1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include <linux/delay.h>
27
28 #include "dm_services.h"
29 #include "dc.h"
30 #include "dc_bios_types.h"
31 #include "core_types.h"
32 #include "core_status.h"
33 #include "resource.h"
34 #include "dm_helpers.h"
35 #include "dce110_timing_generator.h"
36 #include "dce/dce_hwseq.h"
37 #include "gpio_service_interface.h"
38
39 #include "dce110_compressor.h"
40
41 #include "bios/bios_parser_helper.h"
42 #include "timing_generator.h"
43 #include "mem_input.h"
44 #include "opp.h"
45 #include "ipp.h"
46 #include "transform.h"
47 #include "stream_encoder.h"
48 #include "link_encoder.h"
49 #include "link_enc_cfg.h"
50 #include "link_hwss.h"
51 #include "dc_link_dp.h"
52 #if defined(CONFIG_DRM_AMD_DC_DCN)
53 #include "dccg.h"
54 #endif
55 #include "clock_source.h"
56 #include "clk_mgr.h"
57 #include "abm.h"
58 #include "audio.h"
59 #include "reg_helper.h"
60 #include "panel_cntl.h"
61 #include "inc/link_dpcd.h"
62 #include "dpcd_defs.h"
63 /* include DCE11 register header files */
64 #include "dce/dce_11_0_d.h"
65 #include "dce/dce_11_0_sh_mask.h"
66 #include "custom_float.h"
67
68 #include "atomfirmware.h"
69
70 #include "dcn10/dcn10_hw_sequencer.h"
71
72 #define GAMMA_HW_POINTS_NUM 256
73
74 /*
75 * All values are in milliseconds;
76 * For eDP, after power-up/power/down,
77 * 300/500 msec max. delay from LCDVCC to black video generation
78 */
79 #define PANEL_POWER_UP_TIMEOUT 300
80 #define PANEL_POWER_DOWN_TIMEOUT 500
81 #define HPD_CHECK_INTERVAL 10
82 #define OLED_POST_T7_DELAY 100
83 #define OLED_PRE_T11_DELAY 150
84
85 #define CTX \
86 hws->ctx
87
88 #define DC_LOGGER_INIT()
89
90 #define REG(reg)\
91 hws->regs->reg
92
93 #undef FN
94 #define FN(reg_name, field_name) \
95 hws->shifts->field_name, hws->masks->field_name
96
97 struct dce110_hw_seq_reg_offsets {
98 uint32_t crtc;
99 };
100
101 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
102 {
103 .crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
104 },
105 {
106 .crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
107 },
108 {
109 .crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
110 },
111 {
112 .crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
113 }
114 };
115
116 #define HW_REG_BLND(reg, id)\
117 (reg + reg_offsets[id].blnd)
118
119 #define HW_REG_CRTC(reg, id)\
120 (reg + reg_offsets[id].crtc)
121
122 #define MAX_WATERMARK 0xFFFF
123 #define SAFE_NBP_MARK 0x7FFF
124
125 /*******************************************************************************
126 * Private definitions
127 ******************************************************************************/
128 /***************************PIPE_CONTROL***********************************/
dce110_init_pte(struct dc_context * ctx)129 static void dce110_init_pte(struct dc_context *ctx)
130 {
131 uint32_t addr;
132 uint32_t value = 0;
133 uint32_t chunk_int = 0;
134 uint32_t chunk_mul = 0;
135
136 addr = mmUNP_DVMM_PTE_CONTROL;
137 value = dm_read_reg(ctx, addr);
138
139 set_reg_field_value(
140 value,
141 0,
142 DVMM_PTE_CONTROL,
143 DVMM_USE_SINGLE_PTE);
144
145 set_reg_field_value(
146 value,
147 1,
148 DVMM_PTE_CONTROL,
149 DVMM_PTE_BUFFER_MODE0);
150
151 set_reg_field_value(
152 value,
153 1,
154 DVMM_PTE_CONTROL,
155 DVMM_PTE_BUFFER_MODE1);
156
157 dm_write_reg(ctx, addr, value);
158
159 addr = mmDVMM_PTE_REQ;
160 value = dm_read_reg(ctx, addr);
161
162 chunk_int = get_reg_field_value(
163 value,
164 DVMM_PTE_REQ,
165 HFLIP_PTEREQ_PER_CHUNK_INT);
166
167 chunk_mul = get_reg_field_value(
168 value,
169 DVMM_PTE_REQ,
170 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
171
172 if (chunk_int != 0x4 || chunk_mul != 0x4) {
173
174 set_reg_field_value(
175 value,
176 255,
177 DVMM_PTE_REQ,
178 MAX_PTEREQ_TO_ISSUE);
179
180 set_reg_field_value(
181 value,
182 4,
183 DVMM_PTE_REQ,
184 HFLIP_PTEREQ_PER_CHUNK_INT);
185
186 set_reg_field_value(
187 value,
188 4,
189 DVMM_PTE_REQ,
190 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
191
192 dm_write_reg(ctx, addr, value);
193 }
194 }
195 /**************************************************************************/
196
enable_display_pipe_clock_gating(struct dc_context * ctx,bool clock_gating)197 static void enable_display_pipe_clock_gating(
198 struct dc_context *ctx,
199 bool clock_gating)
200 {
201 /*TODO*/
202 }
203
dce110_enable_display_power_gating(struct dc * dc,uint8_t controller_id,struct dc_bios * dcb,enum pipe_gating_control power_gating)204 static bool dce110_enable_display_power_gating(
205 struct dc *dc,
206 uint8_t controller_id,
207 struct dc_bios *dcb,
208 enum pipe_gating_control power_gating)
209 {
210 enum bp_result bp_result = BP_RESULT_OK;
211 enum bp_pipe_control_action cntl;
212 struct dc_context *ctx = dc->ctx;
213 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
214
215 if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
216 return true;
217
218 if (power_gating == PIPE_GATING_CONTROL_INIT)
219 cntl = ASIC_PIPE_INIT;
220 else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
221 cntl = ASIC_PIPE_ENABLE;
222 else
223 cntl = ASIC_PIPE_DISABLE;
224
225 if (controller_id == underlay_idx)
226 controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
227
228 if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
229
230 bp_result = dcb->funcs->enable_disp_power_gating(
231 dcb, controller_id + 1, cntl);
232
233 /* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
234 * by default when command table is called
235 *
236 * Bios parser accepts controller_id = 6 as indicative of
237 * underlay pipe in dce110. But we do not support more
238 * than 3.
239 */
240 if (controller_id < CONTROLLER_ID_MAX - 1)
241 dm_write_reg(ctx,
242 HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
243 0);
244 }
245
246 if (power_gating != PIPE_GATING_CONTROL_ENABLE)
247 dce110_init_pte(ctx);
248
249 if (bp_result == BP_RESULT_OK)
250 return true;
251 else
252 return false;
253 }
254
build_prescale_params(struct ipp_prescale_params * prescale_params,const struct dc_plane_state * plane_state)255 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
256 const struct dc_plane_state *plane_state)
257 {
258 prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
259
260 switch (plane_state->format) {
261 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
262 prescale_params->scale = 0x2082;
263 break;
264 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
265 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
266 prescale_params->scale = 0x2020;
267 break;
268 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
269 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
270 prescale_params->scale = 0x2008;
271 break;
272 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
273 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
274 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
275 prescale_params->scale = 0x2000;
276 break;
277 default:
278 ASSERT(false);
279 break;
280 }
281 }
282
283 static bool
dce110_set_input_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_plane_state * plane_state)284 dce110_set_input_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
285 const struct dc_plane_state *plane_state)
286 {
287 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
288 const struct dc_transfer_func *tf = NULL;
289 struct ipp_prescale_params prescale_params = { 0 };
290 bool result = true;
291
292 if (ipp == NULL)
293 return false;
294
295 if (plane_state->in_transfer_func)
296 tf = plane_state->in_transfer_func;
297
298 build_prescale_params(&prescale_params, plane_state);
299 ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
300
301 if (plane_state->gamma_correction &&
302 !plane_state->gamma_correction->is_identity &&
303 dce_use_lut(plane_state->format))
304 ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
305
306 if (tf == NULL) {
307 /* Default case if no input transfer function specified */
308 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
309 } else if (tf->type == TF_TYPE_PREDEFINED) {
310 switch (tf->tf) {
311 case TRANSFER_FUNCTION_SRGB:
312 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
313 break;
314 case TRANSFER_FUNCTION_BT709:
315 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
316 break;
317 case TRANSFER_FUNCTION_LINEAR:
318 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
319 break;
320 case TRANSFER_FUNCTION_PQ:
321 default:
322 result = false;
323 break;
324 }
325 } else if (tf->type == TF_TYPE_BYPASS) {
326 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
327 } else {
328 /*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
329 result = false;
330 }
331
332 return result;
333 }
334
convert_to_custom_float(struct pwl_result_data * rgb_resulted,struct curve_points * arr_points,uint32_t hw_points_num)335 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
336 struct curve_points *arr_points,
337 uint32_t hw_points_num)
338 {
339 struct custom_float_format fmt;
340
341 struct pwl_result_data *rgb = rgb_resulted;
342
343 uint32_t i = 0;
344
345 fmt.exponenta_bits = 6;
346 fmt.mantissa_bits = 12;
347 fmt.sign = true;
348
349 if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
350 &arr_points[0].custom_float_x)) {
351 BREAK_TO_DEBUGGER();
352 return false;
353 }
354
355 if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
356 &arr_points[0].custom_float_offset)) {
357 BREAK_TO_DEBUGGER();
358 return false;
359 }
360
361 if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
362 &arr_points[0].custom_float_slope)) {
363 BREAK_TO_DEBUGGER();
364 return false;
365 }
366
367 fmt.mantissa_bits = 10;
368 fmt.sign = false;
369
370 if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
371 &arr_points[1].custom_float_x)) {
372 BREAK_TO_DEBUGGER();
373 return false;
374 }
375
376 if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
377 &arr_points[1].custom_float_y)) {
378 BREAK_TO_DEBUGGER();
379 return false;
380 }
381
382 if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
383 &arr_points[1].custom_float_slope)) {
384 BREAK_TO_DEBUGGER();
385 return false;
386 }
387
388 fmt.mantissa_bits = 12;
389 fmt.sign = true;
390
391 while (i != hw_points_num) {
392 if (!convert_to_custom_float_format(rgb->red, &fmt,
393 &rgb->red_reg)) {
394 BREAK_TO_DEBUGGER();
395 return false;
396 }
397
398 if (!convert_to_custom_float_format(rgb->green, &fmt,
399 &rgb->green_reg)) {
400 BREAK_TO_DEBUGGER();
401 return false;
402 }
403
404 if (!convert_to_custom_float_format(rgb->blue, &fmt,
405 &rgb->blue_reg)) {
406 BREAK_TO_DEBUGGER();
407 return false;
408 }
409
410 if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
411 &rgb->delta_red_reg)) {
412 BREAK_TO_DEBUGGER();
413 return false;
414 }
415
416 if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
417 &rgb->delta_green_reg)) {
418 BREAK_TO_DEBUGGER();
419 return false;
420 }
421
422 if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
423 &rgb->delta_blue_reg)) {
424 BREAK_TO_DEBUGGER();
425 return false;
426 }
427
428 ++rgb;
429 ++i;
430 }
431
432 return true;
433 }
434
435 #define MAX_LOW_POINT 25
436 #define NUMBER_REGIONS 16
437 #define NUMBER_SW_SEGMENTS 16
438
439 static bool
dce110_translate_regamma_to_hw_format(const struct dc_transfer_func * output_tf,struct pwl_params * regamma_params)440 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
441 struct pwl_params *regamma_params)
442 {
443 struct curve_points *arr_points;
444 struct pwl_result_data *rgb_resulted;
445 struct pwl_result_data *rgb;
446 struct pwl_result_data *rgb_plus_1;
447 struct fixed31_32 y_r;
448 struct fixed31_32 y_g;
449 struct fixed31_32 y_b;
450 struct fixed31_32 y1_min;
451 struct fixed31_32 y3_max;
452
453 int32_t region_start, region_end;
454 uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
455
456 if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
457 return false;
458
459 arr_points = regamma_params->arr_points;
460 rgb_resulted = regamma_params->rgb_resulted;
461 hw_points = 0;
462
463 memset(regamma_params, 0, sizeof(struct pwl_params));
464
465 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
466 /* 16 segments
467 * segments are from 2^-11 to 2^5
468 */
469 region_start = -11;
470 region_end = region_start + NUMBER_REGIONS;
471
472 for (i = 0; i < NUMBER_REGIONS; i++)
473 seg_distr[i] = 4;
474
475 } else {
476 /* 10 segments
477 * segment is from 2^-10 to 2^1
478 * We include an extra segment for range [2^0, 2^1). This is to
479 * ensure that colors with normalized values of 1 don't miss the
480 * LUT.
