 /**
530  * Find a named block with flags
531  *
532  * @param name is the block name
533  * @param flags indicates the need to use locking during search
534  * @return pointer to named block descriptor
535  *
536  * Note: this function returns a pointer to a static structure,
537  * and is therefore not re-entrant.
538  * Making this function re-entrant will break backward compatibility.
539  */
540 const struct cvmx_bootmem_named_block_desc *
__cvmx_bootmem_find_named_block_flags(const char * name,u32 flags)541 __cvmx_bootmem_find_named_block_flags(const char *name, u32 flags)
542 {
543 	static struct cvmx_bootmem_named_block_desc desc;
544 	u64 named_addr = cvmx_bootmem_phy_named_block_find(name, flags);
545 
546 	if (named_addr) {
547 		desc.base_addr = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr,
548 							      base_addr);
549 		desc.size = CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
550 		strncpy(desc.name, name, sizeof(desc.name));
551 		desc.name[sizeof(desc.name) - 1] = 0;
552 		return &desc;
553 	} else {
554 		return NULL;
555 	}
556 }
557 
558 const struct cvmx_bootmem_named_block_desc *
cvmx_bootmem_find_named_block(const char * name)559 cvmx_bootmem_find_named_block(const char *name)
560 {
561 	return __cvmx_bootmem_find_named_block_flags(name, 0);
562 }
563 
cvmx_bootmem_print_named(void)564 void cvmx_bootmem_print_named(void)
565 {
566 	cvmx_bootmem_phy_named_block_print();
567 }
568 
cvmx_bootmem_init(u64 mem_desc_addr)569 int cvmx_bootmem_init(u64 mem_desc_addr)
570 {
571 	if (!cvmx_bootmem_desc_addr)
572 		cvmx_bootmem_desc_addr = mem_desc_addr;
573 
574 	return 0;
575 }
576 
cvmx_bootmem_available_mem(u64 min_block_size)577 u64 cvmx_bootmem_available_mem(u64 min_block_size)
578 {
579 	return cvmx_bootmem_phy_available_mem(min_block_size);
580 }
581 
582 /*
583  * The cvmx_bootmem_phy* functions below return 64 bit physical
584  * addresses, and expose more features that the cvmx_bootmem_functions
585  * above.  These are required for full memory space access in 32 bit
586  * applications, as well as for using some advance features.  Most
587  * applications should not need to use these.
588  */
589 
cvmx_bootmem_phy_alloc(u64 req_size,u64 address_min,u64 address_max,u64 alignment,u32 flags)590 s64 cvmx_bootmem_phy_alloc(u64 req_size, u64 address_min,
591 			   u64 address_max, u64 alignment,
592 			   u32 flags)
593 {
594 	u64 head_addr, ent_addr, ent_size;
595 	u64 target_ent_addr = 0, target_prev_addr = 0;
596 	u64 target_size = ~0ull;
597 	u64 free_start, free_end;
598 	u64 next_addr, prev_addr = 0;
599 	u64 new_ent_addr = 0, new_ent_size;
600 	u64 desired_min_addr, usable_max;
601 	u64 align, align_mask;
602 
603 	debug("%s: req_size: 0x%llx, min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
604 	      __func__, CAST_ULL(req_size), CAST_ULL(address_min),
605 	      CAST_ULL(address_max), CAST_ULL(alignment));
606 
607 	if (__cvmx_bootmem_check_version(0))
608 		return -1;
609 
610 	/*
611 	 * Do a variety of checks to validate the arguments.  The
612 	 * allocator code will later assume that these checks have
613 	 * been made.  We validate that the requested constraints are
614 	 * not self-contradictory before we look through the list of
615 	 * available memory
616 	 */
617 
618 	/* 0 is not a valid req_size for this allocator */
619 	if (!req_size)
620 		return -1;
621 
622 	/* Round req_size up to multiple of minimum alignment bytes */
623 	req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
624 		~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
625 
626 	/* Make sure alignment is power of 2, and at least the minimum */
627 	for (align = CVMX_BOOTMEM_ALIGNMENT_SIZE;
628 	     align < (1ull << 48);
629 	     align <<= 1) {
630 		if (align >= alignment)
631 			break;
632 	}
633 
634 	align_mask = ~(align - 1);
635 
636 	/*
637 	 * Adjust address minimum based on requested alignment (round
638 	 * up to meet alignment).  Do this here so we can reject
639 	 * impossible requests up front. (NOP for address_min == 0)
640 	 */
641 	address_min = (address_min + (align - 1)) & align_mask;
642 
643 	/*
644 	 * Convert !0 address_min and 0 address_max to special case of
645 	 * range that specifies an exact memory block to allocate.  Do
646 	 * this before other checks and adjustments so that this
647 	 * tranformation will be validated
648 	 */
649 	if (address_min && !address_max)
650 		address_max = address_min + req_size;
651 	else if (!address_min && !address_max)
652 		address_max = ~0ull;	/* If no limits given, use max */
653 
654 	/*
655 	 * Reject inconsistent args.  We have adjusted these, so this
656 	 * may fail due to our internal changes even if this check
657 	 * would pass for the values the user supplied.
