1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2017 Intel Corporation. All rights reserved.
4 */
5 #include <linux/pagemap.h>
6 #include <linux/module.h>
7 #include <linux/mount.h>
8 #include <linux/pseudo_fs.h>
9 #include <linux/magic.h>
10 #include <linux/genhd.h>
11 #include <linux/pfn_t.h>
12 #include <linux/cdev.h>
13 #include <linux/hash.h>
14 #include <linux/slab.h>
15 #include <linux/uio.h>
16 #include <linux/dax.h>
17 #include <linux/fs.h>
18 #include "dax-private.h"
19
20 /**
21 * struct dax_device - anchor object for dax services
22 * @inode: core vfs
23 * @cdev: optional character interface for "device dax"
24 * @host: optional name for lookups where the device path is not available
25 * @private: dax driver private data
26 * @flags: state and boolean properties
27 */
28 struct dax_device {
29 struct hlist_node list;
30 struct inode inode;
31 struct cdev cdev;
32 const char *host;
33 void *private;
34 unsigned long flags;
35 const struct dax_operations *ops;
36 };
37
38 static dev_t dax_devt;
39 DEFINE_STATIC_SRCU(dax_srcu);
40 static struct vfsmount *dax_mnt;
41 static DEFINE_IDA(dax_minor_ida);
42 static struct kmem_cache *dax_cache __read_mostly;
43 static struct super_block *dax_superblock __read_mostly;
44
45 #define DAX_HASH_SIZE (PAGE_SIZE / sizeof(struct hlist_head))
46 static struct hlist_head dax_host_list[DAX_HASH_SIZE];
47 static DEFINE_SPINLOCK(dax_host_lock);
48
dax_read_lock(void)49 int dax_read_lock(void)
50 {
51 return srcu_read_lock(&dax_srcu);
52 }
53 EXPORT_SYMBOL_GPL(dax_read_lock);
54
dax_read_unlock(int id)55 void dax_read_unlock(int id)
56 {
57 srcu_read_unlock(&dax_srcu, id);
58 }
59 EXPORT_SYMBOL_GPL(dax_read_unlock);
60
dax_host_hash(const char * host)61 static int dax_host_hash(const char *host)
62 {
63 return hashlen_hash(hashlen_string("DAX", host)) % DAX_HASH_SIZE;
64 }
65
66 #ifdef CONFIG_BLOCK
67 #include <linux/blkdev.h>
68
bdev_dax_pgoff(struct block_device * bdev,sector_t sector,size_t size,pgoff_t * pgoff)69 int bdev_dax_pgoff(struct block_device *bdev, sector_t sector, size_t size,
70 pgoff_t *pgoff)
71 {
72 sector_t start_sect = bdev ? get_start_sect(bdev) : 0;
73 phys_addr_t phys_off = (start_sect + sector) * 512;
74
75 if (pgoff)
76 *pgoff = PHYS_PFN(phys_off);
77 if (phys_off % PAGE_SIZE || size % PAGE_SIZE)
78 return -EINVAL;
79 return 0;
80 }
81 EXPORT_SYMBOL(bdev_dax_pgoff);
82
83 #if IS_ENABLED(CONFIG_FS_DAX)
84 /**
85 * dax_get_by_host() - temporary lookup mechanism for filesystem-dax
86 * @host: alternate name for the device registered by a dax driver
87 */
dax_get_by_host(const char * host)88 static struct dax_device *dax_get_by_host(const char *host)
89 {
90 struct dax_device *dax_dev, *found = NULL;
91 int hash, id;
92
93 if (!host)
94 return NULL;
95
96 hash = dax_host_hash(host);
97
98 id = dax_read_lock();
99 spin_lock(&dax_host_lock);
100 hlist_for_each_entry(dax_dev, &dax_host_list[hash], list) {
101 if (!dax_alive(dax_dev)
102 || strcmp(host, dax_dev->host) != 0)
103 continue;
104
105 if (igrab(&dax_dev->inode))
106 found = dax_dev;
107 break;
108 }