481 */
482 region_start = -10;
483 region_end = 1;
484
485 seg_distr[0] = 4;
486 seg_distr[1] = 4;
487 seg_distr[2] = 4;
488 seg_distr[3] = 4;
489 seg_distr[4] = 4;
490 seg_distr[5] = 4;
491 seg_distr[6] = 4;
492 seg_distr[7] = 4;
493 seg_distr[8] = 4;
494 seg_distr[9] = 4;
495 seg_distr[10] = 0;
496 seg_distr[11] = -1;
497 seg_distr[12] = -1;
498 seg_distr[13] = -1;
499 seg_distr[14] = -1;
500 seg_distr[15] = -1;
501 }
502
503 for (k = 0; k < 16; k++) {
504 if (seg_distr[k] != -1)
505 hw_points += (1 << seg_distr[k]);
506 }
507
508 j = 0;
509 for (k = 0; k < (region_end - region_start); k++) {
510 increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
511 start_index = (region_start + k + MAX_LOW_POINT) *
512 NUMBER_SW_SEGMENTS;
513 for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
514 i += increment) {
515 if (j == hw_points - 1)
516 break;
517 rgb_resulted[j].red = output_tf->tf_pts.red[i];
518 rgb_resulted[j].green = output_tf->tf_pts.green[i];
519 rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
520 j++;
521 }
522 }
523
524 /* last point */
525 start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
526 rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
527 rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
528 rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
529
530 arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
531 dc_fixpt_from_int(region_start));
532 arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
533 dc_fixpt_from_int(region_end));
534
535 y_r = rgb_resulted[0].red;
536 y_g = rgb_resulted[0].green;
537 y_b = rgb_resulted[0].blue;
538
539 y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
540
541 arr_points[0].y = y1_min;
542 arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
543 arr_points[0].x);
544
545 y_r = rgb_resulted[hw_points - 1].red;
546 y_g = rgb_resulted[hw_points - 1].green;
547 y_b = rgb_resulted[hw_points - 1].blue;
548
549 /* see comment above, m_arrPoints[1].y should be the Y value for the
550 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
551 */
552 y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
553
554 arr_points[1].y = y3_max;
555
556 arr_points[1].slope = dc_fixpt_zero;
557
558 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
559 /* for PQ, we want to have a straight line from last HW X point,
560 * and the slope to be such that we hit 1.0 at 10000 nits.
561 */
562 const struct fixed31_32 end_value = dc_fixpt_from_int(125);
563
564 arr_points[1].slope = dc_fixpt_div(
565 dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
566 dc_fixpt_sub(end_value, arr_points[1].x));
567 }
568
569 regamma_params->hw_points_num = hw_points;
570
571 k = 0;
572 for (i = 1; i < 16; i++) {
573 if (seg_distr[k] != -1) {
574 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
575 regamma_params->arr_curve_points[i].offset =
576 regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
577 }
578 k++;
579 }
580
581 if (seg_distr[k] != -1)
582 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
583
584 rgb = rgb_resulted;
585 rgb_plus_1 = rgb_resulted + 1;
586
587 i = 1;
588
589 while (i != hw_points + 1) {
590 if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
591 rgb_plus_1->red = rgb->red;
592 if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
593 rgb_plus_1->green = rgb->green;
594 if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
595 rgb_plus_1->blue = rgb->blue;
596
597 rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
598 rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
599 rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
600
601 ++rgb_plus_1;
602 ++rgb;
603 ++i;
604 }
605
606 convert_to_custom_float(rgb_resulted, arr_points, hw_points);
607
608 return true;
609 }
610
611 static bool
dce110_set_output_transfer_func(struct dc * dc,struct pipe_ctx * pipe_ctx,const struct dc_stream_state * stream)612 dce110_set_output_transfer_func(struct dc *dc, struct pipe_ctx *pipe_ctx,
613 const struct dc_stream_state *stream)
614 {
615 struct transform *xfm = pipe_ctx->plane_res.xfm;
616
617 xfm->funcs->opp_power_on_regamma_lut(xfm, true);
618 xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
619
620 if (stream->out_transfer_func &&
621 stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
622 stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
623 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
624 } else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
625 &xfm->regamma_params)) {
626 xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
627 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
628 } else {
629 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
630 }
631
632 xfm->funcs->opp_power_on_regamma_lut(xfm, false);
633
634 return true;
635 }
636
dce110_update_info_frame(struct pipe_ctx * pipe_ctx)637 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
638 {
639 bool is_hdmi_tmds;
640 bool is_dp;
641
642 ASSERT(pipe_ctx->stream);
643
644 if (pipe_ctx->stream_res.stream_enc == NULL)
645 return; /* this is not root pipe */
646
647 is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
648 is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
649
650 if (!is_hdmi_tmds && !is_dp)
651 return;
652
653 if (is_hdmi_tmds)
654 pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
655 pipe_ctx->stream_res.stream_enc,
656 &pipe_ctx->stream_res.encoder_info_frame);
657 else
658 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
659 pipe_ctx->stream_res.stream_enc,
660 &pipe_ctx->stream_res.encoder_info_frame);
661 }
662
dce110_enable_stream(struct pipe_ctx * pipe_ctx)663 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
664 {
665 enum dc_lane_count lane_count =
666 pipe_ctx->stream->link->cur_link_settings.lane_count;
667 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
668 struct dc_link *link = pipe_ctx->stream->link;
669 const struct dc *dc = link->dc;
670
671 uint32_t active_total_with_borders;
672 uint32_t early_control = 0;
673 struct timing_generator *tg = pipe_ctx->stream_res.tg;
674
675 /* For MST, there are multiply stream go to only one link.
676 * connect DIG back_end to front_end while enable_stream and
677 * disconnect them during disable_stream
678 * BY this, it is logic clean to separate stream and link */
679 link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
680 pipe_ctx->stream_res.stream_enc->id, true);
681
682 dc->hwss.update_info_frame(pipe_ctx);
683
684 /* enable early control to avoid corruption on DP monitor*/
685 active_total_with_borders =
686 timing->h_addressable
687 + timing->h_border_left
688 + timing->h_border_right;
689
690 if (lane_count != 0)
691 early_control = active_total_with_borders % lane_count;
692
693 if (early_control == 0)
694 early_control = lane_count;
695
696 tg->funcs->set_early_control(tg, early_control);
697
698 /* enable audio only within mode set */
699 if (pipe_ctx->stream_res.audio != NULL) {
700 if (dc_is_dp_signal(pipe_ctx->stream->signal))
701 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
702 }
703
704
705
706
707 }
708
link_transmitter_control(struct dc_bios * bios,struct bp_transmitter_control * cntl)709 static enum bp_result link_transmitter_control(
710 struct dc_bios *bios,
711 struct bp_transmitter_control *cntl)
712 {
713 enum bp_result result;
714
715 result = bios->funcs->transmitter_control(bios, cntl);
716
717 return result;
718 }
719
720 /*
721 * @brief
722 * eDP only.
723 */
dce110_edp_wait_for_hpd_ready(struct dc_link * link,bool power_up)724 void dce110_edp_wait_for_hpd_ready(
725 struct dc_link *link,
726 bool power_up)
727 {
728 struct dc_context *ctx = link->ctx;
729 struct graphics_object_id connector = link->link_enc->connector;
730 struct gpio *hpd;
731 struct dc_sink *sink = link->local_sink;
732 bool edp_hpd_high = false;
733 uint32_t time_elapsed = 0;
734 uint32_t timeout = power_up ?
735 PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
736
737 if (dal_graphics_object_id_get_connector_id(connector)
738 != CONNECTOR_ID_EDP) {
739 BREAK_TO_DEBUGGER();
740 return;
741 }
742
743 if (!power_up)
744 /*
745 * From KV, we will not HPD low after turning off VCC -
746 * instead, we will check the SW timer in power_up().
747 */
748 return;
749
750 /*
751 * When we power on/off the eDP panel,
752 * we need to wait until SENSE bit is high/low.