658 	 */
659 	if (req_size > address_max - address_min)
660 		return -1;
661 
662 	__cvmx_bootmem_lock(flags);
663 
664 	/* Walk through the list entries to find the right fit */
665 	head_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
666 
667 	for (ent_addr = head_addr;
668 	     ent_addr != 0ULL && ent_addr < address_max;
669 	     prev_addr = ent_addr,
670 		     ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) {
671 		/* Raw free block size */
672 		ent_size = cvmx_bootmem_phy_get_size(ent_addr);
673 		next_addr = cvmx_bootmem_phy_get_next(ent_addr);
674 
675 		/* Validate the free list ascending order */
676 		if (ent_size < CVMX_BOOTMEM_ALIGNMENT_SIZE ||
677 		    (next_addr && ent_addr > next_addr)) {
678 			debug("ERROR: %s: bad free list ent: %#llx, next: %#llx\n",
679 			      __func__, CAST_ULL(ent_addr),
680 			      CAST_ULL(next_addr));
681 			goto error_out;
682 		}
683 
684 		/* adjust free block edges for alignment */
685 		free_start = (ent_addr + align - 1) & align_mask;
686 		free_end = (ent_addr + ent_size) &  align_mask;
687 
688 		/* check that free block is large enough */
689 		if ((free_start + req_size) > free_end)
690 			continue;
691 
692 		/* check that desired start is within the free block */
693 		if (free_end < address_min || free_start > address_max)
694 			continue;
695 		if ((free_end - address_min) < req_size)
696 			continue;
697 		if ((address_max - free_start) < req_size)
698 			continue;
699 
700 		/* Found usebale free block */
701 		target_ent_addr = ent_addr;
702 		target_prev_addr = prev_addr;
703 		target_size = ent_size;
704 
705 		/* Continue looking for highest/best block that fits */
706 	}
707 
708 	/* Bail if the search has resulted in no eligible free blocks */
709 	if (target_ent_addr == 0) {
710 		debug("%s: eligible free block not found\n", __func__);
711 		goto error_out;
712 	}
713 
714 	/* Found the free block to allocate from */
715 	ent_addr = target_ent_addr;
716 	prev_addr = target_prev_addr;
717 	ent_size = target_size;
718 
719 	debug("%s: using free block at %#010llx size %#llx\n",
720 	      __func__, CAST_ULL(ent_addr), CAST_ULL(ent_size));
721 
722 	/* Always allocate from the end of a free block */
723 	usable_max = min_t(u64, address_max, ent_addr + ent_size);
724 	desired_min_addr = usable_max - req_size;
725 	desired_min_addr &= align_mask;
726 
727 	/* Split current free block into up to 3 free blocks */
728 
729 	/* Check for head room */
730 	if (desired_min_addr > ent_addr) {
731 		/* Create a new free block at the allocation address */
732 		new_ent_addr = desired_min_addr;
733 		new_ent_size = ent_size - (desired_min_addr - ent_addr);
734 
735 		cvmx_bootmem_phy_set_next(new_ent_addr,
736 					  cvmx_bootmem_phy_get_next(ent_addr));
737 		cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size);
738 
739 		/* Split out head room into a new free block */
740 		ent_size -= new_ent_size;
741 		cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
742 		cvmx_bootmem_phy_set_size(ent_addr, ent_size);
743 
744 		debug("%s: splitting head, addr %#llx size %#llx\n",
745 		      __func__, CAST_ULL(ent_addr), CAST_ULL(ent_size));
746 
747 		/* Make the allocation target the current free block */
748 		prev_addr = ent_addr;
749 		ent_addr = new_ent_addr;
750 		ent_size = new_ent_size;
751 	}
752 
753 	/* Check for tail room */
754 	if ((desired_min_addr + req_size) < (ent_addr + ent_size)) {
755 		new_ent_addr = ent_addr + req_size;
756 		new_ent_size = ent_size - req_size;
757 
758 		/* Create a new free block from tail room */
759 		cvmx_bootmem_phy_set_next(new_ent_addr,
760 					  cvmx_bootmem_phy_get_next(ent_addr));
761 		cvmx_bootmem_phy_set_size(new_ent_addr, new_ent_size);
762 
763 		debug("%s: splitting tail, addr %#llx size %#llx\n",
764 		      __func__, CAST_ULL(new_ent_addr), CAST_ULL(new_ent_size));
765 
766 		/* Adjust the current block to exclude tail room */
767 		ent_size = ent_size - new_ent_size;
768 		cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
769 		cvmx_bootmem_phy_set_size(ent_addr, ent_size);
770 	}
771 
772 	/* The current free block IS the allocation target */
773 	if (desired_min_addr != ent_addr || ent_size != req_size)
