1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /*
12  * This file implements the functions that access LEB properties and their
13  * categories. LEBs are categorized based on the needs of UBIFS, and the
14  * categories are stored as either heaps or lists to provide a fast way of
15  * finding a LEB in a particular category. For example, UBIFS may need to find
16  * an empty LEB for the journal, or a very dirty LEB for garbage collection.
17  */
18 
19 #ifdef __UBOOT__
20 #include <log.h>
21 #include <malloc.h>
22 #include <linux/err.h>
23 #endif
24 #include "ubifs.h"
25 
26 /**
27  * get_heap_comp_val - get the LEB properties value for heap comparisons.
28  * @lprops: LEB properties
29  * @cat: LEB category
30  */
get_heap_comp_val(struct ubifs_lprops * lprops,int cat)31 static int get_heap_comp_val(struct ubifs_lprops *lprops, int cat)
32 {
33 	switch (cat) {
34 	case LPROPS_FREE:
35 		return lprops->free;
36 	case LPROPS_DIRTY_IDX:
37 		return lprops->free + lprops->dirty;
38 	default:
39 		return lprops->dirty;
40 	}
41 }
42 
43 /**
44  * move_up_lpt_heap - move a new heap entry up as far as possible.
45  * @c: UBIFS file-system description object
46  * @heap: LEB category heap
47  * @lprops: LEB properties to move
48  * @cat: LEB category
49  *
50  * New entries to a heap are added at the bottom and then moved up until the
51  * parent's value is greater.  In the case of LPT's category heaps, the value
52  * is either the amount of free space or the amount of dirty space, depending
53  * on the category.
54  */
move_up_lpt_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,struct ubifs_lprops * lprops,int cat)55 static void move_up_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
56 			     struct ubifs_lprops *lprops, int cat)
57 {
58 	int val1, val2, hpos;
59 
60 	hpos = lprops->hpos;
61 	if (!hpos)
62 		return; /* Already top of the heap */
63 	val1 = get_heap_comp_val(lprops, cat);
64 	/* Compare to parent and, if greater, move up the heap */
65 	do {
66 		int ppos = (hpos - 1) / 2;
67 
68 		val2 = get_heap_comp_val(heap->arr[ppos], cat);
69 		if (val2 >= val1)
70 			return;
71 		/* Greater than parent so move up */
72 		heap->arr[ppos]->hpos = hpos;
73 		heap->arr[hpos] = heap->arr[ppos];
74 		heap->arr[ppos] = lprops;
75 		lprops->hpos = ppos;
76 		hpos = ppos;
77 	} while (hpos);
78 }
79 
80 /**
81  * adjust_lpt_heap - move a changed heap entry up or down the heap.
82  * @c: UBIFS file-system description object
83  * @heap: LEB category heap
84  * @lprops: LEB properties to move
85  * @hpos: heap position of @lprops
86  * @cat: LEB category
87  *
88  * Changed entries in a heap are moved up or down until the parent's value is
89  * greater.  In the case of LPT's category heaps, the value is either the amount
90  * of free space or the amount of dirty space, depending on the category.
91  */
adjust_lpt_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,struct ubifs_lprops * lprops,int hpos,int cat)92 static void adjust_lpt_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap,
93 			    struct ubifs_lprops *lprops, int hpos, int cat)
94 {
95 	int val1, val2, val3, cpos;
96 
97 	val1 = get_heap_comp_val(lprops, cat);
98 	/* Compare to parent and, if greater than parent, move up the heap */
99 	if (hpos) {
100 		int ppos = (hpos - 1) / 2;
101 
102 		val2 = get_heap_comp_val(heap->arr[ppos], cat);
103 		if (val1 > val2) {
104 			/* Greater than parent so move up */
105 			while (1) {
106 				heap->arr[ppos]->hpos = hpos;
107 				heap->arr[hpos] = heap->arr[ppos];
108 				heap->arr[ppos] = lprops;
109 				lprops->hpos = ppos;
110 				hpos = ppos;
111 				if (!hpos)
112 					return;
113 				ppos = (hpos - 1) / 2;
114 				val2 = get_heap_comp_val(heap->arr[ppos], cat);
115 				if (val1 <= val2)
116 					return;
117 				/* Still greater than parent so keep going */
118 			}
119 		}
120 	}
121 
122 	/* Not greater than parent, so compare to children */
123 	while (1) {
124 		/* Compare to left child */
125 		cpos = hpos * 2 + 1;
126 		if (cpos >= heap->cnt)
127 			return;
128 		val2 = get_heap_comp_val(heap->arr[cpos], cat);
129 		if (val1 < val2) {
130 			/* Less than left child, so promote biggest child */
131 			if (cpos + 1 < heap->cnt) {
132 				val3 = get_heap_comp_val(heap->arr[cpos + 1],
133 							 cat);
134 				if (val3 > val2)
135 					cpos += 1; /* Right child is bigger */
136 			}
137 			heap->arr[cpos]->hpos = hpos;
138 			heap->arr[hpos] = heap->arr[cpos];
139 			heap->arr[cpos] = lprops;
140 			lprops->hpos = cpos;
141 			hpos = cpos;
142 			continue;
143 		}
144 		/* Compare to right child */
145 		cpos += 1;
146 		if (cpos >= heap->cnt)
147 			return;
148 		val3 = get_heap_comp_val(heap->arr[cpos], cat);
149 		if (val1 < val3) {
150 			/* Less than right child, so promote right child */
151 			heap->arr[cpos]->hpos = hpos;
152 			heap->arr[hpos] = heap->arr[cpos];
153 			heap->arr[cpos] = lprops;
154 			lprops->hpos = cpos;
155 			hpos = cpos;
156 			continue;
157 		}
158 		return;
159 	}
160 }
161 
162 /**
163  * add_to_lpt_heap - add LEB properties to a LEB category heap.
164  * @c: UBIFS file-system description object
165  * @lprops: LEB properties to add
166  * @cat: LEB category
167  *
168  * This function returns %1 if @lprops is added to the heap for LEB category
169  * @cat, otherwise %0 is returned because the heap is full.