109 spin_unlock(&dax_host_lock);
110 dax_read_unlock(id);
111
112 return found;
113 }
114
fs_dax_get_by_bdev(struct block_device * bdev)115 struct dax_device *fs_dax_get_by_bdev(struct block_device *bdev)
116 {
117 if (!blk_queue_dax(bdev->bd_disk->queue))
118 return NULL;
119 return dax_get_by_host(bdev->bd_disk->disk_name);
120 }
121 EXPORT_SYMBOL_GPL(fs_dax_get_by_bdev);
122
generic_fsdax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t sectors)123 bool generic_fsdax_supported(struct dax_device *dax_dev,
124 struct block_device *bdev, int blocksize, sector_t start,
125 sector_t sectors)
126 {
127 bool dax_enabled = false;
128 pgoff_t pgoff, pgoff_end;
129 void *kaddr, *end_kaddr;
130 pfn_t pfn, end_pfn;
131 sector_t last_page;
132 long len, len2;
133 int err, id;
134
135 if (blocksize != PAGE_SIZE) {
136 pr_info("%pg: error: unsupported blocksize for dax\n", bdev);
137 return false;
138 }
139
140 if (!dax_dev) {
141 pr_debug("%pg: error: dax unsupported by block device\n", bdev);
142 return false;
143 }
144
145 err = bdev_dax_pgoff(bdev, start, PAGE_SIZE, &pgoff);
146 if (err) {
147 pr_info("%pg: error: unaligned partition for dax\n", bdev);
148 return false;
149 }
150
151 last_page = PFN_DOWN((start + sectors - 1) * 512) * PAGE_SIZE / 512;
152 err = bdev_dax_pgoff(bdev, last_page, PAGE_SIZE, &pgoff_end);
153 if (err) {
154 pr_info("%pg: error: unaligned partition for dax\n", bdev);
155 return false;
156 }
157
158 id = dax_read_lock();
159 len = dax_direct_access(dax_dev, pgoff, 1, &kaddr, &pfn);
160 len2 = dax_direct_access(dax_dev, pgoff_end, 1, &end_kaddr, &end_pfn);
161
162 if (len < 1 || len2 < 1) {
163 pr_info("%pg: error: dax access failed (%ld)\n",
164 bdev, len < 1 ? len : len2);
165 dax_read_unlock(id);
166 return false;
167 }
168
169 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED) && pfn_t_special(pfn)) {
170 /*
171 * An arch that has enabled the pmem api should also
172 * have its drivers support pfn_t_devmap()
173 *
174 * This is a developer warning and should not trigger in
175 * production. dax_flush() will crash since it depends
176 * on being able to do (page_address(pfn_to_page())).
177 */
178 WARN_ON(IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API));
179 dax_enabled = true;
180 } else if (pfn_t_devmap(pfn) && pfn_t_devmap(end_pfn)) {
181 struct dev_pagemap *pgmap, *end_pgmap;
182
183 pgmap = get_dev_pagemap(pfn_t_to_pfn(pfn), NULL);
184 end_pgmap = get_dev_pagemap(pfn_t_to_pfn(end_pfn), NULL);
185 if (pgmap && pgmap == end_pgmap && pgmap->type == MEMORY_DEVICE_FS_DAX
186 && pfn_t_to_page(pfn)->pgmap == pgmap
187 && pfn_t_to_page(end_pfn)->pgmap == pgmap
188 && pfn_t_to_pfn(pfn) == PHYS_PFN(__pa(kaddr))
189 && pfn_t_to_pfn(end_pfn) == PHYS_PFN(__pa(end_kaddr)))
190 dax_enabled = true;
191 put_dev_pagemap(pgmap);
192 put_dev_pagemap(end_pgmap);
193
194 }
195 dax_read_unlock(id);
196
197 if (!dax_enabled) {
198 pr_info("%pg: error: dax support not enabled\n", bdev);
199 return false;
200 }
201 return true;
202 }
203 EXPORT_SYMBOL_GPL(generic_fsdax_supported);
204
dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)205 bool dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
206 int blocksize, sector_t start, sector_t len)
207 {
208 bool ret = false;
209 int id;
210
211 if (!dax_dev)
212 return false;
213
214 id = dax_read_lock();
215 if (dax_alive(dax_dev) && dax_dev->ops->dax_supported)
216 ret = dax_dev->ops->dax_supported(dax_dev, bdev, blocksize,
217 start, len);
218 dax_read_unlock(id);
219 return ret;
220 }
221 EXPORT_SYMBOL_GPL(dax_supported);
222 #endif /* CONFIG_FS_DAX */
223 #endif /* CONFIG_BLOCK */
224
225 enum dax_device_flags {
226 /* !alive + rcu grace period == no new operations / mappings */
227 DAXDEV_ALIVE,
228 /* gate whether dax_flush() calls the low level flush routine */
229 DAXDEV_WRITE_CACHE,
230 /* flag to check if device supports synchronous flush */
231 DAXDEV_SYNC,
232 };
233
234 /**
235 * dax_direct_access() - translate a device pgoff to an absolute pfn
236 * @dax_dev: a dax_device instance representing the logical memory range
237 * @pgoff: offset in pages from the start of the device to translate
238 * @nr_pages: number of consecutive pages caller can handle relative to @pfn
239 * @kaddr: output parameter that returns a virtual address mapping of pfn
240 * @pfn: output parameter that returns an absolute pfn translation of @pgoff
241 *
242 * Return: negative errno if an error occurs, otherwise the number of
243 * pages accessible at the device relative @pgoff.
244 */
dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)245 long dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages,
246 void **kaddr, pfn_t *pfn)
247 {
248 long avail;
249
250 if (!dax_dev)
251 return -EOPNOTSUPP;
252
253 if (!dax_alive(dax_dev))
254 return -ENXIO;
255
256 if (nr_pages < 0)
257 return -EINVAL;
258
259 avail = dax_dev->ops->direct_access(dax_dev, pgoff, nr_pages,
260 kaddr, pfn);
261 if (!avail)
262 return -ERANGE;
263 return min(avail, nr_pages);
264 }
265 EXPORT_SYMBOL_GPL(dax_direct_access);
266
dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)267 size_t dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
268 size_t bytes, struct iov_iter *i)
269 {
270 if (!dax_alive(dax_dev))
271 return 0;
272
273 return dax_dev->ops->copy_from_iter(dax_dev, pgoff, addr, bytes, i);
274 }
275 EXPORT_SYMBOL_GPL(dax_copy_from_iter);
276
dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)277 size_t dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff, void *addr,
278 size_t bytes, struct iov_iter *i)
279 {
280 if (!dax_alive(dax_dev))
281 return 0;
282
283 return dax_dev->ops->copy_to_iter(dax_dev, pgoff, addr, bytes, i);
284 }
285 EXPORT_SYMBOL_GPL(dax_copy_to_iter);
286
dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)287 int dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
288 size_t nr_pages)
289 {
290 if (!dax_alive(dax_dev))
291 return -ENXIO;
292 /*
293 * There are no callers that want to zero more than one page as of now.
294 * Once users are there, this check can be removed after the
295 * device mapper code has been updated to split ranges across targets.