753 */
754
755 /* obtain HPD */
756 /* TODO what to do with this? */
757 hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
758
759 if (!hpd) {
760 BREAK_TO_DEBUGGER();
761 return;
762 }
763
764 if (sink != NULL) {
765 if (sink->edid_caps.panel_patch.extra_t3_ms > 0) {
766 int extra_t3_in_ms = sink->edid_caps.panel_patch.extra_t3_ms;
767
768 msleep(extra_t3_in_ms);
769 }
770 }
771
772 dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
773
774 /* wait until timeout or panel detected */
775
776 do {
777 uint32_t detected = 0;
778
779 dal_gpio_get_value(hpd, &detected);
780
781 if (!(detected ^ power_up)) {
782 edp_hpd_high = true;
783 break;
784 }
785
786 msleep(HPD_CHECK_INTERVAL);
787
788 time_elapsed += HPD_CHECK_INTERVAL;
789 } while (time_elapsed < timeout);
790
791 dal_gpio_close(hpd);
792
793 dal_gpio_destroy_irq(&hpd);
794
795 if (false == edp_hpd_high) {
796 DC_LOG_ERROR(
797 "%s: wait timed out!\n", __func__);
798 }
799 }
800
dce110_edp_power_control(struct dc_link * link,bool power_up)801 void dce110_edp_power_control(
802 struct dc_link *link,
803 bool power_up)
804 {
805 struct dc_context *ctx = link->ctx;
806 struct bp_transmitter_control cntl = { 0 };
807 enum bp_result bp_result;
808 uint8_t panel_instance;
809
810
811 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
812 != CONNECTOR_ID_EDP) {
813 BREAK_TO_DEBUGGER();
814 return;
815 }
816
817 if (!link->panel_cntl)
818 return;
819 if (power_up !=
820 link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl)) {
821
822 unsigned long long current_ts = dm_get_timestamp(ctx);
823 unsigned long long time_since_edp_poweroff_ms =
824 div64_u64(dm_get_elapse_time_in_ns(
825 ctx,
826 current_ts,
827 link->link_trace.time_stamp.edp_poweroff), 1000000);
828 unsigned long long time_since_edp_poweron_ms =
829 div64_u64(dm_get_elapse_time_in_ns(
830 ctx,
831 current_ts,
832 link->link_trace.time_stamp.edp_poweron), 1000000);
833 DC_LOG_HW_RESUME_S3(
834 "%s: transition: power_up=%d current_ts=%llu edp_poweroff=%llu edp_poweron=%llu time_since_edp_poweroff_ms=%llu time_since_edp_poweron_ms=%llu",
835 __func__,
836 power_up,
837 current_ts,
838 link->link_trace.time_stamp.edp_poweroff,
839 link->link_trace.time_stamp.edp_poweron,
840 time_since_edp_poweroff_ms,
841 time_since_edp_poweron_ms);
842
843 /* Send VBIOS command to prompt eDP panel power */
844 if (power_up) {
845 /* edp requires a min of 500ms from LCDVDD off to on */
846 unsigned long long remaining_min_edp_poweroff_time_ms = 500;
847
848 /* add time defined by a patch, if any (usually patch extra_t12_ms is 0) */
849 if (link->local_sink != NULL)
850 remaining_min_edp_poweroff_time_ms +=
851 link->local_sink->edid_caps.panel_patch.extra_t12_ms;
852
853 /* Adjust remaining_min_edp_poweroff_time_ms if this is not the first time. */
854 if (link->link_trace.time_stamp.edp_poweroff != 0) {
855 if (time_since_edp_poweroff_ms < remaining_min_edp_poweroff_time_ms)
856 remaining_min_edp_poweroff_time_ms =
857 remaining_min_edp_poweroff_time_ms - time_since_edp_poweroff_ms;
858 else
859 remaining_min_edp_poweroff_time_ms = 0;
860 }
861
862 if (remaining_min_edp_poweroff_time_ms) {
863 DC_LOG_HW_RESUME_S3(
864 "%s: remaining_min_edp_poweroff_time_ms=%llu: begin wait.\n",
865 __func__, remaining_min_edp_poweroff_time_ms);
866 msleep(remaining_min_edp_poweroff_time_ms);
867 DC_LOG_HW_RESUME_S3(
868 "%s: remaining_min_edp_poweroff_time_ms=%llu: end wait.\n",
869 __func__, remaining_min_edp_poweroff_time_ms);
870 dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
871 __func__, remaining_min_edp_poweroff_time_ms);
872 } else {
873 DC_LOG_HW_RESUME_S3(
874 "%s: remaining_min_edp_poweroff_time_ms=%llu: no wait required.\n",
875 __func__, remaining_min_edp_poweroff_time_ms);
876 }
877 }
878
879 DC_LOG_HW_RESUME_S3(
880 "%s: BEGIN: Panel Power action: %s\n",
881 __func__, (power_up ? "On":"Off"));
882
883 cntl.action = power_up ?
884 TRANSMITTER_CONTROL_POWER_ON :
885 TRANSMITTER_CONTROL_POWER_OFF;
886 cntl.transmitter = link->link_enc->transmitter;
887 cntl.connector_obj_id = link->link_enc->connector;
888 cntl.coherent = false;
889 cntl.lanes_number = LANE_COUNT_FOUR;
890 cntl.hpd_sel = link->link_enc->hpd_source;
891 panel_instance = link->panel_cntl->inst;
892
893 if (ctx->dc->ctx->dmub_srv &&
894 ctx->dc->debug.dmub_command_table) {
895 if (cntl.action == TRANSMITTER_CONTROL_POWER_ON)
896 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
897 LVTMA_CONTROL_POWER_ON,
898 panel_instance);
899 else
900 bp_result = ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
901 LVTMA_CONTROL_POWER_OFF,
902 panel_instance);
903 }
904
905 bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
906
907 DC_LOG_HW_RESUME_S3(
908 "%s: END: Panel Power action: %s bp_result=%u\n",
909 __func__, (power_up ? "On":"Off"),
910 bp_result);
911
912 if (!power_up)
913 /*save driver power off time stamp*/
914 link->link_trace.time_stamp.edp_poweroff = dm_get_timestamp(ctx);
915 else
916 link->link_trace.time_stamp.edp_poweron = dm_get_timestamp(ctx);
917
918 DC_LOG_HW_RESUME_S3(
919 "%s: updated values: edp_poweroff=%llu edp_poweron=%llu\n",
920 __func__,
921 link->link_trace.time_stamp.edp_poweroff,
922 link->link_trace.time_stamp.edp_poweron);
923
924 if (bp_result != BP_RESULT_OK)
925 DC_LOG_ERROR(
926 "%s: Panel Power bp_result: %d\n",
927 __func__, bp_result);
928 } else {
929 DC_LOG_HW_RESUME_S3(
930 "%s: Skipping Panel Power action: %s\n",
931 __func__, (power_up ? "On":"Off"));
932 }
933 }
934
dce110_edp_wait_for_T12(struct dc_link * link)935 void dce110_edp_wait_for_T12(
936 struct dc_link *link)
937 {
938 struct dc_context *ctx = link->ctx;
939
940 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
941 != CONNECTOR_ID_EDP) {
942 BREAK_TO_DEBUGGER();
943 return;
944 }
945
946 if (!link->panel_cntl)
947 return;
948
949 if (!link->panel_cntl->funcs->is_panel_powered_on(link->panel_cntl) &&
950 link->link_trace.time_stamp.edp_poweroff != 0) {
951 unsigned int t12_duration = 500; // Default T12 as per spec
952 unsigned long long current_ts = dm_get_timestamp(ctx);
953 unsigned long long time_since_edp_poweroff_ms =
954 div64_u64(dm_get_elapse_time_in_ns(
955 ctx,
956 current_ts,
957 link->link_trace.time_stamp.edp_poweroff), 1000000);
958
959 t12_duration += link->local_sink->edid_caps.panel_patch.extra_t12_ms; // Add extra T12
960
961 if (time_since_edp_poweroff_ms < t12_duration)
962 msleep(t12_duration - time_since_edp_poweroff_ms);
963 }
964 }
965
966 /*todo: cloned in stream enc, fix*/
967 /*
968 * @brief
969 * eDP only. Control the backlight of the eDP panel
970 */
dce110_edp_backlight_control(struct dc_link * link,bool enable)971 void dce110_edp_backlight_control(
972 struct dc_link *link,
973 bool enable)
974 {
975 struct dc_context *ctx = link->ctx;
976 struct bp_transmitter_control cntl = { 0 };
977 uint8_t panel_instance;
978
979 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
980 != CONNECTOR_ID_EDP) {
981 BREAK_TO_DEBUGGER();
982 return;
983 }
984
985 if (link->panel_cntl) {
986 bool is_backlight_on = link->panel_cntl->funcs->is_panel_backlight_on(link->panel_cntl);
987
988 if ((enable && is_backlight_on) || (!enable && !is_backlight_on)) {
989 DC_LOG_HW_RESUME_S3(
990 "%s: panel already powered up/off. Do nothing.\n",
991 __func__);
992 return;
993 }
994 }
995
996 /* Send VBIOS command to control eDP panel backlight */
997
998 DC_LOG_HW_RESUME_S3(
999 "%s: backlight action: %s\n",
1000 __func__, (enable ? "On":"Off"));
1001
1002 cntl.action = enable ?
1003 TRANSMITTER_CONTROL_BACKLIGHT_ON :
1004 TRANSMITTER_CONTROL_BACKLIGHT_OFF;
1005
1006 /*cntl.engine_id = ctx->engine;*/
1007 cntl.transmitter = link->link_enc->transmitter;
1008 cntl.connector_obj_id = link->link_enc->connector;
1009 /*todo: unhardcode*/
1010 cntl.lanes_number = LANE_COUNT_FOUR;
1011 cntl.hpd_sel = link->link_enc->hpd_source;
1012 cntl.signal = SIGNAL_TYPE_EDP;
1013
1014 /* For eDP, the following delays might need to be considered
1015 * after link training completed:
1016 * idle period - min. accounts for required BS-Idle pattern,
1017 * max. allows for source frame synchronization);
1018 * 50 msec max. delay from valid video data from source
1019 * to video on dislpay or backlight enable.
1020 *
1021 * Disable the delay for now.
1022 * Enable it in the future if necessary.
1023 */
1024 /* dc_service_sleep_in_milliseconds(50); */
1025 /*edp 1.2*/
1026 panel_instance = link->panel_cntl->inst;
1027
1028 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON) {
1029 if (!link->dc->config.edp_no_power_sequencing)
1030 /*
1031 * Sometimes, DP receiver chip power-controlled externally by an
1032 * Embedded Controller could be treated and used as eDP,
1033 * if it drives mobile display. In this case,
1034 * we shouldn't be doing power-sequencing, hence we can skip
1035 * waiting for T7-ready.
1036 */
1037 edp_receiver_ready_T7(link);
1038 else
1039 DC_LOG_DC("edp_receiver_ready_T7 skipped\n");
1040 }
1041
1042 if (ctx->dc->ctx->dmub_srv &&
1043 ctx->dc->debug.dmub_command_table) {
1044 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
1045 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1046 LVTMA_CONTROL_LCD_BLON,
1047 panel_instance);
1048 else
1049 ctx->dc_bios->funcs->enable_lvtma_control(ctx->dc_bios,
1050 LVTMA_CONTROL_LCD_BLOFF,
1051 panel_instance);
1052 }
1053
1054 link_transmitter_control(ctx->dc_bios, &cntl);
1055
1056 if (enable && link->dpcd_sink_ext_caps.bits.oled)
1057 msleep(OLED_POST_T7_DELAY);
1058
1059 if (link->dpcd_sink_ext_caps.bits.oled ||
1060 link->dpcd_sink_ext_caps.bits.hdr_aux_backlight_control == 1 ||
1061 link->dpcd_sink_ext_caps.bits.sdr_aux_backlight_control == 1)
1062 dc_link_backlight_enable_aux(link, enable);
1063
1064 /*edp 1.2*/
1065 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF) {
1066 if (!link->dc->config.edp_no_power_sequencing)
1067 /*
1068 * Sometimes, DP receiver chip power-controlled externally by an
1069 * Embedded Controller could be treated and used as eDP,
1070 * if it drives mobile display. In this case,
1071 * we shouldn't be doing power-sequencing, hence we can skip
1072 * waiting for T9-ready.