774 		debug("ERROR: %s: internal error - addr %#llx %#llx size %#llx %#llx\n",
775 		      __func__, CAST_ULL(desired_min_addr), CAST_ULL(ent_addr),
776 		      CAST_ULL(ent_size), CAST_ULL(req_size));
777 
778 	/* Remove the current free block from list */
779 	if (prev_addr) {
780 		cvmx_bootmem_phy_set_next(prev_addr,
781 					  cvmx_bootmem_phy_get_next(ent_addr));
782 	} else {
783 		/* head of list being returned, so update head ptr */
784 		CVMX_BOOTMEM_DESC_SET_FIELD(head_addr,
785 					    cvmx_bootmem_phy_get_next(ent_addr));
786 	}
787 
788 	__cvmx_bootmem_unlock(flags);
789 	debug("%s: allocated size: %#llx, at addr: %#010llx\n",
790 	      __func__,
791 	      CAST_ULL(req_size),
792 	      CAST_ULL(desired_min_addr));
793 
794 	return desired_min_addr;
795 
796 error_out:
797 	/* Requested memory not found or argument error */
798 	__cvmx_bootmem_unlock(flags);
799 	return -1;
800 }
801 
__cvmx_bootmem_phy_free(u64 phy_addr,u64 size,u32 flags)802 int __cvmx_bootmem_phy_free(u64 phy_addr, u64 size, u32 flags)
803 {
804 	u64 cur_addr;
805 	u64 prev_addr = 0;	/* zero is invalid */
806 	int retval = 0;
807 
808 	debug("%s addr: %#llx, size: %#llx\n", __func__,
809 	      CAST_ULL(phy_addr), CAST_ULL(size));
810 
811 	if (__cvmx_bootmem_check_version(0))
812 		return 0;
813 
814 	/* 0 is not a valid size for this allocator */
815 	if (!size || !phy_addr)
816 		return 0;
817 
818 	/* Round size up to mult of minimum alignment bytes */
819 	size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
820 		~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
821 
822 	__cvmx_bootmem_lock(flags);
823 	cur_addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
824 	if (cur_addr == 0 || phy_addr < cur_addr) {
825 		/* add at front of list - special case with changing head ptr */
826 		if (cur_addr && phy_addr + size > cur_addr)
827 			goto bootmem_free_done;	/* error, overlapping section */
828 		else if (phy_addr + size == cur_addr) {
829 			/* Add to front of existing first block */
830 			cvmx_bootmem_phy_set_next(phy_addr,
831 						  cvmx_bootmem_phy_get_next(cur_addr));
832 			cvmx_bootmem_phy_set_size(phy_addr,
833 						  cvmx_bootmem_phy_get_size(cur_addr) + size);
834 			CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
835 
836 		} else {
837 			/* New block before first block */
838 			/* OK if cur_addr is 0 */
839 			cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
840 			cvmx_bootmem_phy_set_size(phy_addr, size);
841 			CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, phy_addr);
842 		}
843 		retval = 1;
844 		goto bootmem_free_done;
845 	}
846 
847 	/* Find place in list to add block */
848 	while (cur_addr && phy_addr > cur_addr) {
849 		prev_addr = cur_addr;
850 		cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
851 	}
852 
853 	if (!cur_addr) {
854 		/*
855 		 * We have reached the end of the list, add on to end, checking
856 		 * to see if we need to combine with last block
857 		 */
858 		if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) {
859 			cvmx_bootmem_phy_set_size(prev_addr,
860 						  cvmx_bootmem_phy_get_size(prev_addr) + size);
861 		} else {
862 			cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
863 			cvmx_bootmem_phy_set_size(phy_addr, size);
864 			cvmx_bootmem_phy_set_next(phy_addr, 0);
865 		}
866 		retval = 1;
867 		goto bootmem_free_done;
868 	} else {
869 		/*
870 		 * insert between prev and cur nodes, checking for merge with
871 		 * either/both
872 		 */
873 		if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) == phy_addr) {
874 			/* Merge with previous */
875 			cvmx_bootmem_phy_set_size(prev_addr,
876 						  cvmx_bootmem_phy_get_size(prev_addr) + size);
877 			if (phy_addr + size == cur_addr) {
878 				/* Also merge with current */
879 				cvmx_bootmem_phy_set_size(prev_addr,
880 							  cvmx_bootmem_phy_get_size(cur_addr) +
881 							  cvmx_bootmem_phy_get_size(prev_addr));
882 				cvmx_bootmem_phy_set_next(prev_addr,
883 							  cvmx_bootmem_phy_get_next(cur_addr));
884 			}
885 			retval = 1;
886 			goto bootmem_free_done;
887 		} else if (phy_addr + size == cur_addr) {
888 			/* Merge with current */