170  */
add_to_lpt_heap(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)171 static int add_to_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops,
172 			   int cat)
173 {
174 	struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
175 
176 	if (heap->cnt >= heap->max_cnt) {
177 		const int b = LPT_HEAP_SZ / 2 - 1;
178 		int cpos, val1, val2;
179 
180 		/* Compare to some other LEB on the bottom of heap */
181 		/* Pick a position kind of randomly */
182 		cpos = (((size_t)lprops >> 4) & b) + b;
183 		ubifs_assert(cpos >= b);
184 		ubifs_assert(cpos < LPT_HEAP_SZ);
185 		ubifs_assert(cpos < heap->cnt);
186 
187 		val1 = get_heap_comp_val(lprops, cat);
188 		val2 = get_heap_comp_val(heap->arr[cpos], cat);
189 		if (val1 > val2) {
190 			struct ubifs_lprops *lp;
191 
192 			lp = heap->arr[cpos];
193 			lp->flags &= ~LPROPS_CAT_MASK;
194 			lp->flags |= LPROPS_UNCAT;
195 			list_add(&lp->list, &c->uncat_list);
196 			lprops->hpos = cpos;
197 			heap->arr[cpos] = lprops;
198 			move_up_lpt_heap(c, heap, lprops, cat);
199 			dbg_check_heap(c, heap, cat, lprops->hpos);
200 			return 1; /* Added to heap */
201 		}
202 		dbg_check_heap(c, heap, cat, -1);
203 		return 0; /* Not added to heap */
204 	} else {
205 		lprops->hpos = heap->cnt++;
206 		heap->arr[lprops->hpos] = lprops;
207 		move_up_lpt_heap(c, heap, lprops, cat);
208 		dbg_check_heap(c, heap, cat, lprops->hpos);
209 		return 1; /* Added to heap */
210 	}
211 }
212 
213 /**
214  * remove_from_lpt_heap - remove LEB properties from a LEB category heap.
215  * @c: UBIFS file-system description object
216  * @lprops: LEB properties to remove
217  * @cat: LEB category
218  */
remove_from_lpt_heap(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)219 static void remove_from_lpt_heap(struct ubifs_info *c,
220 				 struct ubifs_lprops *lprops, int cat)
221 {
222 	struct ubifs_lpt_heap *heap;
223 	int hpos = lprops->hpos;
224 
225 	heap = &c->lpt_heap[cat - 1];
226 	ubifs_assert(hpos >= 0 && hpos < heap->cnt);
227 	ubifs_assert(heap->arr[hpos] == lprops);
228 	heap->cnt -= 1;
229 	if (hpos < heap->cnt) {
230 		heap->arr[hpos] = heap->arr[heap->cnt];
231 		heap->arr[hpos]->hpos = hpos;
232 		adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat);
233 	}
234 	dbg_check_heap(c, heap, cat, -1);
235 }
236 
237 /**
238  * lpt_heap_replace - replace lprops in a category heap.
239  * @c: UBIFS file-system description object
240  * @old_lprops: LEB properties to replace
241  * @new_lprops: LEB properties with which to replace
242  * @cat: LEB category
243  *
244  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
245  * and the lprops that the pnode contains.  When that happens, references in
246  * the category heaps to those lprops must be updated to point to the new
247  * lprops.  This function does that.
248  */
lpt_heap_replace(struct ubifs_info * c,struct ubifs_lprops * old_lprops,struct ubifs_lprops * new_lprops,int cat)249 static void lpt_heap_replace(struct ubifs_info *c,
250 			     struct ubifs_lprops *old_lprops,
251 			     struct ubifs_lprops *new_lprops, int cat)
252 {
253 	struct ubifs_lpt_heap *heap;
254 	int hpos = new_lprops->hpos;
255 
256 	heap = &c->lpt_heap[cat - 1];
257 	heap->arr[hpos] = new_lprops;
258 }
259 
260 /**
261  * ubifs_add_to_cat - add LEB properties to a category list or heap.
262  * @c: UBIFS file-system description object
263  * @lprops: LEB properties to add
264  * @cat: LEB category to which to add
265  *
266  * LEB properties are categorized to enable fast find operations.
267  */
ubifs_add_to_cat(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)268 void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops,
269 		      int cat)
270 {
271 	switch (cat) {
272 	case LPROPS_DIRTY:
273 	case LPROPS_DIRTY_IDX:
274 	case LPROPS_FREE:
275 		if (add_to_lpt_heap(c, lprops, cat))
276 			break;
277 		/* No more room on heap so make it un-categorized */
278 		cat = LPROPS_UNCAT;
279 		/* Fall through */
280 	case LPROPS_UNCAT:
281 		list_add(&lprops->list, &c->uncat_list);
282 		break;
283 	case LPROPS_EMPTY:
284 		list_add(&lprops->list, &c->empty_list);
285 		break;
286 	case LPROPS_FREEABLE:
287 		list_add(&lprops->list, &c->freeable_list);
288 		c->freeable_cnt += 1;
289 		break;
290 	case LPROPS_FRDI_IDX:
291 		list_add(&lprops->list, &c->frdi_idx_list);
292 		break;
293 	default:
294 		ubifs_assert(0);
295 	}
296 
297 	lprops->flags &= ~LPROPS_CAT_MASK;
298 	lprops->flags |= cat;
299 	c->in_a_category_cnt += 1;
300 	ubifs_assert(c->in_a_category_cnt <= c->main_lebs);
301 }
302 
303 /**
304  * ubifs_remove_from_cat - remove LEB properties from a category list or heap.
305  * @c: UBIFS file-system description object
306  * @lprops: LEB properties to remove
307  * @cat: LEB category from which to remove
308  *
309  * LEB properties are categorized to enable fast find operations.
310  */
ubifs_remove_from_cat(struct ubifs_info * c,struct ubifs_lprops * lprops,int cat)311 static void ubifs_remove_from_cat(struct ubifs_info *c,
312 				  struct ubifs_lprops *lprops, int cat)
313 {
314 	switch (cat) {
315 	case LPROPS_DIRTY:
316 	case LPROPS_DIRTY_IDX:
317 	case LPROPS_FREE:
318 		remove_from_lpt_heap(c, lprops, cat);
319 		break;
320 	case LPROPS_FREEABLE:
321 		c->freeable_cnt -= 1;
322 		ubifs_assert(c->freeable_cnt >= 0);
323 		/* Fall through */
324 	case LPROPS_UNCAT:
325 	case LPROPS_EMPTY:
326 	case LPROPS_FRDI_IDX:
327 		ubifs_assert(!list_empty(&lprops->list));
328 		list_del(&lprops->list);
329 		break;
330 	default:
331 		ubifs_assert(0);
332 	}
333 
334 	c->in_a_category_cnt -= 1;
335 	ubifs_assert(c->in_a_category_cnt >= 0);
336 }
337 
338 /**
339  * ubifs_replace_cat - replace lprops in a category list or heap.