1073 */
1074 edp_add_delay_for_T9(link);
1075 else
1076 DC_LOG_DC("edp_receiver_ready_T9 skipped\n");
1077 }
1078
1079 if (!enable && link->dpcd_sink_ext_caps.bits.oled)
1080 msleep(OLED_PRE_T11_DELAY);
1081 }
1082
dce110_enable_audio_stream(struct pipe_ctx * pipe_ctx)1083 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
1084 {
1085 /* notify audio driver for audio modes of monitor */
1086 struct dc *dc;
1087 struct clk_mgr *clk_mgr;
1088 unsigned int i, num_audio = 1;
1089
1090 if (!pipe_ctx->stream)
1091 return;
1092
1093 dc = pipe_ctx->stream->ctx->dc;
1094 clk_mgr = dc->clk_mgr;
1095
1096 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
1097 return;
1098
1099 if (pipe_ctx->stream_res.audio) {
1100 for (i = 0; i < MAX_PIPES; i++) {
1101 /*current_state not updated yet*/
1102 if (dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
1103 num_audio++;
1104 }
1105
1106 pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1107
1108 if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
1109 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1110 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1111 /* un-mute audio */
1112 /* TODO: audio should be per stream rather than per link */
1113 #if defined(CONFIG_DRM_AMD_DC_DCN)
1114 if (is_dp_128b_132b_signal(pipe_ctx))
1115 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->audio_mute_control(
1116 pipe_ctx->stream_res.hpo_dp_stream_enc, false);
1117 else
1118 pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1119 pipe_ctx->stream_res.stream_enc, false);
1120 #else
1121 pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1122 pipe_ctx->stream_res.stream_enc, false);
1123 #endif
1124 if (pipe_ctx->stream_res.audio)
1125 pipe_ctx->stream_res.audio->enabled = true;
1126 }
1127
1128 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1129 dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_ENABLE_AUDIO_STREAM);
1130 }
1131
dce110_disable_audio_stream(struct pipe_ctx * pipe_ctx)1132 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx)
1133 {
1134 struct dc *dc;
1135 struct clk_mgr *clk_mgr;
1136
1137 if (!pipe_ctx || !pipe_ctx->stream)
1138 return;
1139
1140 dc = pipe_ctx->stream->ctx->dc;
1141 clk_mgr = dc->clk_mgr;
1142
1143 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1144 return;
1145
1146 #if defined(CONFIG_DRM_AMD_DC_DCN)
1147 if (is_dp_128b_132b_signal(pipe_ctx))
1148 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->audio_mute_control(
1149 pipe_ctx->stream_res.hpo_dp_stream_enc, true);
1150 else
1151 pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1152 pipe_ctx->stream_res.stream_enc, true);
1153 #else
1154 pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1155 pipe_ctx->stream_res.stream_enc, true);
1156 #endif
1157 if (pipe_ctx->stream_res.audio) {
1158 pipe_ctx->stream_res.audio->enabled = false;
1159
1160 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1161 #if defined(CONFIG_DRM_AMD_DC_DCN)
1162 if (is_dp_128b_132b_signal(pipe_ctx))
1163 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_disable(
1164 pipe_ctx->stream_res.hpo_dp_stream_enc);
1165 else
1166 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1167 pipe_ctx->stream_res.stream_enc);
1168 #else
1169 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1170 pipe_ctx->stream_res.stream_enc);
1171 #endif
1172 else
1173 pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1174 pipe_ctx->stream_res.stream_enc);
1175
1176 if (clk_mgr->funcs->enable_pme_wa)
1177 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1178 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1179
1180 /* TODO: notify audio driver for if audio modes list changed
1181 * add audio mode list change flag */
1182 /* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1183 * stream->stream_engine_id);
1184 */
1185 }
1186
1187 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1188 dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_DISABLE_AUDIO_STREAM);
1189 }
1190
dce110_disable_stream(struct pipe_ctx * pipe_ctx)1191 void dce110_disable_stream(struct pipe_ctx *pipe_ctx)
1192 {
1193 struct dc_stream_state *stream = pipe_ctx->stream;
1194 struct dc_link *link = stream->link;
1195 struct dc *dc = pipe_ctx->stream->ctx->dc;
1196 struct link_encoder *link_enc = NULL;
1197
1198 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal)) {
1199 pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1200 pipe_ctx->stream_res.stream_enc);
1201 pipe_ctx->stream_res.stream_enc->funcs->hdmi_reset_stream_attribute(
1202 pipe_ctx->stream_res.stream_enc);
1203 }
1204
1205 #if defined(CONFIG_DRM_AMD_DC_DCN)
1206 if (is_dp_128b_132b_signal(pipe_ctx)) {
1207 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->stop_dp_info_packets(
1208 pipe_ctx->stream_res.hpo_dp_stream_enc);
1209 } else if (dc_is_dp_signal(pipe_ctx->stream->signal))
1210 #else
1211 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1212 #endif
1213 pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1214 pipe_ctx->stream_res.stream_enc);
1215
1216 dc->hwss.disable_audio_stream(pipe_ctx);
1217
1218 /* Link encoder may have been dynamically assigned to non-physical display endpoint. */
1219 if (link->ep_type == DISPLAY_ENDPOINT_PHY)
1220 link_enc = link->link_enc;
1221 else if (dc->res_pool->funcs->link_encs_assign)
1222 link_enc = link_enc_cfg_get_link_enc_used_by_link(link->ctx->dc, link);
1223 ASSERT(link_enc);
1224
1225 #if defined(CONFIG_DRM_AMD_DC_DCN)
1226 if (is_dp_128b_132b_signal(pipe_ctx)) {
1227 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->disable(
1228 pipe_ctx->stream_res.hpo_dp_stream_enc);
1229 setup_dp_hpo_stream(pipe_ctx, false);
1230 /* TODO - DP2.0 HW: unmap stream from link encoder here */
1231 } else {
1232 if (link_enc)
1233 link_enc->funcs->connect_dig_be_to_fe(
1234 link_enc,
1235 pipe_ctx->stream_res.stream_enc->id,
1236 false);
1237 }
1238 #else
1239 if (link_enc)
1240 link_enc->funcs->connect_dig_be_to_fe(
1241 link->link_enc,
1242 pipe_ctx->stream_res.stream_enc->id,
1243 false);
1244 #endif
1245 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1246 dp_source_sequence_trace(link, DPCD_SOURCE_SEQ_AFTER_DISCONNECT_DIG_FE_BE);
1247
1248 #if defined(CONFIG_DRM_AMD_DC_DCN)
1249 if (dc->hwseq->funcs.setup_hpo_hw_control && is_dp_128b_132b_signal(pipe_ctx))
1250 dc->hwseq->funcs.setup_hpo_hw_control(dc->hwseq, false);
1251 #endif
1252
1253 }
1254
dce110_unblank_stream(struct pipe_ctx * pipe_ctx,struct dc_link_settings * link_settings)1255 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1256 struct dc_link_settings *link_settings)
1257 {
1258 struct encoder_unblank_param params = { { 0 } };
1259 struct dc_stream_state *stream = pipe_ctx->stream;
1260 struct dc_link *link = stream->link;
1261 struct dce_hwseq *hws = link->dc->hwseq;
1262
1263 /* only 3 items below are used by unblank */
1264 params.timing = pipe_ctx->stream->timing;
1265 params.link_settings.link_rate = link_settings->link_rate;
1266
1267 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1268 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(link, pipe_ctx->stream_res.stream_enc, ¶ms);
1269
1270 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1271 hws->funcs.edp_backlight_control(link, true);
1272 }
1273 }
1274
dce110_blank_stream(struct pipe_ctx * pipe_ctx)1275 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1276 {
1277 struct dc_stream_state *stream = pipe_ctx->stream;
1278 struct dc_link *link = stream->link;
1279 struct dce_hwseq *hws = link->dc->hwseq;
1280
1281 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1282 hws->funcs.edp_backlight_control(link, false);
1283 link->dc->hwss.set_abm_immediate_disable(pipe_ctx);
1284 }
1285
1286 #if defined(CONFIG_DRM_AMD_DC_DCN)
1287 if (is_dp_128b_132b_signal(pipe_ctx)) {
1288 /* TODO - DP2.0 HW: Set ODM mode in dp hpo encoder here */
1289 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_blank(
1290 pipe_ctx->stream_res.hpo_dp_stream_enc);
1291 } else if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1292 #else
1293 if (dc_is_dp_signal(pipe_ctx->stream->signal)) {
1294 #endif
1295 pipe_ctx->stream_res.stream_enc->funcs->dp_blank(link, pipe_ctx->stream_res.stream_enc);
1296
1297 if (!dc_is_embedded_signal(pipe_ctx->stream->signal)) {
1298 /*
1299 * After output is idle pattern some sinks need time to recognize the stream
1300 * has changed or they enter protection state and hang.
1301 */
1302 msleep(60);
1303 } else if (pipe_ctx->stream->signal == SIGNAL_TYPE_EDP)
1304 edp_receiver_ready_T9(link);
1305 }
1306
1307 }
1308
1309
1310 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1311 {
1312 if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1313 pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1314 }
1315
1316 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1317 {
1318 switch (crtc_id) {
1319 case CONTROLLER_ID_D0:
1320 return DTO_SOURCE_ID0;
1321 case CONTROLLER_ID_D1:
1322 return DTO_SOURCE_ID1;
1323 case CONTROLLER_ID_D2:
1324 return DTO_SOURCE_ID2;
1325 case CONTROLLER_ID_D3:
1326 return DTO_SOURCE_ID3;
1327 case CONTROLLER_ID_D4:
1328 return DTO_SOURCE_ID4;
1329 case CONTROLLER_ID_D5:
1330 return DTO_SOURCE_ID5;
1331 default:
1332 return DTO_SOURCE_UNKNOWN;
1333 }
1334 }
1335
1336 static void build_audio_output(
1337 struct dc_state *state,
1338 const struct pipe_ctx *pipe_ctx,
1339 struct audio_output *audio_output)
1340 {
1341 const struct dc_stream_state *stream = pipe_ctx->stream;
1342 audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1343
1344 audio_output->signal = pipe_ctx->stream->signal;
1345
1346 /* audio_crtc_info */
1347
1348 audio_output->crtc_info.h_total =
1349 stream->timing.h_total;
1350
1351 /*
1352 * Audio packets are sent during actual CRTC blank physical signal, we
1353 * need to specify actual active signal portion
1354 */
1355 audio_output->crtc_info.h_active =
1356 stream->timing.h_addressable
1357 + stream->timing.h_border_left
1358 + stream->timing.h_border_right;
1359
1360 audio_output->crtc_info.v_active =
1361 stream->timing.v_addressable
1362 + stream->timing.v_border_top
1363 + stream->timing.v_border_bottom;
1364
1365 audio_output->crtc_info.pixel_repetition = 1;
1366
1367 audio_output->crtc_info.interlaced =
1368 stream->timing.flags.INTERLACE;
1369
1370 audio_output->crtc_info.refresh_rate =
1371 (stream->timing.pix_clk_100hz*100)/
1372 (stream->timing.h_total*stream->timing.v_total);
1373
1374 audio_output->crtc_info.color_depth =
1375 stream->timing.display_color_depth;
1376
1377 audio_output->crtc_info.requested_pixel_clock_100Hz =
1378 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1379
1380 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1381 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz;
1382
1383 /*for HDMI, audio ACR is with deep color ratio factor*/
1384 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal) &&
1385 audio_output->crtc_info.requested_pixel_clock_100Hz ==
1386 (stream->timing.pix_clk_100hz)) {
1387 if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1388 audio_output->crtc_info.requested_pixel_clock_100Hz =
1389 audio_output->crtc_info.requested_pixel_clock_100Hz/2;
1390 audio_output->crtc_info.calculated_pixel_clock_100Hz =
1391 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/2;
1392
1393 }
1394 }
1395
1396 if (state->clk_mgr &&
1397 (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1398 pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST)) {
1399 audio_output->pll_info.dp_dto_source_clock_in_khz =
1400 state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1401 state->clk_mgr);
1402 }
1403
1404 audio_output->pll_info.feed_back_divider =
1405 pipe_ctx->pll_settings.feedback_divider;
1406