889 			cvmx_bootmem_phy_set_size(phy_addr,
890 						  cvmx_bootmem_phy_get_size(cur_addr) + size);
891 			cvmx_bootmem_phy_set_next(phy_addr,
892 						  cvmx_bootmem_phy_get_next(cur_addr));
893 			cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
894 			retval = 1;
895 			goto bootmem_free_done;
896 		}
897 
898 		/* It is a standalone block, add in between prev and cur */
899 		cvmx_bootmem_phy_set_size(phy_addr, size);
900 		cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
901 		cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
902 	}
903 	retval = 1;
904 
905 bootmem_free_done:
906 	__cvmx_bootmem_unlock(flags);
907 	return retval;
908 }
909 
cvmx_bootmem_phy_list_print(void)910 void cvmx_bootmem_phy_list_print(void)
911 {
912 	u64 addr;
913 
914 	addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
915 	printf("\n\n\nPrinting bootmem block list, descriptor: 0x%llx, head is 0x%llx\n",
916 	       CAST_ULL(cvmx_bootmem_desc_addr), CAST_ULL(addr));
917 	printf("Descriptor version: %d.%d\n",
918 	       (int)CVMX_BOOTMEM_DESC_GET_FIELD(major_version),
919 	       (int)CVMX_BOOTMEM_DESC_GET_FIELD(minor_version));
920 	if (CVMX_BOOTMEM_DESC_GET_FIELD(major_version) > 3)
921 		debug("Warning: Bootmem descriptor version is newer than expected\n");
922 
923 	if (!addr)
924 		printf("mem list is empty!\n");
925 
926 	while (addr) {
927 		printf("Block address: 0x%08llx, size: 0x%08llx, next: 0x%08llx\n", CAST_ULL(addr),
928 		       CAST_ULL(cvmx_bootmem_phy_get_size(addr)),
929 		       CAST_ULL(cvmx_bootmem_phy_get_next(addr)));
930 		addr = cvmx_bootmem_phy_get_next(addr);
931 	}
932 	printf("\n\n");
933 }
934 
cvmx_bootmem_phy_available_mem(u64 min_block_size)935 u64 cvmx_bootmem_phy_available_mem(u64 min_block_size)
936 {
937 	u64 addr;
938 
939 	u64 available_mem = 0;
940 
941 	__cvmx_bootmem_lock(0);
942 	addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
943 	while (addr) {
944 		if (cvmx_bootmem_phy_get_size(addr) >= min_block_size)
945 			available_mem += cvmx_bootmem_phy_get_size(addr);
946 		addr = cvmx_bootmem_phy_get_next(addr);
947 	}
948 	__cvmx_bootmem_unlock(0);
949 	return available_mem;
950 }
951 
cvmx_bootmem_phy_named_block_find(const char * name,u32 flags)952 u64 cvmx_bootmem_phy_named_block_find(const char *name, u32 flags)
953 {
954 	u64 result = 0;
955 
956 	debug("%s: %s\n", __func__, name);
957 
958 	__cvmx_bootmem_lock(flags);
959 	if (!__cvmx_bootmem_check_version(3)) {
960 		int i;
961 		u64 named_block_array_addr =
962 			CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
963 		int num_blocks =
964 			CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
965 		int name_length =
966 			CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
967 		u64 named_addr = named_block_array_addr;
968 
969 		for (i = 0; i < num_blocks; i++) {
970 			u64 named_size =
971 				CVMX_BOOTMEM_NAMED_GET_FIELD(named_addr, size);
972 			if (name && named_size) {
973 				char name_tmp[name_length + 1];
974 
975 				CVMX_BOOTMEM_NAMED_GET_NAME(named_addr,
976 							    name_tmp,
977 							    name_length);
978 				if (!strncmp(name, name_tmp, name_length)) {
979 					result = named_addr;
980 					break;
981 				}
982 			} else if (!name && !named_size) {
983 				result = named_addr;
984 				break;
985 			}
986 
987 			named_addr +=
988 				sizeof(struct cvmx_bootmem_named_block_desc);
989 		}
990 	}
991 	__cvmx_bootmem_unlock(flags);
992 	return result;
993 }
994 
cvmx_bootmem_phy_named_block_free(const char * name,u32 flags)995 int cvmx_bootmem_phy_named_block_free(const char *name, u32 flags)
996 {
997 	u64 named_block_addr;
998 
999 	if (__cvmx_bootmem_check_version(3))
1000 		return 0;
1001 
1002 	debug("%s: %s\n", __func__, name);
1003 
1004 	/*
1005 	 * Take lock here, as name lookup/block free/name free need to be
1006 	 * atomic
1007 	 */
1008 	__cvmx_bootmem_lock(flags);
1009 
1010 	named_block_addr = cvmx_bootmem_phy_named_block_find(name,
1011 							     CVMX_BOOTMEM_FLAG_NO_LOCKING);
1012 	if (named_block_addr) {
1013 		u64 named_addr =
1014 			CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr,
1015 						     base_addr);
1016 		u64 named_size =
1017 			CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