340  * @c: UBIFS file-system description object
341  * @old_lprops: LEB properties to replace
342  * @new_lprops: LEB properties with which to replace
343  *
344  * During commit it is sometimes necessary to copy a pnode (see dirty_cow_pnode)
345  * and the lprops that the pnode contains. When that happens, references in
346  * category lists and heaps must be replaced. This function does that.
347  */
ubifs_replace_cat(struct ubifs_info * c,struct ubifs_lprops * old_lprops,struct ubifs_lprops * new_lprops)348 void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops,
349 		       struct ubifs_lprops *new_lprops)
350 {
351 	int cat;
352 
353 	cat = new_lprops->flags & LPROPS_CAT_MASK;
354 	switch (cat) {
355 	case LPROPS_DIRTY:
356 	case LPROPS_DIRTY_IDX:
357 	case LPROPS_FREE:
358 		lpt_heap_replace(c, old_lprops, new_lprops, cat);
359 		break;
360 	case LPROPS_UNCAT:
361 	case LPROPS_EMPTY:
362 	case LPROPS_FREEABLE:
363 	case LPROPS_FRDI_IDX:
364 		list_replace(&old_lprops->list, &new_lprops->list);
365 		break;
366 	default:
367 		ubifs_assert(0);
368 	}
369 }
370 
371 /**
372  * ubifs_ensure_cat - ensure LEB properties are categorized.
373  * @c: UBIFS file-system description object
374  * @lprops: LEB properties
375  *
376  * A LEB may have fallen off of the bottom of a heap, and ended up as
377  * un-categorized even though it has enough space for us now. If that is the
378  * case this function will put the LEB back onto a heap.
379  */
ubifs_ensure_cat(struct ubifs_info * c,struct ubifs_lprops * lprops)380 void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops)
381 {
382 	int cat = lprops->flags & LPROPS_CAT_MASK;
383 
384 	if (cat != LPROPS_UNCAT)
385 		return;
386 	cat = ubifs_categorize_lprops(c, lprops);
387 	if (cat == LPROPS_UNCAT)
388 		return;
389 	ubifs_remove_from_cat(c, lprops, LPROPS_UNCAT);
390 	ubifs_add_to_cat(c, lprops, cat);
391 }
392 
393 /**
394  * ubifs_categorize_lprops - categorize LEB properties.
395  * @c: UBIFS file-system description object
396  * @lprops: LEB properties to categorize
397  *
398  * LEB properties are categorized to enable fast find operations. This function
399  * returns the LEB category to which the LEB properties belong. Note however
400  * that if the LEB category is stored as a heap and the heap is full, the
401  * LEB properties may have their category changed to %LPROPS_UNCAT.
402  */
ubifs_categorize_lprops(const struct ubifs_info * c,const struct ubifs_lprops * lprops)403 int ubifs_categorize_lprops(const struct ubifs_info *c,
404 			    const struct ubifs_lprops *lprops)
405 {
406 	if (lprops->flags & LPROPS_TAKEN)
407 		return LPROPS_UNCAT;
408 
409 	if (lprops->free == c->leb_size) {
410 		ubifs_assert(!(lprops->flags & LPROPS_INDEX));
411 		return LPROPS_EMPTY;
412 	}
413 
414 	if (lprops->free + lprops->dirty == c->leb_size) {
415 		if (lprops->flags & LPROPS_INDEX)
416 			return LPROPS_FRDI_IDX;
417 		else
418 			return LPROPS_FREEABLE;
419 	}
420 
421 	if (lprops->flags & LPROPS_INDEX) {
422 		if (lprops->dirty + lprops->free >= c->min_idx_node_sz)
423 			return LPROPS_DIRTY_IDX;
424 	} else {
425 		if (lprops->dirty >= c->dead_wm &&
426 		    lprops->dirty > lprops->free)
427 			return LPROPS_DIRTY;
428 		if (lprops->free > 0)
429 			return LPROPS_FREE;
430 	}
431 
432 	return LPROPS_UNCAT;
433 }
434 
435 /**
436  * change_category - change LEB properties category.
437  * @c: UBIFS file-system description object
438  * @lprops: LEB properties to re-categorize
439  *
440  * LEB properties are categorized to enable fast find operations. When the LEB
441  * properties change they must be re-categorized.
442  */
change_category(struct ubifs_info * c,struct ubifs_lprops * lprops)443 static void change_category(struct ubifs_info *c, struct ubifs_lprops *lprops)
444 {
445 	int old_cat = lprops->flags & LPROPS_CAT_MASK;
446 	int new_cat = ubifs_categorize_lprops(c, lprops);
447 
448 	if (old_cat == new_cat) {
449 		struct ubifs_lpt_heap *heap;
450 
451 		/* lprops on a heap now must be moved up or down */
452 		if (new_cat < 1 || new_cat > LPROPS_HEAP_CNT)
453 			return; /* Not on a heap */
454 		heap = &c->lpt_heap[new_cat - 1];
455 		adjust_lpt_heap(c, heap, lprops, lprops->hpos, new_cat);
456 	} else {
457 		ubifs_remove_from_cat(c, lprops, old_cat);
458 		ubifs_add_to_cat(c, lprops, new_cat);
459 	}
460 }
461 
462 /**
463  * ubifs_calc_dark - calculate LEB dark space size.
464  * @c: the UBIFS file-system description object
465  * @spc: amount of free and dirty space in the LEB
466  *
467  * This function calculates and returns amount of dark space in an LEB which
468  * has @spc bytes of free and dirty space.
469  *
470  * UBIFS is trying to account the space which might not be usable, and this
471  * space is called "dark space". For example, if an LEB has only %512 free
472  * bytes, it is dark space, because it cannot fit a large data node.
473  */
ubifs_calc_dark(const struct ubifs_info * c,int spc)474 int ubifs_calc_dark(const struct ubifs_info *c, int spc)
475 {
476 	ubifs_assert(!(spc & 7));
477 
478 	if (spc < c->dark_wm)
479 		return spc;
480 
481 	/*
482 	 * If we have slightly more space then the dark space watermark, we can
483 	 * anyway safely assume it we'll be able to write a node of the
484 	 * smallest size there.
485 	 */
486 	if (spc - c->dark_wm < MIN_WRITE_SZ)
487 		return spc - MIN_WRITE_SZ;
488 
489 	return c->dark_wm;
490 }
491 
492 /**
493  * is_lprops_dirty - determine if LEB properties are dirty.