1407 audio_output->pll_info.dto_source =
1408 translate_to_dto_source(
1409 pipe_ctx->stream_res.tg->inst + 1);
1410
1411 /* TODO hard code to enable for now. Need get from stream */
1412 audio_output->pll_info.ss_enabled = true;
1413
1414 audio_output->pll_info.ss_percentage =
1415 pipe_ctx->pll_settings.ss_percentage;
1416 }
1417
1418 static void program_scaler(const struct dc *dc,
1419 const struct pipe_ctx *pipe_ctx)
1420 {
1421 struct tg_color color = {0};
1422
1423 #if defined(CONFIG_DRM_AMD_DC_DCN)
1424 /* TOFPGA */
1425 if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1426 return;
1427 #endif
1428
1429 if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1430 get_surface_visual_confirm_color(pipe_ctx, &color);
1431 else
1432 color_space_to_black_color(dc,
1433 pipe_ctx->stream->output_color_space,
1434 &color);
1435
1436 pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1437 pipe_ctx->plane_res.xfm,
1438 pipe_ctx->plane_res.scl_data.lb_params.depth,
1439 &pipe_ctx->stream->bit_depth_params);
1440
1441 if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1442 /*
1443 * The way 420 is packed, 2 channels carry Y component, 1 channel
1444 * alternate between Cb and Cr, so both channels need the pixel
1445 * value for Y
1446 */
1447 if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1448 color.color_r_cr = color.color_g_y;
1449
1450 pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1451 pipe_ctx->stream_res.tg,
1452 &color);
1453 }
1454
1455 pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1456 &pipe_ctx->plane_res.scl_data);
1457 }
1458
1459 static enum dc_status dce110_enable_stream_timing(
1460 struct pipe_ctx *pipe_ctx,
1461 struct dc_state *context,
1462 struct dc *dc)
1463 {
1464 struct dc_stream_state *stream = pipe_ctx->stream;
1465 struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1466 pipe_ctx[pipe_ctx->pipe_idx];
1467 struct tg_color black_color = {0};
1468
1469 if (!pipe_ctx_old->stream) {
1470
1471 /* program blank color */
1472 color_space_to_black_color(dc,
1473 stream->output_color_space, &black_color);
1474 pipe_ctx->stream_res.tg->funcs->set_blank_color(
1475 pipe_ctx->stream_res.tg,
1476 &black_color);
1477
1478 /*
1479 * Must blank CRTC after disabling power gating and before any
1480 * programming, otherwise CRTC will be hung in bad state
1481 */
1482 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1483
1484 if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1485 pipe_ctx->clock_source,
1486 &pipe_ctx->stream_res.pix_clk_params,
1487 &pipe_ctx->pll_settings)) {
1488 BREAK_TO_DEBUGGER();
1489 return DC_ERROR_UNEXPECTED;
1490 }
1491
1492 pipe_ctx->stream_res.tg->funcs->program_timing(
1493 pipe_ctx->stream_res.tg,
1494 &stream->timing,
1495 0,
1496 0,
1497 0,
1498 0,
1499 pipe_ctx->stream->signal,
1500 true);
1501 }
1502
1503 if (!pipe_ctx_old->stream) {
1504 if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1505 pipe_ctx->stream_res.tg)) {
1506 BREAK_TO_DEBUGGER();
1507 return DC_ERROR_UNEXPECTED;
1508 }
1509 }
1510
1511 return DC_OK;
1512 }
1513
1514 static enum dc_status apply_single_controller_ctx_to_hw(
1515 struct pipe_ctx *pipe_ctx,
1516 struct dc_state *context,
1517 struct dc *dc)
1518 {
1519 struct dc_stream_state *stream = pipe_ctx->stream;
1520 struct dc_link *link = stream->link;
1521 struct drr_params params = {0};
1522 unsigned int event_triggers = 0;
1523 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
1524 struct dce_hwseq *hws = dc->hwseq;
1525
1526 if (hws->funcs.disable_stream_gating) {
1527 hws->funcs.disable_stream_gating(dc, pipe_ctx);
1528 }
1529
1530 if (pipe_ctx->stream_res.audio != NULL) {
1531 struct audio_output audio_output;
1532
1533 build_audio_output(context, pipe_ctx, &audio_output);
1534
1535 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1536 #if defined(CONFIG_DRM_AMD_DC_DCN)
1537 if (is_dp_128b_132b_signal(pipe_ctx))
1538 pipe_ctx->stream_res.hpo_dp_stream_enc->funcs->dp_audio_setup(
1539 pipe_ctx->stream_res.hpo_dp_stream_enc,
1540 pipe_ctx->stream_res.audio->inst,
1541 &pipe_ctx->stream->audio_info);
1542 else
1543 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1544 pipe_ctx->stream_res.stream_enc,
1545 pipe_ctx->stream_res.audio->inst,
1546 &pipe_ctx->stream->audio_info);
1547 #else
1548 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1549 pipe_ctx->stream_res.stream_enc,
1550 pipe_ctx->stream_res.audio->inst,
1551 &pipe_ctx->stream->audio_info);
1552 #endif
1553 else
1554 pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1555 pipe_ctx->stream_res.stream_enc,
1556 pipe_ctx->stream_res.audio->inst,
1557 &pipe_ctx->stream->audio_info,
1558 &audio_output.crtc_info);
1559
1560 pipe_ctx->stream_res.audio->funcs->az_configure(
1561 pipe_ctx->stream_res.audio,
1562 pipe_ctx->stream->signal,
1563 &audio_output.crtc_info,
1564 &pipe_ctx->stream->audio_info);
1565 }
1566
1567 #if defined(CONFIG_DRM_AMD_DC_DCN)
1568 /* DCN3.1 FPGA Workaround
1569 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1570 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1571 * function core_link_enable_stream
1572 */
1573 if (!(hws->wa.dp_hpo_and_otg_sequence && is_dp_128b_132b_signal(pipe_ctx)))
1574 #endif
1575 /* */
1576 /* Do not touch stream timing on seamless boot optimization. */
1577 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1578 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1579
1580 if (hws->funcs.setup_vupdate_interrupt)
1581 hws->funcs.setup_vupdate_interrupt(dc, pipe_ctx);
1582
1583 params.vertical_total_min = stream->adjust.v_total_min;
1584 params.vertical_total_max = stream->adjust.v_total_max;
1585 if (pipe_ctx->stream_res.tg->funcs->set_drr)
1586 pipe_ctx->stream_res.tg->funcs->set_drr(
1587 pipe_ctx->stream_res.tg, ¶ms);
1588
1589 // DRR should set trigger event to monitor surface update event
1590 if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1591 event_triggers = 0x80;
1592 /* Event triggers and num frames initialized for DRR, but can be
1593 * later updated for PSR use. Note DRR trigger events are generated
1594 * regardless of whether num frames met.
1595 */
1596 if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1597 pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1598 pipe_ctx->stream_res.tg, event_triggers, 2);
1599
1600 if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1601 pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1602 pipe_ctx->stream_res.stream_enc,
1603 pipe_ctx->stream_res.tg->inst);
1604
1605 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1606 dp_source_sequence_trace(link, DPCD_SOURCE_SEQ_AFTER_CONNECT_DIG_FE_OTG);
1607
1608 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1609 pipe_ctx->stream_res.opp,
1610 COLOR_SPACE_YCBCR601,
1611 stream->timing.display_color_depth,
1612 stream->signal);
1613
1614 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1615 pipe_ctx->stream_res.opp,
1616 &stream->bit_depth_params,
1617 &stream->clamping);
1618 while (odm_pipe) {
1619 odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1620 odm_pipe->stream_res.opp,
1621 COLOR_SPACE_YCBCR601,
1622 stream->timing.display_color_depth,
1623 stream->signal);
1624
1625 odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1626 odm_pipe->stream_res.opp,
1627 &stream->bit_depth_params,
1628 &stream->clamping);
1629 odm_pipe = odm_pipe->next_odm_pipe;
1630 }
1631
1632 if (!stream->dpms_off)
1633 core_link_enable_stream(context, pipe_ctx);
1634
1635 #if defined(CONFIG_DRM_AMD_DC_DCN)
1636 /* DCN3.1 FPGA Workaround
1637 * Need to enable HPO DP Stream Encoder before setting OTG master enable.
1638 * To do so, move calling function enable_stream_timing to only be done AFTER calling
1639 * function core_link_enable_stream
1640 */
1641 if (hws->wa.dp_hpo_and_otg_sequence && is_dp_128b_132b_signal(pipe_ctx)) {
1642 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1643 hws->funcs.enable_stream_timing(pipe_ctx, context, dc);
1644 }
1645 #endif
1646
1647 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
1648
1649 pipe_ctx->stream->link->psr_settings.psr_feature_enabled = false;
1650
1651 return DC_OK;
1652 }
1653
1654 /******************************************************************************/
1655
1656 static void power_down_encoders(struct dc *dc)
1657 {
1658 int i, j;
1659
1660 for (i = 0; i < dc->link_count; i++) {
1661 enum signal_type signal = dc->links[i]->connector_signal;
1662
1663 if ((signal == SIGNAL_TYPE_EDP) ||
1664 (signal == SIGNAL_TYPE_DISPLAY_PORT)) {
1665 if (dc->links[i]->link_enc->funcs->get_dig_frontend &&
1666 dc->links[i]->link_enc->funcs->is_dig_enabled(dc->links[i]->link_enc)) {
1667 unsigned int fe = dc->links[i]->link_enc->funcs->get_dig_frontend(
1668 dc->links[i]->link_enc);
1669
1670 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1671 if (fe == dc->res_pool->stream_enc[j]->id) {
1672 dc->res_pool->stream_enc[j]->funcs->dp_blank(dc->links[i],
1673 dc->res_pool->stream_enc[j]);
1674 break;
1675 }
1676 }
1677 }
1678
1679 if (!dc->links[i]->wa_flags.dp_keep_receiver_powered)
1680 dp_receiver_power_ctrl(dc->links[i], false);
1681 }
1682
1683 if (signal != SIGNAL_TYPE_EDP)
1684 signal = SIGNAL_TYPE_NONE;
1685
1686 if (dc->links[i]->ep_type == DISPLAY_ENDPOINT_PHY)
1687 dc->links[i]->link_enc->funcs->disable_output(
1688 dc->links[i]->link_enc, signal);
1689
1690 dc->links[i]->link_status.link_active = false;
1691 memset(&dc->links[i]->cur_link_settings, 0,
1692 sizeof(dc->links[i]->cur_link_settings));
1693 }
1694 }
1695
1696 static void power_down_controllers(struct dc *dc)
1697 {
1698 int i;
1699
1700 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1701 dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1702 dc->res_pool->timing_generators[i]);
1703 }
1704 }
1705
1706 static void power_down_clock_sources(struct dc *dc)
1707 {
1708 int i;
1709
1710 if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1711 dc->res_pool->dp_clock_source) == false)
1712 dm_error("Failed to power down pll! (dp clk src)\n");
1713
1714 for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1715 if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1716 dc->res_pool->clock_sources[i]) == false)
1717 dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1718 }
1719 }
1720
1721 static void power_down_all_hw_blocks(struct dc *dc)
1722 {
1723 power_down_encoders(dc);
1724
1725 power_down_controllers(dc);
1726
1727 power_down_clock_sources(dc);
1728
1729 if (dc->fbc_compressor)
1730 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1731 }
1732
1733 static void disable_vga_and_power_gate_all_controllers(
1734 struct dc *dc)
1735 {
1736 int i;
1737 struct timing_generator *tg;
1738 struct dc_context *ctx = dc->ctx;
1739
1740 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1741 tg = dc->res_pool->timing_generators[i];
1742
1743 if (tg->funcs->disable_vga)
1744 tg->funcs->disable_vga(tg);
1745 }
1746 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1747 /* Enable CLOCK gating for each pipe BEFORE controller
1748 * powergating. */
1749 enable_display_pipe_clock_gating(ctx,
1750 true);
1751
1752 dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1753 dc->hwss.disable_plane(dc,
1754 &dc->current_state->res_ctx.pipe_ctx[i]);
1755 }
1756 }
1757
1758
1759 static void get_edp_streams(struct dc_state *context,
1760 struct dc_stream_state **edp_streams,
1761 int *edp_stream_num)
1762 {
1763 int i;
1764
1765 *edp_stream_num = 0;
1766 for (i = 0; i < context->stream_count; i++) {
1767 if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1768 edp_streams[*edp_stream_num] = context->streams[i];
1769 if (++(*edp_stream_num) == MAX_NUM_EDP)
1770 return;
1771 }
1772 }
1773 }
1774
1775 static void get_edp_links_with_sink(
1776 struct dc *dc,