296 */
297 if (nr_pages != 1)
298 return -EIO;
299
300 return dax_dev->ops->zero_page_range(dax_dev, pgoff, nr_pages);
301 }
302 EXPORT_SYMBOL_GPL(dax_zero_page_range);
303
304 #ifdef CONFIG_ARCH_HAS_PMEM_API
305 void arch_wb_cache_pmem(void *addr, size_t size);
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)306 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
307 {
308 if (unlikely(!dax_write_cache_enabled(dax_dev)))
309 return;
310
311 arch_wb_cache_pmem(addr, size);
312 }
313 #else
dax_flush(struct dax_device * dax_dev,void * addr,size_t size)314 void dax_flush(struct dax_device *dax_dev, void *addr, size_t size)
315 {
316 }
317 #endif
318 EXPORT_SYMBOL_GPL(dax_flush);
319
dax_write_cache(struct dax_device * dax_dev,bool wc)320 void dax_write_cache(struct dax_device *dax_dev, bool wc)
321 {
322 if (wc)
323 set_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
324 else
325 clear_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
326 }
327 EXPORT_SYMBOL_GPL(dax_write_cache);
328
dax_write_cache_enabled(struct dax_device * dax_dev)329 bool dax_write_cache_enabled(struct dax_device *dax_dev)
330 {
331 return test_bit(DAXDEV_WRITE_CACHE, &dax_dev->flags);
332 }
333 EXPORT_SYMBOL_GPL(dax_write_cache_enabled);
334
__dax_synchronous(struct dax_device * dax_dev)335 bool __dax_synchronous(struct dax_device *dax_dev)
336 {
337 return test_bit(DAXDEV_SYNC, &dax_dev->flags);
338 }
339 EXPORT_SYMBOL_GPL(__dax_synchronous);
340
__set_dax_synchronous(struct dax_device * dax_dev)341 void __set_dax_synchronous(struct dax_device *dax_dev)
342 {
343 set_bit(DAXDEV_SYNC, &dax_dev->flags);
344 }
345 EXPORT_SYMBOL_GPL(__set_dax_synchronous);
346
dax_alive(struct dax_device * dax_dev)347 bool dax_alive(struct dax_device *dax_dev)
348 {
349 lockdep_assert_held(&dax_srcu);
350 return test_bit(DAXDEV_ALIVE, &dax_dev->flags);
351 }
352 EXPORT_SYMBOL_GPL(dax_alive);
353
354 /*
355 * Note, rcu is not protecting the liveness of dax_dev, rcu is ensuring
356 * that any fault handlers or operations that might have seen
357 * dax_alive(), have completed. Any operations that start after
358 * synchronize_srcu() has run will abort upon seeing !dax_alive().
359 */
kill_dax(struct dax_device * dax_dev)360 void kill_dax(struct dax_device *dax_dev)
361 {
362 if (!dax_dev)
363 return;
364
365 clear_bit(DAXDEV_ALIVE, &dax_dev->flags);
366
367 synchronize_srcu(&dax_srcu);
368
369 spin_lock(&dax_host_lock);
370 hlist_del_init(&dax_dev->list);
371 spin_unlock(&dax_host_lock);
372 }
373 EXPORT_SYMBOL_GPL(kill_dax);
374
run_dax(struct dax_device * dax_dev)375 void run_dax(struct dax_device *dax_dev)
376 {
377 set_bit(DAXDEV_ALIVE, &dax_dev->flags);
378 }
379 EXPORT_SYMBOL_GPL(run_dax);
380
dax_alloc_inode(struct super_block * sb)381 static struct inode *dax_alloc_inode(struct super_block *sb)
382 {
383 struct dax_device *dax_dev;
384 struct inode *inode;
385
386 dax_dev = kmem_cache_alloc(dax_cache, GFP_KERNEL);
387 if (!dax_dev)
388 return NULL;
389
390 inode = &dax_dev->inode;
391 inode->i_rdev = 0;
392 return inode;
393 }
394
to_dax_dev(struct inode * inode)395 static struct dax_device *to_dax_dev(struct inode *inode)
396 {
397 return container_of(inode, struct dax_device, inode);
398 }
399
dax_free_inode(struct inode * inode)400 static void dax_free_inode(struct inode *inode)
401 {
402 struct dax_device *dax_dev = to_dax_dev(inode);
403 kfree(dax_dev->host);
404 dax_dev->host = NULL;
405 if (inode->i_rdev)
406 ida_simple_remove(&dax_minor_ida, iminor(inode));
407 kmem_cache_free(dax_cache, dax_dev);
408 }
409
dax_destroy_inode(struct inode * inode)410 static void dax_destroy_inode(struct inode *inode)
411 {
412 struct dax_device *dax_dev = to_dax_dev(inode);
413 WARN_ONCE(test_bit(DAXDEV_ALIVE, &dax_dev->flags),
414 "kill_dax() must be called before final iput()\n");
415 }
416