494  * @c: the UBIFS file-system description object
495  * @lprops: LEB properties to test
496  */
is_lprops_dirty(struct ubifs_info * c,struct ubifs_lprops * lprops)497 static int is_lprops_dirty(struct ubifs_info *c, struct ubifs_lprops *lprops)
498 {
499 	struct ubifs_pnode *pnode;
500 	int pos;
501 
502 	pos = (lprops->lnum - c->main_first) & (UBIFS_LPT_FANOUT - 1);
503 	pnode = (struct ubifs_pnode *)container_of(lprops - pos,
504 						   struct ubifs_pnode,
505 						   lprops[0]);
506 	return !test_bit(COW_CNODE, &pnode->flags) &&
507 	       test_bit(DIRTY_CNODE, &pnode->flags);
508 }
509 
510 /**
511  * ubifs_change_lp - change LEB properties.
512  * @c: the UBIFS file-system description object
513  * @lp: LEB properties to change
514  * @free: new free space amount
515  * @dirty: new dirty space amount
516  * @flags: new flags
517  * @idx_gc_cnt: change to the count of @idx_gc list
518  *
519  * This function changes LEB properties (@free, @dirty or @flag). However, the
520  * property which has the %LPROPS_NC value is not changed. Returns a pointer to
521  * the updated LEB properties on success and a negative error code on failure.
522  *
523  * Note, the LEB properties may have had to be copied (due to COW) and
524  * consequently the pointer returned may not be the same as the pointer
525  * passed.
526  */
ubifs_change_lp(struct ubifs_info * c,const struct ubifs_lprops * lp,int free,int dirty,int flags,int idx_gc_cnt)527 const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c,
528 					   const struct ubifs_lprops *lp,
529 					   int free, int dirty, int flags,
530 					   int idx_gc_cnt)
531 {
532 	/*
533 	 * This is the only function that is allowed to change lprops, so we
534 	 * discard the "const" qualifier.
535 	 */
536 	struct ubifs_lprops *lprops = (struct ubifs_lprops *)lp;
537 
538 	dbg_lp("LEB %d, free %d, dirty %d, flags %d",
539 	       lprops->lnum, free, dirty, flags);
540 
541 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
542 	ubifs_assert(c->lst.empty_lebs >= 0 &&
543 		     c->lst.empty_lebs <= c->main_lebs);
544 	ubifs_assert(c->freeable_cnt >= 0);
545 	ubifs_assert(c->freeable_cnt <= c->main_lebs);
546 	ubifs_assert(c->lst.taken_empty_lebs >= 0);
547 	ubifs_assert(c->lst.taken_empty_lebs <= c->lst.empty_lebs);
548 	ubifs_assert(!(c->lst.total_free & 7) && !(c->lst.total_dirty & 7));
549 	ubifs_assert(!(c->lst.total_dead & 7) && !(c->lst.total_dark & 7));
550 	ubifs_assert(!(c->lst.total_used & 7));
551 	ubifs_assert(free == LPROPS_NC || free >= 0);
552 	ubifs_assert(dirty == LPROPS_NC || dirty >= 0);
553 
554 	if (!is_lprops_dirty(c, lprops)) {
555 		lprops = ubifs_lpt_lookup_dirty(c, lprops->lnum);
556 		if (IS_ERR(lprops))
557 			return lprops;
558 	} else
559 		ubifs_assert(lprops == ubifs_lpt_lookup_dirty(c, lprops->lnum));
560 
561 	ubifs_assert(!(lprops->free & 7) && !(lprops->dirty & 7));
562 
563 	spin_lock(&c->space_lock);
564 	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
565 		c->lst.taken_empty_lebs -= 1;
566 
567 	if (!(lprops->flags & LPROPS_INDEX)) {
568 		int old_spc;
569 
570 		old_spc = lprops->free + lprops->dirty;
571 		if (old_spc < c->dead_wm)
572 			c->lst.total_dead -= old_spc;
573 		else
574 			c->lst.total_dark -= ubifs_calc_dark(c, old_spc);
575 
576 		c->lst.total_used -= c->leb_size - old_spc;
577 	}
578 
579 	if (free != LPROPS_NC) {
580 		free = ALIGN(free, 8);
581 		c->lst.total_free += free - lprops->free;
582 
583 		/* Increase or decrease empty LEBs counter if needed */
584 		if (free == c->leb_size) {
585 			if (lprops->free != c->leb_size)
586 				c->lst.empty_lebs += 1;
587 		} else if (lprops->free == c->leb_size)
588 			c->lst.empty_lebs -= 1;
589 		lprops->free = free;
590 	}
591 
592 	if (dirty != LPROPS_NC) {
593 		dirty = ALIGN(dirty, 8);
594 		c->lst.total_dirty += dirty - lprops->dirty;
595 		lprops->dirty = dirty;
596 	}
597 
598 	if (flags != LPROPS_NC) {
599 		/* Take care about indexing LEBs counter if needed */
600 		if ((lprops->flags & LPROPS_INDEX)) {
601 			if (!(flags & LPROPS_INDEX))
602 				c->lst.idx_lebs -= 1;
603 		} else if (flags & LPROPS_INDEX)
604 			c->lst.idx_lebs += 1;
605 		lprops->flags = flags;
606 	}
607 
608 	if (!(lprops->flags & LPROPS_INDEX)) {
609 		int new_spc;
610 
611 		new_spc = lprops->free + lprops->dirty;
612 		if (new_spc < c->dead_wm)
613 			c->lst.total_dead += new_spc;
614 		else
615 			c->lst.total_dark += ubifs_calc_dark(c, new_spc);
616 
617 		c->lst.total_used += c->leb_size - new_spc;
618 	}
619 
620 	if ((lprops->flags & LPROPS_TAKEN) && lprops->free == c->leb_size)
621 		c->lst.taken_empty_lebs += 1;
622 
623 	change_category(c, lprops);
624 	c->idx_gc_cnt += idx_gc_cnt;
625 	spin_unlock(&c->space_lock);
626 	return lprops;
627 }
628 
629 /**
630  * ubifs_get_lp_stats - get lprops statistics.
631  * @c: UBIFS file-system description object
632  * @st: return statistics
633  */
ubifs_get_lp_stats(struct ubifs_info * c,struct ubifs_lp_stats * lst)634 void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst)
635 {
636 	spin_lock(&c->space_lock);
637 	memcpy(lst, &c->lst, sizeof(struct ubifs_lp_stats));
638 	spin_unlock(&c->space_lock);
639 }
640 
641 /**
642  * ubifs_change_one_lp - change LEB properties.