1777 struct dc_link **edp_links_with_sink,
1778 int *edp_with_sink_num)
1779 {
1780 int i;
1781
1782 /* check if there is an eDP panel not in use */
1783 *edp_with_sink_num = 0;
1784 for (i = 0; i < dc->link_count; i++) {
1785 if (dc->links[i]->local_sink &&
1786 dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1787 edp_links_with_sink[*edp_with_sink_num] = dc->links[i];
1788 if (++(*edp_with_sink_num) == MAX_NUM_EDP)
1789 return;
1790 }
1791 }
1792 }
1793
1794 /*
1795 * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1796 * 1. Power down all DC HW blocks
1797 * 2. Disable VGA engine on all controllers
1798 * 3. Enable power gating for controller
1799 * 4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1800 */
1801 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1802 {
1803 struct dc_link *edp_links_with_sink[MAX_NUM_EDP];
1804 struct dc_link *edp_links[MAX_NUM_EDP];
1805 struct dc_stream_state *edp_streams[MAX_NUM_EDP];
1806 struct dc_link *edp_link_with_sink = NULL;
1807 struct dc_link *edp_link = NULL;
1808 struct dc_stream_state *edp_stream = NULL;
1809 struct dce_hwseq *hws = dc->hwseq;
1810 int edp_with_sink_num;
1811 int edp_num;
1812 int edp_stream_num;
1813 int i;
1814 bool can_apply_edp_fast_boot = false;
1815 bool can_apply_seamless_boot = false;
1816 bool keep_edp_vdd_on = false;
1817 DC_LOGGER_INIT();
1818
1819
1820 get_edp_links_with_sink(dc, edp_links_with_sink, &edp_with_sink_num);
1821 get_edp_links(dc, edp_links, &edp_num);
1822
1823 if (hws->funcs.init_pipes)
1824 hws->funcs.init_pipes(dc, context);
1825
1826 get_edp_streams(context, edp_streams, &edp_stream_num);
1827
1828 // Check fastboot support, disable on DCE8 because of blank screens
1829 if (edp_num && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1830 dc->ctx->dce_version != DCE_VERSION_8_1 &&
1831 dc->ctx->dce_version != DCE_VERSION_8_3) {
1832 for (i = 0; i < edp_num; i++) {
1833 edp_link = edp_links[i];
1834 // enable fastboot if backend is enabled on eDP
1835 if (edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc)) {
1836 /* Set optimization flag on eDP stream*/
1837 if (edp_stream_num && edp_link->link_status.link_active) {
1838 edp_stream = edp_streams[0];
1839 can_apply_edp_fast_boot = !is_edp_ilr_optimization_required(edp_stream->link, &edp_stream->timing);
1840 edp_stream->apply_edp_fast_boot_optimization = can_apply_edp_fast_boot;
1841 if (can_apply_edp_fast_boot)
1842 DC_LOG_EVENT_LINK_TRAINING("eDP fast boot disabled to optimize link rate\n");
1843
1844 break;
1845 }
1846 }
1847 }
1848 // We are trying to enable eDP, don't power down VDD
1849 if (edp_stream_num)
1850 keep_edp_vdd_on = true;
1851 }
1852
1853 // Check seamless boot support
1854 for (i = 0; i < context->stream_count; i++) {
1855 if (context->streams[i]->apply_seamless_boot_optimization) {
1856 can_apply_seamless_boot = true;
1857 break;
1858 }
1859 }
1860
1861 /* eDP should not have stream in resume from S4 and so even with VBios post
1862 * it should get turned off
1863 */
1864 if (edp_with_sink_num)
1865 edp_link_with_sink = edp_links_with_sink[0];
1866
1867 if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1868 if (edp_link_with_sink && !keep_edp_vdd_on) {
1869 /*turn off backlight before DP_blank and encoder powered down*/
1870 hws->funcs.edp_backlight_control(edp_link_with_sink, false);
1871 }
1872 /*resume from S3, no vbios posting, no need to power down again*/
1873 power_down_all_hw_blocks(dc);
1874 disable_vga_and_power_gate_all_controllers(dc);
1875 if (edp_link_with_sink && !keep_edp_vdd_on)
1876 dc->hwss.edp_power_control(edp_link_with_sink, false);
1877 }
1878 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 1);
1879 }
1880
1881 static uint32_t compute_pstate_blackout_duration(
1882 struct bw_fixed blackout_duration,
1883 const struct dc_stream_state *stream)
1884 {
1885 uint32_t total_dest_line_time_ns;
1886 uint32_t pstate_blackout_duration_ns;
1887
1888 pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1889
1890 total_dest_line_time_ns = 1000000UL *
1891 (stream->timing.h_total * 10) /
1892 stream->timing.pix_clk_100hz +
1893 pstate_blackout_duration_ns;
1894
1895 return total_dest_line_time_ns;
1896 }
1897
1898 static void dce110_set_displaymarks(
1899 const struct dc *dc,
1900 struct dc_state *context)
1901 {
1902 uint8_t i, num_pipes;
1903 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1904
1905 for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1906 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1907 uint32_t total_dest_line_time_ns;
1908
1909 if (pipe_ctx->stream == NULL)
1910 continue;
1911
1912 total_dest_line_time_ns = compute_pstate_blackout_duration(
1913 dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1914 pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1915 pipe_ctx->plane_res.mi,
1916 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1917 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1918 context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1919 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1920 total_dest_line_time_ns);
1921 if (i == underlay_idx) {
1922 num_pipes++;
1923 pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1924 pipe_ctx->plane_res.mi,
1925 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1926 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1927 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1928 total_dest_line_time_ns);
1929 }
1930 num_pipes++;
1931 }
1932 }
1933
1934 void dce110_set_safe_displaymarks(
1935 struct resource_context *res_ctx,
1936 const struct resource_pool *pool)
1937 {
1938 int i;
1939 int underlay_idx = pool->underlay_pipe_index;
1940 struct dce_watermarks max_marks = {
1941 MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1942 struct dce_watermarks nbp_marks = {
1943 SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1944 struct dce_watermarks min_marks = { 0, 0, 0, 0};
1945
1946 for (i = 0; i < MAX_PIPES; i++) {
1947 if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1948 continue;
1949
1950 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1951 res_ctx->pipe_ctx[i].plane_res.mi,
1952 nbp_marks,
1953 max_marks,
1954 min_marks,
1955 max_marks,
1956 MAX_WATERMARK);
1957
1958 if (i == underlay_idx)
1959 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1960 res_ctx->pipe_ctx[i].plane_res.mi,
1961 nbp_marks,
1962 max_marks,
1963 max_marks,
1964 MAX_WATERMARK);
1965
1966 }
1967 }
1968
1969 /*******************************************************************************
1970 * Public functions
1971 ******************************************************************************/
1972
1973 static void set_drr(struct pipe_ctx **pipe_ctx,
1974 int num_pipes, struct dc_crtc_timing_adjust adjust)
1975 {
1976 int i = 0;
1977 struct drr_params params = {0};
1978 // DRR should set trigger event to monitor surface update event
1979 unsigned int event_triggers = 0x80;
1980 // Note DRR trigger events are generated regardless of whether num frames met.
1981 unsigned int num_frames = 2;
1982
1983 params.vertical_total_max = adjust.v_total_max;
1984 params.vertical_total_min = adjust.v_total_min;
1985
1986 /* TODO: If multiple pipes are to be supported, you need
1987 * some GSL stuff. Static screen triggers may be programmed differently
1988 * as well.
1989 */
1990 for (i = 0; i < num_pipes; i++) {
1991 pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1992 pipe_ctx[i]->stream_res.tg, ¶ms);
1993
1994 if (adjust.v_total_max != 0 && adjust.v_total_min != 0)
1995 pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1996 pipe_ctx[i]->stream_res.tg,
1997 event_triggers, num_frames);
1998 }
1999 }
2000
2001 static void get_position(struct pipe_ctx **pipe_ctx,
2002 int num_pipes,
2003 struct crtc_position *position)
2004 {
2005 int i = 0;
2006
2007 /* TODO: handle pipes > 1
2008 */
2009 for (i = 0; i < num_pipes; i++)
2010 pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
2011 }
2012
2013 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
2014 int num_pipes, const struct dc_static_screen_params *params)
2015 {
2016 unsigned int i;
2017 unsigned int triggers = 0;
2018
2019 if (params->triggers.overlay_update)
2020 triggers |= 0x100;
2021 if (params->triggers.surface_update)
2022 triggers |= 0x80;
2023 if (params->triggers.cursor_update)
2024 triggers |= 0x2;
2025 if (params->triggers.force_trigger)
2026 triggers |= 0x1;
2027
2028 if (num_pipes) {
2029 struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
2030
2031 if (dc->fbc_compressor)
2032 triggers |= 0x84;
2033 }
2034
2035 for (i = 0; i < num_pipes; i++)
2036 pipe_ctx[i]->stream_res.tg->funcs->
2037 set_static_screen_control(pipe_ctx[i]->stream_res.tg,
2038 triggers, params->num_frames);
2039 }
2040
2041 /*
2042 * Check if FBC can be enabled
2043 */
2044 static bool should_enable_fbc(struct dc *dc,
2045 struct dc_state *context,
2046 uint32_t *pipe_idx)
2047 {
2048 uint32_t i;
2049 struct pipe_ctx *pipe_ctx = NULL;
2050 struct resource_context *res_ctx = &context->res_ctx;
2051 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
2052
2053
2054 ASSERT(dc->fbc_compressor);
2055
2056 /* FBC memory should be allocated */
2057 if (!dc->ctx->fbc_gpu_addr)
2058 return false;
2059
2060 /* Only supports single display */
2061 if (context->stream_count != 1)
2062 return false;
2063
2064 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2065 if (res_ctx->pipe_ctx[i].stream) {
2066
2067 pipe_ctx = &res_ctx->pipe_ctx[i];
2068
2069 if (!pipe_ctx)
2070 continue;
2071
2072 /* fbc not applicable on underlay pipe */
2073 if (pipe_ctx->pipe_idx != underlay_idx) {
2074 *pipe_idx = i;
2075 break;
2076 }
2077 }
2078 }
2079
2080 if (i == dc->res_pool->pipe_count)
2081 return false;
2082
2083 if (!pipe_ctx->stream->link)
2084 return false;
2085
2086 /* Only supports eDP */
2087 if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
2088 return false;
2089
2090 /* PSR should not be enabled */
2091 if (pipe_ctx->stream->link->psr_settings.psr_feature_enabled)
2092 return false;
2093
2094 /* Nothing to compress */
2095 if (!pipe_ctx->plane_state)
2096 return false;
2097
2098 /* Only for non-linear tiling */
2099 if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2100 return false;
2101
2102 return true;
2103 }
2104
2105 /*
2106 * Enable FBC
2107 */
2108 static void enable_fbc(
2109 struct dc *dc,
2110 struct dc_state *context)
2111 {
2112 uint32_t pipe_idx = 0;
2113
2114 if (should_enable_fbc(dc, context, &pipe_idx)) {
2115 /* Program GRPH COMPRESSED ADDRESS and PITCH */
2116 struct compr_addr_and_pitch_params params = {0, 0, 0};
2117 struct compressor *compr = dc->fbc_compressor;
2118 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2119
2120 params.source_view_width = pipe_ctx->stream->timing.h_addressable;
2121 params.source_view_height = pipe_ctx->stream->timing.v_addressable;
2122 params.inst = pipe_ctx->stream_res.tg->inst;
2123 compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
2124
2125 compr->funcs->surface_address_and_pitch(compr, ¶ms);
2126 compr->funcs->set_fbc_invalidation_triggers(compr, 1);
2127
2128 compr->funcs->enable_fbc(compr, ¶ms);
2129 }
2130 }
2131
2132 static void dce110_reset_hw_ctx_wrap(
2133 struct dc *dc,
2134 struct dc_state *context)
2135 {
2136 int i;
2137
2138 /* Reset old context */
2139 /* look up the targets that have been removed since last commit */
2140 for (i = 0; i < MAX_PIPES; i++) {
2141 struct pipe_ctx *pipe_ctx_old =
2142 &dc->current_state->res_ctx.pipe_ctx[i];
2143 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2144
2145 /* Note: We need to disable output if clock sources change,
2146 * since bios does optimization and doesn't apply if changing
2147 * PHY when not already disabled.