1018 
1019 		debug("%s: %s, base: 0x%llx, size: 0x%llx\n",
1020 		      __func__, name, CAST_ULL(named_addr),
1021 		      CAST_ULL(named_size));
1022 
1023 		__cvmx_bootmem_phy_free(named_addr, named_size,
1024 					CVMX_BOOTMEM_FLAG_NO_LOCKING);
1025 
1026 		/* Set size to zero to indicate block not used. */
1027 		CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_addr, size, 0);
1028 	}
1029 
1030 	__cvmx_bootmem_unlock(flags);
1031 	return !!named_block_addr;	/* 0 on failure, 1 on success */
1032 }
1033 
cvmx_bootmem_phy_named_block_alloc(u64 size,u64 min_addr,u64 max_addr,u64 alignment,const char * name,u32 flags)1034 s64 cvmx_bootmem_phy_named_block_alloc(u64 size, u64 min_addr,
1035 				       u64 max_addr,
1036 				       u64 alignment, const char *name,
1037 				       u32 flags)
1038 {
1039 	s64 addr_allocated;
1040 	u64 named_block_desc_addr;
1041 
1042 	debug("%s: size: 0x%llx, min: 0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
1043 	      __func__, CAST_ULL(size), CAST_ULL(min_addr), CAST_ULL(max_addr),
1044 	      CAST_ULL(alignment), name);
1045 
1046 	if (__cvmx_bootmem_check_version(3))
1047 		return -1;
1048 
1049 	/*
1050 	 * Take lock here, as name lookup/block alloc/name add need to be
1051 	 * atomic
1052 	 */
1053 	__cvmx_bootmem_lock(flags);
1054 
1055 	named_block_desc_addr =
1056 		cvmx_bootmem_phy_named_block_find(name, flags |
1057 						  CVMX_BOOTMEM_FLAG_NO_LOCKING);
1058 	if (named_block_desc_addr) {
1059 		__cvmx_bootmem_unlock(flags);
1060 		return -1;
1061 	}
1062 
1063 	/* Get pointer to first available named block descriptor */
1064 	named_block_desc_addr =
1065 		cvmx_bootmem_phy_named_block_find(NULL, flags |
1066 						  CVMX_BOOTMEM_FLAG_NO_LOCKING);
1067 	if (!named_block_desc_addr) {
1068 		__cvmx_bootmem_unlock(flags);
1069 		return -1;
1070 	}
1071 
1072 	/*
1073 	 * Round size up to mult of minimum alignment bytes
1074 	 * We need the actual size allocated to allow for blocks to be
1075 	 * coallesced when they are freed.  The alloc routine does the
1076 	 * same rounding up on all allocations.
1077 	 */
1078 	size = (size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
1079 		~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
1080 
1081 	addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
1082 						alignment,
1083 						flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
1084 	if (addr_allocated >= 0) {
1085 		CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, base_addr,
1086 					     addr_allocated);
1087 		CVMX_BOOTMEM_NAMED_SET_FIELD(named_block_desc_addr, size, size);
1088 		CVMX_BOOTMEM_NAMED_SET_NAME(named_block_desc_addr, name,
1089 					    CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len));
1090 	}
1091 
1092 	__cvmx_bootmem_unlock(flags);
1093 	return addr_allocated;
1094 }
1095 
cvmx_bootmem_phy_named_block_print(void)1096 void cvmx_bootmem_phy_named_block_print(void)
1097 {
1098 	int i;
1099 	int printed = 0;
1100 
1101 	u64 named_block_array_addr =
1102 		CVMX_BOOTMEM_DESC_GET_FIELD(named_block_array_addr);
1103 	int num_blocks = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_num_blocks);
1104 	int name_length = CVMX_BOOTMEM_DESC_GET_FIELD(named_block_name_len);
1105 	u64 named_block_addr = named_block_array_addr;
1106 
1107 	debug("%s: desc addr: 0x%llx\n",
1108 	      __func__, CAST_ULL(cvmx_bootmem_desc_addr));
1109 
1110 	if (__cvmx_bootmem_check_version(3))
1111 		return;
1112 
1113 	printf("List of currently allocated named bootmem blocks:\n");
1114 	for (i = 0; i < num_blocks; i++) {
1115 		u64 named_size =
1116 			CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr, size);
1117 		if (named_size) {
1118 			char name_tmp[name_length + 1];
1119 			u64 named_addr =
1120 				CVMX_BOOTMEM_NAMED_GET_FIELD(named_block_addr,
1121 							     base_addr);
1122 			CVMX_BOOTMEM_NAMED_GET_NAME(named_block_addr, name_tmp,
1123 						    name_length);
1124 			printed++;
1125 			printf("Name: %s, address: 0x%08llx, size: 0x%08llx, index: %d\n", name_tmp,
1126 			       CAST_ULL(named_addr),
1127 			       CAST_ULL(named_size), i);
1128 		}
1129 		named_block_addr +=