643  * @c: the UBIFS file-system description object
644  * @lnum: LEB to change properties for
645  * @free: amount of free space
646  * @dirty: amount of dirty space
647  * @flags_set: flags to set
648  * @flags_clean: flags to clean
649  * @idx_gc_cnt: change to the count of idx_gc list
650  *
651  * This function changes properties of LEB @lnum. It is a helper wrapper over
652  * 'ubifs_change_lp()' which hides lprops get/release. The arguments are the
653  * same as in case of 'ubifs_change_lp()'. Returns zero in case of success and
654  * a negative error code in case of failure.
655  */
ubifs_change_one_lp(struct ubifs_info * c,int lnum,int free,int dirty,int flags_set,int flags_clean,int idx_gc_cnt)656 int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
657 			int flags_set, int flags_clean, int idx_gc_cnt)
658 {
659 	int err = 0, flags;
660 	const struct ubifs_lprops *lp;
661 
662 	ubifs_get_lprops(c);
663 
664 	lp = ubifs_lpt_lookup_dirty(c, lnum);
665 	if (IS_ERR(lp)) {
666 		err = PTR_ERR(lp);
667 		goto out;
668 	}
669 
670 	flags = (lp->flags | flags_set) & ~flags_clean;
671 	lp = ubifs_change_lp(c, lp, free, dirty, flags, idx_gc_cnt);
672 	if (IS_ERR(lp))
673 		err = PTR_ERR(lp);
674 
675 out:
676 	ubifs_release_lprops(c);
677 	if (err)
678 		ubifs_err(c, "cannot change properties of LEB %d, error %d",
679 			  lnum, err);
680 	return err;
681 }
682 
683 /**
684  * ubifs_update_one_lp - update LEB properties.
685  * @c: the UBIFS file-system description object
686  * @lnum: LEB to change properties for
687  * @free: amount of free space
688  * @dirty: amount of dirty space to add
689  * @flags_set: flags to set
690  * @flags_clean: flags to clean
691  *
692  * This function is the same as 'ubifs_change_one_lp()' but @dirty is added to
693  * current dirty space, not substitutes it.
694  */
ubifs_update_one_lp(struct ubifs_info * c,int lnum,int free,int dirty,int flags_set,int flags_clean)695 int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty,
696 			int flags_set, int flags_clean)
697 {
698 	int err = 0, flags;
699 	const struct ubifs_lprops *lp;
700 
701 	ubifs_get_lprops(c);
702 
703 	lp = ubifs_lpt_lookup_dirty(c, lnum);
704 	if (IS_ERR(lp)) {
705 		err = PTR_ERR(lp);
706 		goto out;
707 	}
708 
709 	flags = (lp->flags | flags_set) & ~flags_clean;
710 	lp = ubifs_change_lp(c, lp, free, lp->dirty + dirty, flags, 0);
711 	if (IS_ERR(lp))
712 		err = PTR_ERR(lp);
713 
714 out:
715 	ubifs_release_lprops(c);
716 	if (err)
717 		ubifs_err(c, "cannot update properties of LEB %d, error %d",
718 			  lnum, err);
719 	return err;
720 }
721 
722 /**
723  * ubifs_read_one_lp - read LEB properties.
724  * @c: the UBIFS file-system description object
725  * @lnum: LEB to read properties for
726  * @lp: where to store read properties
727  *
728  * This helper function reads properties of a LEB @lnum and stores them in @lp.
729  * Returns zero in case of success and a negative error code in case of
730  * failure.
731  */
ubifs_read_one_lp(struct ubifs_info * c,int lnum,struct ubifs_lprops * lp)732 int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp)
733 {
734 	int err = 0;
735 	const struct ubifs_lprops *lpp;
736 
737 	ubifs_get_lprops(c);
738 
739 	lpp = ubifs_lpt_lookup(c, lnum);
740 	if (IS_ERR(lpp)) {
741 		err = PTR_ERR(lpp);
742 		ubifs_err(c, "cannot read properties of LEB %d, error %d",
743 			  lnum, err);
744 		goto out;
745 	}
746 
747 	memcpy(lp, lpp, sizeof(struct ubifs_lprops));
748 
749 out:
750 	ubifs_release_lprops(c);
751 	return err;
752 }
753 
754 /**
755  * ubifs_fast_find_free - try to find a LEB with free space quickly.
756  * @c: the UBIFS file-system description object
757  *
758  * This function returns LEB properties for a LEB with free space or %NULL if
759  * the function is unable to find a LEB quickly.
760  */
ubifs_fast_find_free(struct ubifs_info * c)761 const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c)
762 {
763 	struct ubifs_lprops *lprops;
764 	struct ubifs_lpt_heap *heap;
765 
766 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
767 
768 	heap = &c->lpt_heap[LPROPS_FREE - 1];
769 	if (heap->cnt == 0)
770 		return NULL;
771 
772 	lprops = heap->arr[0];
773 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
774 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
775 	return lprops;
776 }
777 
778 /**
779  * ubifs_fast_find_empty - try to find an empty LEB quickly.
780  * @c: the UBIFS file-system description object
781  *
782  * This function returns LEB properties for an empty LEB or %NULL if the
783  * function is unable to find an empty LEB quickly.
784  */
ubifs_fast_find_empty(struct ubifs_info * c)785 const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c)
786 {
787 	struct ubifs_lprops *lprops;
788 
789 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
790 
791 	if (list_empty(&c->empty_list))
792 		return NULL;
793 
794 	lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list);
795 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
796 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
797 	ubifs_assert(lprops->free == c->leb_size);
798 	return lprops;
799 }
800 
801 /**
802  * ubifs_fast_find_freeable - try to find a freeable LEB quickly.
803  * @c: the UBIFS file-system description object
804  *
805  * This function returns LEB properties for a freeable LEB or %NULL if the
806  * function is unable to find a freeable LEB quickly.
807  */
ubifs_fast_find_freeable(struct ubifs_info * c)808 const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c)
809 {
810 	struct ubifs_lprops *lprops;
811 
812 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
813 
814 	if (list_empty(&c->freeable_list))
815 		return NULL;
816 
817 	lprops = list_entry(c->freeable_list.next, struct ubifs_lprops, list);
818 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
819 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
820 	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
821 	ubifs_assert(c->freeable_cnt > 0);
822 	return lprops;
823 }
824 
825 /**
826  * ubifs_fast_find_frdi_idx - try to find a freeable index LEB quickly.