2148 */
2149
2150 /* Skip underlay pipe since it will be handled in commit surface*/
2151 if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
2152 continue;
2153
2154 if (!pipe_ctx->stream ||
2155 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
2156 struct clock_source *old_clk = pipe_ctx_old->clock_source;
2157
2158 /* Disable if new stream is null. O/w, if stream is
2159 * disabled already, no need to disable again.
2160 */
2161 if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off) {
2162 core_link_disable_stream(pipe_ctx_old);
2163
2164 /* free acquired resources*/
2165 if (pipe_ctx_old->stream_res.audio) {
2166 /*disable az_endpoint*/
2167 pipe_ctx_old->stream_res.audio->funcs->
2168 az_disable(pipe_ctx_old->stream_res.audio);
2169
2170 /*free audio*/
2171 if (dc->caps.dynamic_audio == true) {
2172 /*we have to dynamic arbitrate the audio endpoints*/
2173 /*we free the resource, need reset is_audio_acquired*/
2174 update_audio_usage(&dc->current_state->res_ctx, dc->res_pool,
2175 pipe_ctx_old->stream_res.audio, false);
2176 pipe_ctx_old->stream_res.audio = NULL;
2177 }
2178 }
2179 }
2180
2181 pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
2182 if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
2183 dm_error("DC: failed to blank crtc!\n");
2184 BREAK_TO_DEBUGGER();
2185 }
2186 pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
2187 pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
2188 pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
2189
2190 if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
2191 dc->res_pool,
2192 old_clk))
2193 old_clk->funcs->cs_power_down(old_clk);
2194
2195 dc->hwss.disable_plane(dc, pipe_ctx_old);
2196
2197 pipe_ctx_old->stream = NULL;
2198 }
2199 }
2200 }
2201
2202 static void dce110_setup_audio_dto(
2203 struct dc *dc,
2204 struct dc_state *context)
2205 {
2206 int i;
2207
2208 /* program audio wall clock. use HDMI as clock source if HDMI
2209 * audio active. Otherwise, use DP as clock source
2210 * first, loop to find any HDMI audio, if not, loop find DP audio
2211 */
2212 /* Setup audio rate clock source */
2213 /* Issue:
2214 * Audio lag happened on DP monitor when unplug a HDMI monitor
2215 *
2216 * Cause:
2217 * In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
2218 * is set to either dto0 or dto1, audio should work fine.
2219 * In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
2220 * set to dto0 will cause audio lag.
2221 *
2222 * Solution:
2223 * Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
2224 * find first available pipe with audio, setup audio wall DTO per topology
2225 * instead of per pipe.
2226 */
2227 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2228 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2229
2230 if (pipe_ctx->stream == NULL)
2231 continue;
2232
2233 if (pipe_ctx->top_pipe)
2234 continue;
2235 if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
2236 continue;
2237 if (pipe_ctx->stream_res.audio != NULL) {
2238 struct audio_output audio_output;
2239
2240 build_audio_output(context, pipe_ctx, &audio_output);
2241
2242 #if defined(CONFIG_DRM_AMD_DC_DCN)
2243 /* For DCN3.1, audio to HPO FRL encoder is using audio DTBCLK DTO */
2244 if (dc->res_pool->dccg && dc->res_pool->dccg->funcs->set_audio_dtbclk_dto) {
2245 /* disable audio DTBCLK DTO */
2246 dc->res_pool->dccg->funcs->set_audio_dtbclk_dto(
2247 dc->res_pool->dccg, 0);
2248
2249 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2250 pipe_ctx->stream_res.audio,
2251 pipe_ctx->stream->signal,
2252 &audio_output.crtc_info,
2253 &audio_output.pll_info);
2254 } else
2255 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2256 pipe_ctx->stream_res.audio,
2257 pipe_ctx->stream->signal,
2258 &audio_output.crtc_info,
2259 &audio_output.pll_info);
2260 #else
2261 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2262 pipe_ctx->stream_res.audio,
2263 pipe_ctx->stream->signal,
2264 &audio_output.crtc_info,
2265 &audio_output.pll_info);
2266 #endif
2267 break;
2268 }
2269 }
2270
2271 /* no HDMI audio is found, try DP audio */
2272 if (i == dc->res_pool->pipe_count) {
2273 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2274 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2275
2276 if (pipe_ctx->stream == NULL)
2277 continue;
2278
2279 if (pipe_ctx->top_pipe)
2280 continue;
2281
2282 if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2283 continue;
2284
2285 if (pipe_ctx->stream_res.audio != NULL) {
2286 struct audio_output audio_output;
2287
2288 build_audio_output(context, pipe_ctx, &audio_output);
2289
2290 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2291 pipe_ctx->stream_res.audio,
2292 pipe_ctx->stream->signal,
2293 &audio_output.crtc_info,
2294 &audio_output.pll_info);
2295 break;
2296 }
2297 }
2298 }
2299 }
2300
2301 enum dc_status dce110_apply_ctx_to_hw(
2302 struct dc *dc,
2303 struct dc_state *context)
2304 {
2305 struct dce_hwseq *hws = dc->hwseq;
2306 struct dc_bios *dcb = dc->ctx->dc_bios;
2307 enum dc_status status;
2308 int i;
2309
2310 /* Reset old context */
2311 /* look up the targets that have been removed since last commit */
2312 hws->funcs.reset_hw_ctx_wrap(dc, context);
2313
2314 /* Skip applying if no targets */
2315 if (context->stream_count <= 0)
2316 return DC_OK;
2317
2318 /* Apply new context */
2319 dcb->funcs->set_scratch_critical_state(dcb, true);
2320
2321 /* below is for real asic only */
2322 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2323 struct pipe_ctx *pipe_ctx_old =
2324 &dc->current_state->res_ctx.pipe_ctx[i];
2325 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2326
2327 if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2328 continue;
2329
2330 if (pipe_ctx->stream == pipe_ctx_old->stream) {
2331 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2332 dce_crtc_switch_to_clk_src(dc->hwseq,
2333 pipe_ctx->clock_source, i);
2334 continue;
2335 }
2336
2337 hws->funcs.enable_display_power_gating(
2338 dc, i, dc->ctx->dc_bios,
2339 PIPE_GATING_CONTROL_DISABLE);
2340 }
2341
2342 if (dc->fbc_compressor)
2343 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2344
2345 dce110_setup_audio_dto(dc, context);
2346
2347 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2348 struct pipe_ctx *pipe_ctx_old =
2349 &dc->current_state->res_ctx.pipe_ctx[i];
2350 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2351
2352 if (pipe_ctx->stream == NULL)
2353 continue;
2354
2355 if (pipe_ctx->stream == pipe_ctx_old->stream &&
2356 pipe_ctx->stream->link->link_state_valid) {
2357 continue;
2358 }
2359
2360 if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2361 continue;
2362
2363 if (pipe_ctx->top_pipe || pipe_ctx->prev_odm_pipe)
2364 continue;
2365
2366 status = apply_single_controller_ctx_to_hw(
2367 pipe_ctx,
2368 context,
2369 dc);
2370
2371 if (DC_OK != status)
2372 return status;
2373 }
2374
2375 if (dc->fbc_compressor)
2376 enable_fbc(dc, dc->current_state);
2377
2378 dcb->funcs->set_scratch_critical_state(dcb, false);
2379
2380 return DC_OK;
2381 }
2382
2383 /*******************************************************************************
2384 * Front End programming
2385 ******************************************************************************/
2386 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2387 {
2388 struct default_adjustment default_adjust = { 0 };
2389
2390 default_adjust.force_hw_default = false;
2391 default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2392 default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2393 default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2394 default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2395
2396 /* display color depth */
2397 default_adjust.color_depth =
2398 pipe_ctx->stream->timing.display_color_depth;
2399
2400 /* Lb color depth */
2401 default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2402
2403 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2404 pipe_ctx->plane_res.xfm, &default_adjust);
2405 }
2406
2407
2408 /*******************************************************************************
2409 * In order to turn on/off specific surface we will program
2410 * Blender + CRTC
2411 *
2412 * In case that we have two surfaces and they have a different visibility
2413 * we can't turn off the CRTC since it will turn off the entire display
2414 *
2415 * |----------------------------------------------- |
2416 * |bottom pipe|curr pipe | | |
2417 * |Surface |Surface | Blender | CRCT |
2418 * |visibility |visibility | Configuration| |
2419 * |------------------------------------------------|
2420 * | off | off | CURRENT_PIPE | blank |
2421 * | off | on | CURRENT_PIPE | unblank |
2422 * | on | off | OTHER_PIPE | unblank |
2423 * | on | on | BLENDING | unblank |
2424 * -------------------------------------------------|
2425 *
2426 ******************************************************************************/
2427 static void program_surface_visibility(const struct dc *dc,
2428 struct pipe_ctx *pipe_ctx)
2429 {
2430 enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2431 bool blank_target = false;
2432
2433 if (pipe_ctx->bottom_pipe) {
2434
2435 /* For now we are supporting only two pipes */
2436 ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2437
2438 if (pipe_ctx->bottom_pipe->plane_state->visible) {
2439 if (pipe_ctx->plane_state->visible)
2440 blender_mode = BLND_MODE_BLENDING;
2441 else
2442 blender_mode = BLND_MODE_OTHER_PIPE;
2443
2444 } else if (!pipe_ctx->plane_state->visible)
2445 blank_target = true;
2446
2447 } else if (!pipe_ctx->plane_state->visible)
2448 blank_target = true;
2449
2450 dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2451 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2452
2453 }
2454
2455 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2456 {
2457 int i = 0;
2458 struct xfm_grph_csc_adjustment adjust;
2459 memset(&adjust, 0, sizeof(adjust));
2460 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2461
2462
2463 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2464 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2465
2466 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2467 adjust.temperature_matrix[i] =
2468 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2469 }
2470
2471 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2472 }
2473 static void update_plane_addr(const struct dc *dc,
2474 struct pipe_ctx *pipe_ctx)
2475 {
2476 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2477
2478 if (plane_state == NULL)
2479 return;
2480
2481 pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2482 pipe_ctx->plane_res.mi,
2483 &plane_state->address,
2484 plane_state->flip_immediate);
2485
2486 plane_state->status.requested_address = plane_state->address;
2487 }
2488
2489 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2490 {
2491 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2492
2493 if (plane_state == NULL)
2494 return;
2495
2496 plane_state->status.is_flip_pending =
2497 pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2498 pipe_ctx->plane_res.mi);
2499
2500 if (plane_state->status.is_flip_pending && !plane_state->visible)
2501 pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2502
2503 plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2504 if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2505 pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2506 plane_state->status.is_right_eye =\
2507 !pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2508 }
2509 }
2510
2511 void dce110_power_down(struct dc *dc)
2512 {
2513 power_down_all_hw_blocks(dc);
2514 disable_vga_and_power_gate_all_controllers(dc);
2515 }
2516
2517 static bool wait_for_reset_trigger_to_occur(
2518 struct dc_context *dc_ctx,
2519 struct timing_generator *tg)
2520 {
2521 bool rc = false;
2522
2523 /* To avoid endless loop we wait at most
2524 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2525 const uint32_t frames_to_wait_on_triggered_reset = 10;
2526 uint32_t i;
2527
2528 for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2529
2530 if (!tg->funcs->is_counter_moving(tg)) {
2531 DC_ERROR("TG counter is not moving!\n");
2532 break;
2533 }
2534
2535 if (tg->funcs->did_triggered_reset_occur(tg)) {
2536 rc = true;
2537 /* usually occurs at i=1 */
2538 DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2539 i);
2540 break;
2541 }
2542
2543 /* Wait for one frame. */
2544 tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2545 tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2546 }
2547
2548 if (false == rc)
2549 DC_ERROR("GSL: Timeout on reset trigger!\n");
2550
2551 return rc;
2552 }
2553
2554 /* Enable timing synchronization for a group of Timing Generators. */
2555 static void dce110_enable_timing_synchronization(
2556 struct dc *dc,
2557 int group_index,
2558 int group_size,
2559 struct pipe_ctx *grouped_pipes[])
2560 {
2561 struct dc_context *dc_ctx = dc->ctx;
2562 struct dcp_gsl_params gsl_params = { 0 };
2563 int i;
2564
2565 DC_SYNC_INFO("GSL: Setting-up...\n");
2566
2567 /* Designate a single TG in the group as a master.