1130 			sizeof(struct cvmx_bootmem_named_block_desc);
1131 	}
1132 
1133 	if (!printed)
1134 		printf("No named bootmem blocks exist.\n");
1135 }
1136 
cvmx_bootmem_phy_mem_list_init(u64 mem_size,u32 low_reserved_bytes,struct cvmx_bootmem_desc * desc_buffer)1137 s64 cvmx_bootmem_phy_mem_list_init(u64 mem_size,
1138 				   u32 low_reserved_bytes,
1139 				   struct cvmx_bootmem_desc *desc_buffer)
1140 {
1141 	u64 cur_block_addr;
1142 	s64 addr;
1143 	int i;
1144 
1145 	debug("%s (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n",
1146 	      __func__, desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr));
1147 
1148 	/*
1149 	 * Descriptor buffer needs to be in 32 bit addressable space to be
1150 	 * compatible with 32 bit applications
1151 	 */
1152 	if (!desc_buffer) {
1153 		debug("ERROR: no memory for cvmx_bootmem descriptor provided\n");
1154 		return 0;
1155 	}
1156 
1157 	if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
1158 		mem_size = OCTEON_MAX_PHY_MEM_SIZE;
1159 		debug("ERROR: requested memory size too large, truncating to maximum size\n");
1160 	}
1161 
1162 	if (cvmx_bootmem_desc_addr)
1163 		return 1;
1164 
1165 	/* Initialize cvmx pointer to descriptor */
1166 	cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer));
1167 
1168 	/* Fill the bootmem descriptor */
1169 	CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0);
1170 	CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0);
1171 	CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0);
1172 	CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER);
1173 	CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER);
1174 	CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0);
1175 	CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0);
1176 
1177 	/*
1178 	 * Set up global pointer to start of list, exclude low 64k for exception
1179 	 * vectors, space for global descriptor
1180 	 */
1181 	cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes);
1182 
1183 	if (mem_size <= OCTEON_DDR0_SIZE) {
1184 		__cvmx_bootmem_phy_free(cur_block_addr,
1185 					mem_size - low_reserved_bytes, 0);
1186 		goto frees_done;
1187 	}
1188 
1189 	__cvmx_bootmem_phy_free(cur_block_addr,
1190 				OCTEON_DDR0_SIZE - low_reserved_bytes, 0);
1191 
1192 	mem_size -= OCTEON_DDR0_SIZE;
1193 
1194 	/* Add DDR2 block next if present */
1195 	if (mem_size > OCTEON_DDR1_SIZE) {
1196 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
1197 		__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
1198 					mem_size - OCTEON_DDR1_SIZE, 0);
1199 	} else {
1200 		__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
1201 	}
1202 frees_done:
1203 
1204 	/* Initialize the named block structure */
1205 	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN);
1206 	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks,
1207 				    CVMX_BOOTMEM_NUM_NAMED_BLOCKS);
1208 	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0);
1209 
1210 	/* Allocate this near the top of the low 256 MBytes of memory */
1211 	addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
1212 				      sizeof(struct cvmx_bootmem_named_block_desc),
1213 				      0, 0x10000000, 0,
1214 				      CVMX_BOOTMEM_FLAG_END_ALLOC);
1215 	if (addr >= 0)
1216 		CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr);
1217 
1218 	debug("%s: named_block_array_addr: 0x%llx)\n",
1219 	      __func__, CAST_ULL(addr));
1220 
1221 	if (addr < 0) {
1222 		debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
1223 		return 0;
1224 	}
1225 
1226 	for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) {
1227 		CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0);
1228 		CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0);
1229 		addr += sizeof(struct cvmx_bootmem_named_block_desc);
1230 	}
1231 
1232 	return 1;
1233 }
1234 
cvmx_bootmem_phy_mem_list_init_multi(u8 node_mask,u32 mem_sizes[],u32 low_reserved_bytes,struct cvmx_bootmem_desc * desc_buffer)1235 s64 cvmx_bootmem_phy_mem_list_init_multi(u8 node_mask,
1236 					 u32 mem_sizes[],
1237 					 u32 low_reserved_bytes,
1238 					 struct cvmx_bootmem_desc *desc_buffer)
1239 {
1240 	u64 cur_block_addr;
1241 	u64 mem_size;
1242 	s64 addr;
1243 	int i;
1244 	int node;