827  * @c: the UBIFS file-system description object
828  *
829  * This function returns LEB properties for a freeable index LEB or %NULL if the
830  * function is unable to find a freeable index LEB quickly.
831  */
ubifs_fast_find_frdi_idx(struct ubifs_info * c)832 const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c)
833 {
834 	struct ubifs_lprops *lprops;
835 
836 	ubifs_assert(mutex_is_locked(&c->lp_mutex));
837 
838 	if (list_empty(&c->frdi_idx_list))
839 		return NULL;
840 
841 	lprops = list_entry(c->frdi_idx_list.next, struct ubifs_lprops, list);
842 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
843 	ubifs_assert((lprops->flags & LPROPS_INDEX));
844 	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
845 	return lprops;
846 }
847 
848 /*
849  * Everything below is related to debugging.
850  */
851 
852 /**
853  * dbg_check_cats - check category heaps and lists.
854  * @c: UBIFS file-system description object
855  *
856  * This function returns %0 on success and a negative error code on failure.
857  */
dbg_check_cats(struct ubifs_info * c)858 int dbg_check_cats(struct ubifs_info *c)
859 {
860 	struct ubifs_lprops *lprops;
861 	struct list_head *pos;
862 	int i, cat;
863 
864 	if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
865 		return 0;
866 
867 	list_for_each_entry(lprops, &c->empty_list, list) {
868 		if (lprops->free != c->leb_size) {
869 			ubifs_err(c, "non-empty LEB %d on empty list (free %d dirty %d flags %d)",
870 				  lprops->lnum, lprops->free, lprops->dirty,
871 				  lprops->flags);
872 			return -EINVAL;
873 		}
874 		if (lprops->flags & LPROPS_TAKEN) {
875 			ubifs_err(c, "taken LEB %d on empty list (free %d dirty %d flags %d)",
876 				  lprops->lnum, lprops->free, lprops->dirty,
877 				  lprops->flags);
878 			return -EINVAL;
879 		}
880 	}
881 
882 	i = 0;
883 	list_for_each_entry(lprops, &c->freeable_list, list) {
884 		if (lprops->free + lprops->dirty != c->leb_size) {
885 			ubifs_err(c, "non-freeable LEB %d on freeable list (free %d dirty %d flags %d)",
886 				  lprops->lnum, lprops->free, lprops->dirty,
887 				  lprops->flags);
888 			return -EINVAL;
889 		}
890 		if (lprops->flags & LPROPS_TAKEN) {
891 			ubifs_err(c, "taken LEB %d on freeable list (free %d dirty %d flags %d)",
892 				  lprops->lnum, lprops->free, lprops->dirty,
893 				  lprops->flags);
894 			return -EINVAL;
895 		}
896 		i += 1;
897 	}
898 	if (i != c->freeable_cnt) {
899 		ubifs_err(c, "freeable list count %d expected %d", i,
900 			  c->freeable_cnt);
901 		return -EINVAL;
902 	}
903 
904 	i = 0;
905 	list_for_each(pos, &c->idx_gc)
906 		i += 1;
907 	if (i != c->idx_gc_cnt) {
908 		ubifs_err(c, "idx_gc list count %d expected %d", i,
909 			  c->idx_gc_cnt);
910 		return -EINVAL;
911 	}
912 
913 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
914 		if (lprops->free + lprops->dirty != c->leb_size) {
915 			ubifs_err(c, "non-freeable LEB %d on frdi_idx list (free %d dirty %d flags %d)",
916 				  lprops->lnum, lprops->free, lprops->dirty,
917 				  lprops->flags);
918 			return -EINVAL;
919 		}
920 		if (lprops->flags & LPROPS_TAKEN) {
921 			ubifs_err(c, "taken LEB %d on frdi_idx list (free %d dirty %d flags %d)",
922 				  lprops->lnum, lprops->free, lprops->dirty,
923 				  lprops->flags);
924 			return -EINVAL;
925 		}
926 		if (!(lprops->flags & LPROPS_INDEX)) {
927 			ubifs_err(c, "non-index LEB %d on frdi_idx list (free %d dirty %d flags %d)",
928 				  lprops->lnum, lprops->free, lprops->dirty,
929 				  lprops->flags);
930 			return -EINVAL;
931 		}
932 	}
933 
934 	for (cat = 1; cat <= LPROPS_HEAP_CNT; cat++) {
935 		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
936 
937 		for (i = 0; i < heap->cnt; i++) {
938 			lprops = heap->arr[i];
939 			if (!lprops) {
940 				ubifs_err(c, "null ptr in LPT heap cat %d", cat);
941 				return -EINVAL;
942 			}
943 			if (lprops->hpos != i) {
944 				ubifs_err(c, "bad ptr in LPT heap cat %d", cat);
945 				return -EINVAL;
946 			}
947 			if (lprops->flags & LPROPS_TAKEN) {
948 				ubifs_err(c, "taken LEB in LPT heap cat %d", cat);
949 				return -EINVAL;
950 			}
951 		}
952 	}
953 
954 	return 0;
955 }
956 
dbg_check_heap(struct ubifs_info * c,struct ubifs_lpt_heap * heap,int cat,int add_pos)957 void dbg_check_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat,
958 		    int add_pos)
959 {
960 	int i = 0, j, err = 0;
961 
962 	if (!dbg_is_chk_gen(c) && !dbg_is_chk_lprops(c))
963 		return;
964 
965 	for (i = 0; i < heap->cnt; i++) {
966 		struct ubifs_lprops *lprops = heap->arr[i];
967 		struct ubifs_lprops *lp;
968 
969 		if (i != add_pos)
970 			if ((lprops->flags & LPROPS_CAT_MASK) != cat) {
971 				err = 1;
972 				goto out;
973 			}
974 		if (lprops->hpos != i) {
975 			err = 2;
976 			goto out;
977 		}
978 		lp = ubifs_lpt_lookup(c, lprops->lnum);
979 		if (IS_ERR(lp)) {
980 			err = 3;
981 			goto out;
982 		}
983 		if (lprops != lp) {
984 			ubifs_err(c, "lprops %zx lp %zx lprops->lnum %d lp->lnum %d",
985 				  (size_t)lprops, (size_t)lp, lprops->lnum,
986 				  lp->lnum);
987 			err = 4;
988 			goto out;
989 		}
990 		for (j = 0; j < i; j++) {
991 			lp = heap->arr[j];
992 			if (lp == lprops) {
993 				err = 5;
994 				goto out;
995 			}
996 			if (lp->lnum == lprops->lnum) {
997 				err = 6;
998 				goto out;
999 			}
1000 		}
1001 	}
1002 out:
1003 	if (err) {
1004 		ubifs_err(c, "failed cat %d hpos %d err %d", cat, i, err);
1005 		dump_stack();
1006 		ubifs_dump_heap(c, heap, cat);
1007 	}
1008 }
1009 
1010 /**
1011  * scan_check_cb - scan callback.