417 static const struct super_operations dax_sops = {
418 .statfs = simple_statfs,
419 .alloc_inode = dax_alloc_inode,
420 .destroy_inode = dax_destroy_inode,
421 .free_inode = dax_free_inode,
422 .drop_inode = generic_delete_inode,
423 };
424
dax_init_fs_context(struct fs_context * fc)425 static int dax_init_fs_context(struct fs_context *fc)
426 {
427 struct pseudo_fs_context *ctx = init_pseudo(fc, DAXFS_MAGIC);
428 if (!ctx)
429 return -ENOMEM;
430 ctx->ops = &dax_sops;
431 return 0;
432 }
433
434 static struct file_system_type dax_fs_type = {
435 .name = "dax",
436 .init_fs_context = dax_init_fs_context,
437 .kill_sb = kill_anon_super,
438 };
439
dax_test(struct inode * inode,void * data)440 static int dax_test(struct inode *inode, void *data)
441 {
442 dev_t devt = *(dev_t *) data;
443
444 return inode->i_rdev == devt;
445 }
446
dax_set(struct inode * inode,void * data)447 static int dax_set(struct inode *inode, void *data)
448 {
449 dev_t devt = *(dev_t *) data;
450
451 inode->i_rdev = devt;
452 return 0;
453 }
454
dax_dev_get(dev_t devt)455 static struct dax_device *dax_dev_get(dev_t devt)
456 {
457 struct dax_device *dax_dev;
458 struct inode *inode;
459
460 inode = iget5_locked(dax_superblock, hash_32(devt + DAXFS_MAGIC, 31),
461 dax_test, dax_set, &devt);
462
463 if (!inode)
464 return NULL;
465
466 dax_dev = to_dax_dev(inode);
467 if (inode->i_state & I_NEW) {
468 set_bit(DAXDEV_ALIVE, &dax_dev->flags);
469 inode->i_cdev = &dax_dev->cdev;
470 inode->i_mode = S_IFCHR;
471 inode->i_flags = S_DAX;
472 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
473 unlock_new_inode(inode);
474 }
475
476 return dax_dev;
477 }
478
dax_add_host(struct dax_device * dax_dev,const char * host)479 static void dax_add_host(struct dax_device *dax_dev, const char *host)
480 {
481 int hash;
482
483 /*
484 * Unconditionally init dax_dev since it's coming from a
485 * non-zeroed slab cache
486 */
487 INIT_HLIST_NODE(&dax_dev->list);
488 dax_dev->host = host;
489 if (!host)
490 return;
491
492 hash = dax_host_hash(host);
493 spin_lock(&dax_host_lock);
494 hlist_add_head(&dax_dev->list, &dax_host_list[hash]);
495 spin_unlock(&dax_host_lock);
496 }
497
alloc_dax(void * private,const char * __host,const struct dax_operations * ops,unsigned long flags)498 struct dax_device *alloc_dax(void *private, const char *__host,
499 const struct dax_operations *ops, unsigned long flags)
500 {
501 struct dax_device *dax_dev;
502 const char *host;
503 dev_t devt;
504 int minor;
505
506 if (ops && !ops->zero_page_range) {
507 pr_debug("%s: error: device does not provide dax"
508 " operation zero_page_range()\n",
509 __host ? __host : "Unknown");
510 return ERR_PTR(-EINVAL);
511 }
512
513 host = kstrdup(__host, GFP_KERNEL);
514 if (__host && !host)
515 return ERR_PTR(-ENOMEM);
516
517 minor = ida_simple_get(&dax_minor_ida, 0, MINORMASK+1, GFP_KERNEL);
518 if (minor < 0)
519 goto err_minor;
520
521 devt = MKDEV(MAJOR(dax_devt), minor);
522 dax_dev = dax_dev_get(devt);
523 if (!dax_dev)
524 goto err_dev;
525
526 dax_add_host(dax_dev, host);
527 dax_dev->ops = ops;
528 dax_dev->private = private;
529 if (flags & DAXDEV_F_SYNC)
530 set_dax_synchronous(dax_dev);
531
532 return dax_dev;
533
534 err_dev:
535 ida_simple_remove(&dax_minor_ida, minor);
536 err_minor:
537 kfree(host);
538 return ERR_PTR(-ENOMEM);
539 }
540 EXPORT_SYMBOL_GPL(alloc_dax);
541
put_dax(struct dax_device * dax_dev)542 void put_dax(struct dax_device *dax_dev)
543 {
544 if (!dax_dev)
545 return;
546 iput(&dax_dev->inode);
547 }
548 EXPORT_SYMBOL_GPL(put_dax);
549
550 /**
551 * inode_dax: convert a public inode into its dax_dev
552 * @inode: An inode with i_cdev pointing to a dax_dev
553 *
554 * Note this is not equivalent to to_dax_dev() which is for private
555 * internal use where we know the inode filesystem type == dax_fs_type.