1245 	u64 node_base;	/* Make u64 to reduce type casting */
1246 
1247 	mem_sizes[0] = gd->ram_size / (1024 * 1024);
1248 
1249 	debug("cvmx_bootmem_phy_mem_list_init (arg desc ptr: %p, cvmx_bootmem_desc: 0x%llx)\n",
1250 	      desc_buffer, CAST_ULL(cvmx_bootmem_desc_addr));
1251 
1252 	/*
1253 	 * Descriptor buffer needs to be in 32 bit addressable space to be
1254 	 * compatible with 32 bit applications
1255 	 */
1256 	if (!desc_buffer) {
1257 		debug("ERROR: no memory for cvmx_bootmem descriptor provided\n");
1258 		return 0;
1259 	}
1260 
1261 	cvmx_coremask_for_each_node(node, node_mask) {
1262 		if ((mem_sizes[node] * 1024 * 1024) > OCTEON_MAX_PHY_MEM_SIZE) {
1263 			mem_sizes[node] = OCTEON_MAX_PHY_MEM_SIZE /
1264 				(1024 * 1024);
1265 			debug("ERROR node#%lld: requested memory size too large, truncating to maximum size\n",
1266 			      CAST_ULL(node));
1267 		}
1268 	}
1269 
1270 	if (cvmx_bootmem_desc_addr)
1271 		return 1;
1272 
1273 	/* Initialize cvmx pointer to descriptor */
1274 	cvmx_bootmem_init(cvmx_ptr_to_phys(desc_buffer));
1275 
1276 	/* Fill the bootmem descriptor */
1277 	CVMX_BOOTMEM_DESC_SET_FIELD(lock, 0);
1278 	CVMX_BOOTMEM_DESC_SET_FIELD(flags, 0);
1279 	CVMX_BOOTMEM_DESC_SET_FIELD(head_addr, 0);
1280 	CVMX_BOOTMEM_DESC_SET_FIELD(major_version, CVMX_BOOTMEM_DESC_MAJ_VER);
1281 	CVMX_BOOTMEM_DESC_SET_FIELD(minor_version, CVMX_BOOTMEM_DESC_MIN_VER);
1282 	CVMX_BOOTMEM_DESC_SET_FIELD(app_data_addr, 0);
1283 	CVMX_BOOTMEM_DESC_SET_FIELD(app_data_size, 0);
1284 
1285 	cvmx_coremask_for_each_node(node, node_mask) {
1286 		if (node != 0)	/* do not reserve memory on remote nodes */
1287 			low_reserved_bytes = 0;
1288 
1289 		mem_size = (u64)mem_sizes[node] * (1024 * 1024); /* MBytes */
1290 
1291 		/*
1292 		 * Set up global pointer to start of list, exclude low 64k
1293 		 * for exception vectors, space for global descriptor
1294 		 */
1295 
1296 		node_base = (u64)node << CVMX_NODE_MEM_SHIFT;
1297 		cur_block_addr = (OCTEON_DDR0_BASE + low_reserved_bytes) |
1298 			node_base;
1299 
1300 		if (mem_size <= OCTEON_DDR0_SIZE) {
1301 			__cvmx_bootmem_phy_free(cur_block_addr,
1302 						mem_size - low_reserved_bytes,
1303 						0);
1304 			continue;
1305 		}
1306 
1307 		__cvmx_bootmem_phy_free(cur_block_addr,
1308 					OCTEON_DDR0_SIZE - low_reserved_bytes,
1309 					0);
1310 
1311 		mem_size -= OCTEON_DDR0_SIZE;
1312 
1313 		/* Add DDR2 block next if present */
1314 		if (mem_size > OCTEON_DDR1_SIZE) {
1315 			__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE |
1316 						node_base,
1317 						OCTEON_DDR1_SIZE, 0);
1318 			__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE |
1319 						node_base,
1320 						mem_size - OCTEON_DDR1_SIZE, 0);
1321 		} else {
1322 			__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE |
1323 						node_base,
1324 						mem_size, 0);
1325 		}
1326 	}
1327 
1328 	debug("%s: Initialize the named block\n", __func__);
1329 
1330 	/* Initialize the named block structure */
1331 	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_name_len, CVMX_BOOTMEM_NAME_LEN);
1332 	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_num_blocks,
1333 				    CVMX_BOOTMEM_NUM_NAMED_BLOCKS);
1334 	CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, 0);
1335 
1336 	/* Allocate this near the top of the low 256 MBytes of memory */
1337 	addr = cvmx_bootmem_phy_alloc(CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
1338 				      sizeof(struct cvmx_bootmem_named_block_desc),
1339 				      0, 0x10000000, 0,
1340 				      CVMX_BOOTMEM_FLAG_END_ALLOC);
1341 	if (addr >= 0)
1342 		CVMX_BOOTMEM_DESC_SET_FIELD(named_block_array_addr, addr);
1343 
1344 	debug("cvmx_bootmem_phy_mem_list_init: named_block_array_addr: 0x%llx)\n",
1345 	      CAST_ULL(addr));
1346 
1347 	if (addr < 0) {
1348 		debug("FATAL ERROR: unable to allocate memory for bootmem descriptor!\n");
1349 		return 0;
1350 	}
1351 
1352 	for (i = 0; i < CVMX_BOOTMEM_NUM_NAMED_BLOCKS; i++) {
1353 		CVMX_BOOTMEM_NAMED_SET_FIELD(addr, base_addr, 0);
1354 		CVMX_BOOTMEM_NAMED_SET_FIELD(addr, size, 0);
1355 		addr += sizeof(struct cvmx_bootmem_named_block_desc);
1356 	}
1357 
1358 	// test-only: DEBUG ifdef???