1012  * @c: the UBIFS file-system description object
1013  * @lp: LEB properties to scan
1014  * @in_tree: whether the LEB properties are in main memory
1015  * @lst: lprops statistics to update
1016  *
1017  * This function returns a code that indicates whether the scan should continue
1018  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
1019  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
1020  * (%LPT_SCAN_STOP).
1021  */
scan_check_cb(struct ubifs_info * c,const struct ubifs_lprops * lp,int in_tree,struct ubifs_lp_stats * lst)1022 static int scan_check_cb(struct ubifs_info *c,
1023 			 const struct ubifs_lprops *lp, int in_tree,
1024 			 struct ubifs_lp_stats *lst)
1025 {
1026 	struct ubifs_scan_leb *sleb;
1027 	struct ubifs_scan_node *snod;
1028 	int cat, lnum = lp->lnum, is_idx = 0, used = 0, free, dirty, ret;
1029 	void *buf = NULL;
1030 
1031 	cat = lp->flags & LPROPS_CAT_MASK;
1032 	if (cat != LPROPS_UNCAT) {
1033 		cat = ubifs_categorize_lprops(c, lp);
1034 		if (cat != (lp->flags & LPROPS_CAT_MASK)) {
1035 			ubifs_err(c, "bad LEB category %d expected %d",
1036 				  (lp->flags & LPROPS_CAT_MASK), cat);
1037 			return -EINVAL;
1038 		}
1039 	}
1040 
1041 	/* Check lp is on its category list (if it has one) */
1042 	if (in_tree) {
1043 		struct list_head *list = NULL;
1044 
1045 		switch (cat) {
1046 		case LPROPS_EMPTY:
1047 			list = &c->empty_list;
1048 			break;
1049 		case LPROPS_FREEABLE:
1050 			list = &c->freeable_list;
1051 			break;
1052 		case LPROPS_FRDI_IDX:
1053 			list = &c->frdi_idx_list;
1054 			break;
1055 		case LPROPS_UNCAT:
1056 			list = &c->uncat_list;
1057 			break;
1058 		}
1059 		if (list) {
1060 			struct ubifs_lprops *lprops;
1061 			int found = 0;
1062 
1063 			list_for_each_entry(lprops, list, list) {
1064 				if (lprops == lp) {
1065 					found = 1;
1066 					break;
1067 				}
1068 			}
1069 			if (!found) {
1070 				ubifs_err(c, "bad LPT list (category %d)", cat);
1071 				return -EINVAL;
1072 			}
1073 		}
1074 	}
1075 
1076 	/* Check lp is on its category heap (if it has one) */
1077 	if (in_tree && cat > 0 && cat <= LPROPS_HEAP_CNT) {
1078 		struct ubifs_lpt_heap *heap = &c->lpt_heap[cat - 1];
1079 
1080 		if ((lp->hpos != -1 && heap->arr[lp->hpos]->lnum != lnum) ||
1081 		    lp != heap->arr[lp->hpos]) {
1082 			ubifs_err(c, "bad LPT heap (category %d)", cat);
1083 			return -EINVAL;
1084 		}
1085 	}
1086 
1087 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1088 	if (!buf)
1089 		return -ENOMEM;
1090 
1091 	/*
1092 	 * After an unclean unmount, empty and freeable LEBs
1093 	 * may contain garbage - do not scan them.
1094 	 */
1095 	if (lp->free == c->leb_size) {
1096 		lst->empty_lebs += 1;
1097 		lst->total_free += c->leb_size;
1098 		lst->total_dark += ubifs_calc_dark(c, c->leb_size);
1099 		return LPT_SCAN_CONTINUE;
1100 	}
1101 	if (lp->free + lp->dirty == c->leb_size &&
1102 	    !(lp->flags & LPROPS_INDEX)) {
1103 		lst->total_free  += lp->free;
1104 		lst->total_dirty += lp->dirty;
1105 		lst->total_dark  +=  ubifs_calc_dark(c, c->leb_size);
1106 		return LPT_SCAN_CONTINUE;
1107 	}
1108 
1109 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
1110 	if (IS_ERR(sleb)) {
1111 		ret = PTR_ERR(sleb);
1112 		if (ret == -EUCLEAN) {
1113 			ubifs_dump_lprops(c);
1114 			ubifs_dump_budg(c, &c->bi);
1115 		}
1116 		goto out;
1117 	}
1118 
1119 	is_idx = -1;
1120 	list_for_each_entry(snod, &sleb->nodes, list) {
1121 		int found, level = 0;
1122 
1123 		cond_resched();
1124 
1125 		if (is_idx == -1)
1126 			is_idx = (snod->type == UBIFS_IDX_NODE) ? 1 : 0;
1127 
1128 		if (is_idx && snod->type != UBIFS_IDX_NODE) {
1129 			ubifs_err(c, "indexing node in data LEB %d:%d",
1130 				  lnum, snod->offs);
1131 			goto out_destroy;
1132 		}
1133 
1134 		if (snod->type == UBIFS_IDX_NODE) {
1135 			struct ubifs_idx_node *idx = snod->node;
1136 
1137 			key_read(c, ubifs_idx_key(c, idx), &snod->key);
1138 			level = le16_to_cpu(idx->level);
1139 		}
1140 
1141 		found = ubifs_tnc_has_node(c, &snod->key, level, lnum,
1142 					   snod->offs, is_idx);
1143 		if (found) {
1144 			if (found < 0)
1145 				goto out_destroy;
1146 			used += ALIGN(snod->len, 8);
1147 		}
1148 	}
1149 
1150 	free = c->leb_size - sleb->endpt;
1151 	dirty = sleb->endpt - used;
1152 
1153 	if (free > c->leb_size || free < 0 || dirty > c->leb_size ||
1154 	    dirty < 0) {
1155 		ubifs_err(c, "bad calculated accounting for LEB %d: free %d, dirty %d",
1156 			  lnum, free, dirty);
1157 		goto out_destroy;
1158 	}
1159 
1160 	if (lp->free + lp->dirty == c->leb_size &&
1161 	    free + dirty == c->leb_size)
1162 		if ((is_idx && !(lp->flags & LPROPS_INDEX)) ||
1163 		    (!is_idx && free == c->leb_size) ||
1164 		    lp->free == c->leb_size) {
1165 			/*
1166 			 * Empty or freeable LEBs could contain index
1167 			 * nodes from an uncompleted commit due to an
1168 			 * unclean unmount. Or they could be empty for
1169 			 * the same reason. Or it may simply not have been
1170 			 * unmapped.