556 */
inode_dax(struct inode * inode)557 struct dax_device *inode_dax(struct inode *inode)
558 {
559 struct cdev *cdev = inode->i_cdev;
560
561 return container_of(cdev, struct dax_device, cdev);
562 }
563 EXPORT_SYMBOL_GPL(inode_dax);
564
dax_inode(struct dax_device * dax_dev)565 struct inode *dax_inode(struct dax_device *dax_dev)
566 {
567 return &dax_dev->inode;
568 }
569 EXPORT_SYMBOL_GPL(dax_inode);
570
dax_get_private(struct dax_device * dax_dev)571 void *dax_get_private(struct dax_device *dax_dev)
572 {
573 if (!test_bit(DAXDEV_ALIVE, &dax_dev->flags))
574 return NULL;
575 return dax_dev->private;
576 }
577 EXPORT_SYMBOL_GPL(dax_get_private);
578
init_once(void * _dax_dev)579 static void init_once(void *_dax_dev)
580 {
581 struct dax_device *dax_dev = _dax_dev;
582 struct inode *inode = &dax_dev->inode;
583
584 memset(dax_dev, 0, sizeof(*dax_dev));
585 inode_init_once(inode);
586 }
587
dax_fs_init(void)588 static int dax_fs_init(void)
589 {
590 int rc;
591
592 dax_cache = kmem_cache_create("dax_cache", sizeof(struct dax_device), 0,
593 (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
594 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
595 init_once);
596 if (!dax_cache)
597 return -ENOMEM;
598
599 dax_mnt = kern_mount(&dax_fs_type);
600 if (IS_ERR(dax_mnt)) {
601 rc = PTR_ERR(dax_mnt);
602 goto err_mount;
603 }
604 dax_superblock = dax_mnt->mnt_sb;
605
606 return 0;
607
608 err_mount:
609 kmem_cache_destroy(dax_cache);
610
611 return rc;
612 }
613
dax_fs_exit(void)614 static void dax_fs_exit(void)
615 {
616 kern_unmount(dax_mnt);
617 kmem_cache_destroy(dax_cache);
618 }
619
dax_core_init(void)620 static int __init dax_core_init(void)
621 {
622 int rc;
623
624 rc = dax_fs_init();
625 if (rc)
626 return rc;
627
628 rc = alloc_chrdev_region(&dax_devt, 0, MINORMASK+1, "dax");
629 if (rc)
630 goto err_chrdev;
631
632 rc = dax_bus_init();
633 if (rc)
634 goto err_bus;
635 return 0;
636
637 err_bus:
638 unregister_chrdev_region(dax_devt, MINORMASK+1);
639 err_chrdev:
640 dax_fs_exit();
641 return 0;
642 }
643
dax_core_exit(void)644 static void __exit dax_core_exit(void)
645 {
646 dax_bus_exit();
647 unregister_chrdev_region(dax_devt, MINORMASK+1);
648 ida_destroy(&dax_minor_ida);
649 dax_fs_exit();
650 }
651
652 MODULE_AUTHOR("Intel Corporation");
653 MODULE_LICENSE("GPL v2");
654 subsys_initcall(dax_core_init);
655 module_exit(dax_core_exit);
656