1359 	cvmx_bootmem_phy_list_print();
1360 
1361 	return 1;
1362 }
1363 
cvmx_bootmem_reserve_memory(u64 start_addr,u64 size,const char * name,u32 flags)1364 int cvmx_bootmem_reserve_memory(u64 start_addr, u64 size,
1365 				const char *name, u32 flags)
1366 {
1367 	u64 addr;
1368 	int rc = 1;
1369 	static unsigned int block_num;
1370 	char block_name[CVMX_BOOTMEM_NAME_LEN];
1371 
1372 	debug("%s: start %#llx, size: %#llx, name: %s, flags:%#x)\n",
1373 	      __func__, CAST_ULL(start_addr), CAST_ULL(size), name, flags);
1374 
1375 	if (__cvmx_bootmem_check_version(3))
1376 		return 0;
1377 
1378 	addr = CVMX_BOOTMEM_DESC_GET_FIELD(head_addr);
1379 	if (!addr)
1380 		return 0;
1381 
1382 	if (!name)
1383 		name = "__cvmx_bootmem_reserved";
1384 
1385 	while (addr && rc) {
1386 		u64 block_size = cvmx_bootmem_phy_get_size(addr);
1387 		u64 reserve_size = 0;
1388 
1389 		if (addr >= start_addr && addr < start_addr + size) {
1390 			reserve_size = size - (addr - start_addr);
1391 			if (block_size < reserve_size)
1392 				reserve_size = block_size;
1393 		} else if (start_addr > addr &&
1394 			   start_addr < (addr + block_size)) {
1395 			reserve_size = block_size - (start_addr - addr);
1396 		}
1397 
1398 		if (reserve_size) {
1399 			snprintf(block_name, sizeof(block_name),
1400 				 "%.32s_%012llx_%u",
1401 				 name, (unsigned long long)start_addr,
1402 				 (unsigned int)block_num);
1403 
1404 			debug("%s: Reserving 0x%llx bytes at address 0x%llx with name %s\n",
1405 			      __func__, CAST_ULL(reserve_size),
1406 			      CAST_ULL(addr), block_name);
1407 
1408 			if (cvmx_bootmem_phy_named_block_alloc(reserve_size,
1409 							       addr, 0, 0,
1410 							       block_name,
1411 							       flags) == -1) {
1412 				debug("%s: Failed to reserve 0x%llx bytes at address 0x%llx\n",
1413 				      __func__, CAST_ULL(reserve_size),
1414 				      (unsigned long long)addr);
1415 				rc = 0;
1416 				break;
1417 			}
1418 
1419 			debug("%s: Reserved 0x%llx bytes at address 0x%llx with name %s\n",
1420 			      __func__, CAST_ULL(reserve_size),
1421 			      CAST_ULL(addr), block_name);
1422 		}
1423 
1424 		addr = cvmx_bootmem_phy_get_next(addr);
1425 		block_num++;
1426 	}
1427 
1428 	return rc;
1429 }
1430 
cvmx_bootmem_lock(void)1431 void cvmx_bootmem_lock(void)
1432 {
1433 	__cvmx_bootmem_lock(0);
1434 }
1435 
cvmx_bootmem_unlock(void)1436 void cvmx_bootmem_unlock(void)
1437 {
1438 	__cvmx_bootmem_unlock(0);
1439 }
1440 
__cvmx_phys_addr_to_ptr(u64 phys,int size)1441 void *__cvmx_phys_addr_to_ptr(u64 phys, int size)
1442 {
1443 	void *tmp;
1444 
1445 	if (sizeof(void *) == 8) {
1446 		tmp = CASTPTR(void, CVMX_ADD_SEG(CVMX_MIPS_SPACE_XKPHYS, phys));
1447 	} else {
1448 		u32 phy32 = (u32)(phys & 0x7fffffffULL);
1449 
1450 		tmp = CASTPTR(void, CVMX_ADD_SEG32(CVMX_MIPS32_SPACE_KSEG0,
1451 						   phy32));
1452 	}
1453 
1454 	return tmp;
1455 }
1456 
__cvmx_bootmem_internal_get_desc_ptr(void)1457 void *__cvmx_bootmem_internal_get_desc_ptr(void)
1458 {
1459 	return cvmx_phys_to_ptr(cvmx_bootmem_desc_addr);
1460 }
1461