1171 			 */
1172 			free = lp->free;
1173 			dirty = lp->dirty;
1174 			is_idx = 0;
1175 		    }
1176 
1177 	if (is_idx && lp->free + lp->dirty == free + dirty &&
1178 	    lnum != c->ihead_lnum) {
1179 		/*
1180 		 * After an unclean unmount, an index LEB could have a different
1181 		 * amount of free space than the value recorded by lprops. That
1182 		 * is because the in-the-gaps method may use free space or
1183 		 * create free space (as a side-effect of using ubi_leb_change
1184 		 * and not writing the whole LEB). The incorrect free space
1185 		 * value is not a problem because the index is only ever
1186 		 * allocated empty LEBs, so there will never be an attempt to
1187 		 * write to the free space at the end of an index LEB - except
1188 		 * by the in-the-gaps method for which it is not a problem.
1189 		 */
1190 		free = lp->free;
1191 		dirty = lp->dirty;
1192 	}
1193 
1194 	if (lp->free != free || lp->dirty != dirty)
1195 		goto out_print;
1196 
1197 	if (is_idx && !(lp->flags & LPROPS_INDEX)) {
1198 		if (free == c->leb_size)
1199 			/* Free but not unmapped LEB, it's fine */
1200 			is_idx = 0;
1201 		else {
1202 			ubifs_err(c, "indexing node without indexing flag");
1203 			goto out_print;
1204 		}
1205 	}
1206 
1207 	if (!is_idx && (lp->flags & LPROPS_INDEX)) {
1208 		ubifs_err(c, "data node with indexing flag");
1209 		goto out_print;
1210 	}
1211 
1212 	if (free == c->leb_size)
1213 		lst->empty_lebs += 1;
1214 
1215 	if (is_idx)
1216 		lst->idx_lebs += 1;
1217 
1218 	if (!(lp->flags & LPROPS_INDEX))
1219 		lst->total_used += c->leb_size - free - dirty;
1220 	lst->total_free += free;
1221 	lst->total_dirty += dirty;
1222 
1223 	if (!(lp->flags & LPROPS_INDEX)) {
1224 		int spc = free + dirty;
1225 
1226 		if (spc < c->dead_wm)
1227 			lst->total_dead += spc;
1228 		else
1229 			lst->total_dark += ubifs_calc_dark(c, spc);
1230 	}
1231 
1232 	ubifs_scan_destroy(sleb);
1233 	vfree(buf);
1234 	return LPT_SCAN_CONTINUE;
1235 
1236 out_print:
1237 	ubifs_err(c, "bad accounting of LEB %d: free %d, dirty %d flags %#x, should be free %d, dirty %d",
1238 		  lnum, lp->free, lp->dirty, lp->flags, free, dirty);
1239 	ubifs_dump_leb(c, lnum);
1240 out_destroy:
1241 	ubifs_scan_destroy(sleb);
1242 	ret = -EINVAL;
1243 out:
1244 	vfree(buf);
1245 	return ret;
1246 }
1247 
1248 /**
1249  * dbg_check_lprops - check all LEB properties.
1250  * @c: UBIFS file-system description object
1251  *
1252  * This function checks all LEB properties and makes sure they are all correct.
1253  * It returns zero if everything is fine, %-EINVAL if there is an inconsistency
1254  * and other negative error codes in case of other errors. This function is
1255  * called while the file system is locked (because of commit start), so no
1256  * additional locking is required. Note that locking the LPT mutex would cause
1257  * a circular lock dependency with the TNC mutex.
1258  */
dbg_check_lprops(struct ubifs_info * c)1259 int dbg_check_lprops(struct ubifs_info *c)
1260 {
1261 	int i, err;
1262 	struct ubifs_lp_stats lst;
1263 
1264 	if (!dbg_is_chk_lprops(c))
1265 		return 0;
1266 
1267 	/*
1268 	 * As we are going to scan the media, the write buffers have to be
1269 	 * synchronized.
1270 	 */
1271 	for (i = 0; i < c->jhead_cnt; i++) {
1272 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1273 		if (err)
1274 			return err;
1275 	}
1276 
1277 	memset(&lst, 0, sizeof(struct ubifs_lp_stats));
1278 	err = ubifs_lpt_scan_nolock(c, c->main_first, c->leb_cnt - 1,
1279 				    (ubifs_lpt_scan_callback)scan_check_cb,
1280 				    &lst);
1281 	if (err && err != -ENOSPC)
1282 		goto out;
1283 
1284 	if (lst.empty_lebs != c->lst.empty_lebs ||
1285 	    lst.idx_lebs != c->lst.idx_lebs ||
1286 	    lst.total_free != c->lst.total_free ||
1287 	    lst.total_dirty != c->lst.total_dirty ||
1288 	    lst.total_used != c->lst.total_used) {
1289 		ubifs_err(c, "bad overall accounting");
1290 		ubifs_err(c, "calculated: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1291 			  lst.empty_lebs, lst.idx_lebs, lst.total_free,
1292 			  lst.total_dirty, lst.total_used);
1293 		ubifs_err(c, "read from lprops: empty_lebs %d, idx_lebs %d, total_free %lld, total_dirty %lld, total_used %lld",
1294 			  c->lst.empty_lebs, c->lst.idx_lebs, c->lst.total_free,
1295 			  c->lst.total_dirty, c->lst.total_used);
1296 		err = -EINVAL;
1297 		goto out;
1298 	}
1299 
1300 	if (lst.total_dead != c->lst.total_dead ||
1301 	    lst.total_dark != c->lst.total_dark) {
1302 		ubifs_err(c, "bad dead/dark space accounting");
1303 		ubifs_err(c, "calculated: total_dead %lld, total_dark %lld",
1304 			  lst.total_dead, lst.total_dark);
1305 		ubifs_err(c, "read from lprops: total_dead %lld, total_dark %lld",
1306 			  c->lst.total_dead, c->lst.total_dark);
1307 		err = -EINVAL;
1308 		goto out;
1309 	}
1310 
1311 	err = dbg_check_cats(c);
1312 out:
1313 	return err;
1314 }
1315