2568 * Since HW doesn't care which one, we always assign
2569 * the 1st one in the group. */
2570 gsl_params.gsl_group = 0;
2571 gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2572
2573 for (i = 0; i < group_size; i++)
2574 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2575 grouped_pipes[i]->stream_res.tg, &gsl_params);
2576
2577 /* Reset slave controllers on master VSync */
2578 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2579
2580 for (i = 1 /* skip the master */; i < group_size; i++)
2581 grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2582 grouped_pipes[i]->stream_res.tg,
2583 gsl_params.gsl_group);
2584
2585 for (i = 1 /* skip the master */; i < group_size; i++) {
2586 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2587 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2588 grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2589 grouped_pipes[i]->stream_res.tg);
2590 }
2591
2592 /* GSL Vblank synchronization is a one time sync mechanism, assumption
2593 * is that the sync'ed displays will not drift out of sync over time*/
2594 DC_SYNC_INFO("GSL: Restoring register states.\n");
2595 for (i = 0; i < group_size; i++)
2596 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2597
2598 DC_SYNC_INFO("GSL: Set-up complete.\n");
2599 }
2600
2601 static void dce110_enable_per_frame_crtc_position_reset(
2602 struct dc *dc,
2603 int group_size,
2604 struct pipe_ctx *grouped_pipes[])
2605 {
2606 struct dc_context *dc_ctx = dc->ctx;
2607 struct dcp_gsl_params gsl_params = { 0 };
2608 int i;
2609
2610 gsl_params.gsl_group = 0;
2611 gsl_params.gsl_master = 0;
2612
2613 for (i = 0; i < group_size; i++)
2614 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2615 grouped_pipes[i]->stream_res.tg, &gsl_params);
2616
2617 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2618
2619 for (i = 1; i < group_size; i++)
2620 grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2621 grouped_pipes[i]->stream_res.tg,
2622 gsl_params.gsl_master,
2623 &grouped_pipes[i]->stream->triggered_crtc_reset);
2624
2625 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2626 for (i = 1; i < group_size; i++)
2627 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2628
2629 for (i = 0; i < group_size; i++)
2630 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2631
2632 }
2633
2634 static void init_pipes(struct dc *dc, struct dc_state *context)
2635 {
2636 // Do nothing
2637 }
2638
2639 static void init_hw(struct dc *dc)
2640 {
2641 int i;
2642 struct dc_bios *bp;
2643 struct transform *xfm;
2644 struct abm *abm;
2645 struct dmcu *dmcu;
2646 struct dce_hwseq *hws = dc->hwseq;
2647 uint32_t backlight = MAX_BACKLIGHT_LEVEL;
2648
2649 bp = dc->ctx->dc_bios;
2650 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2651 xfm = dc->res_pool->transforms[i];
2652 xfm->funcs->transform_reset(xfm);
2653
2654 hws->funcs.enable_display_power_gating(
2655 dc, i, bp,
2656 PIPE_GATING_CONTROL_INIT);
2657 hws->funcs.enable_display_power_gating(
2658 dc, i, bp,
2659 PIPE_GATING_CONTROL_DISABLE);
2660 hws->funcs.enable_display_pipe_clock_gating(
2661 dc->ctx,
2662 true);
2663 }
2664
2665 dce_clock_gating_power_up(dc->hwseq, false);
2666 /***************************************/
2667
2668 for (i = 0; i < dc->link_count; i++) {
2669 /****************************************/
2670 /* Power up AND update implementation according to the
2671 * required signal (which may be different from the
2672 * default signal on connector). */
2673 struct dc_link *link = dc->links[i];
2674
2675 link->link_enc->funcs->hw_init(link->link_enc);
2676 }
2677
2678 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2679 struct timing_generator *tg = dc->res_pool->timing_generators[i];
2680
2681 tg->funcs->disable_vga(tg);
2682
2683 /* Blank controller using driver code instead of
2684 * command table. */
2685 tg->funcs->set_blank(tg, true);
2686 hwss_wait_for_blank_complete(tg);
2687 }
2688
2689 for (i = 0; i < dc->res_pool->audio_count; i++) {
2690 struct audio *audio = dc->res_pool->audios[i];
2691 audio->funcs->hw_init(audio);
2692 }
2693
2694 for (i = 0; i < dc->link_count; i++) {
2695 struct dc_link *link = dc->links[i];
2696
2697 if (link->panel_cntl)
2698 backlight = link->panel_cntl->funcs->hw_init(link->panel_cntl);
2699 }
2700
2701 abm = dc->res_pool->abm;
2702 if (abm != NULL)
2703 abm->funcs->abm_init(abm, backlight);
2704
2705 dmcu = dc->res_pool->dmcu;
2706 if (dmcu != NULL && abm != NULL)
2707 abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2708
2709 if (dc->fbc_compressor)
2710 dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2711
2712 }
2713
2714
2715 void dce110_prepare_bandwidth(
2716 struct dc *dc,
2717 struct dc_state *context)
2718 {
2719 struct clk_mgr *dccg = dc->clk_mgr;
2720
2721 dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2722
2723 dccg->funcs->update_clocks(
2724 dccg,
2725 context,
2726 false);
2727 }
2728
2729 void dce110_optimize_bandwidth(
2730 struct dc *dc,
2731 struct dc_state *context)
2732 {
2733 struct clk_mgr *dccg = dc->clk_mgr;
2734
2735 dce110_set_displaymarks(dc, context);
2736
2737 dccg->funcs->update_clocks(
2738 dccg,
2739 context,
2740 true);
2741 }
2742
2743 static void dce110_program_front_end_for_pipe(
2744 struct dc *dc, struct pipe_ctx *pipe_ctx)
2745 {
2746 struct mem_input *mi = pipe_ctx->plane_res.mi;
2747 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2748 struct xfm_grph_csc_adjustment adjust;
2749 struct out_csc_color_matrix tbl_entry;
2750 unsigned int i;
2751 struct dce_hwseq *hws = dc->hwseq;
2752
2753 DC_LOGGER_INIT();
2754 memset(&tbl_entry, 0, sizeof(tbl_entry));
2755
2756 memset(&adjust, 0, sizeof(adjust));
2757 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2758
2759 dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2760
2761 set_default_colors(pipe_ctx);
2762 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2763 == true) {
2764 tbl_entry.color_space =
2765 pipe_ctx->stream->output_color_space;
2766
2767 for (i = 0; i < 12; i++)
2768 tbl_entry.regval[i] =
2769 pipe_ctx->stream->csc_color_matrix.matrix[i];
2770
2771 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2772 (pipe_ctx->plane_res.xfm, &tbl_entry);
2773 }
2774
2775 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2776 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2777
2778 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2779 adjust.temperature_matrix[i] =
2780 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2781 }
2782
2783 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2784
2785 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
2786
2787 program_scaler(dc, pipe_ctx);
2788
2789 mi->funcs->mem_input_program_surface_config(
2790 mi,
2791 plane_state->format,
2792 &plane_state->tiling_info,
2793 &plane_state->plane_size,
2794 plane_state->rotation,
2795 NULL,
2796 false);
2797 if (mi->funcs->set_blank)
2798 mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2799
2800 if (dc->config.gpu_vm_support)
2801 mi->funcs->mem_input_program_pte_vm(
2802 pipe_ctx->plane_res.mi,
2803 plane_state->format,
2804 &plane_state->tiling_info,
2805 plane_state->rotation);
2806
2807 /* Moved programming gamma from dc to hwss */
2808 if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2809 pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2810 pipe_ctx->plane_state->update_flags.bits.gamma_change)
2811 hws->funcs.set_input_transfer_func(dc, pipe_ctx, pipe_ctx->plane_state);
2812
2813 if (pipe_ctx->plane_state->update_flags.bits.full_update)
2814 hws->funcs.set_output_transfer_func(dc, pipe_ctx, pipe_ctx->stream);
2815
2816 DC_LOG_SURFACE(
2817 "Pipe:%d %p: addr hi:0x%x, "
2818 "addr low:0x%x, "
2819 "src: %d, %d, %d,"
2820 " %d; dst: %d, %d, %d, %d;"
2821 "clip: %d, %d, %d, %d\n",
2822 pipe_ctx->pipe_idx,
2823 (void *) pipe_ctx->plane_state,
2824 pipe_ctx->plane_state->address.grph.addr.high_part,
2825 pipe_ctx->plane_state->address.grph.addr.low_part,
2826 pipe_ctx->plane_state->src_rect.x,
2827 pipe_ctx->plane_state->src_rect.y,
2828 pipe_ctx->plane_state->src_rect.width,
2829 pipe_ctx->plane_state->src_rect.height,
2830 pipe_ctx->plane_state->dst_rect.x,
2831 pipe_ctx->plane_state->dst_rect.y,
2832 pipe_ctx->plane_state->dst_rect.width,
2833 pipe_ctx->plane_state->dst_rect.height,
2834 pipe_ctx->plane_state->clip_rect.x,
2835 pipe_ctx->plane_state->clip_rect.y,
2836 pipe_ctx->plane_state->clip_rect.width,
2837 pipe_ctx->plane_state->clip_rect.height);
2838
2839 DC_LOG_SURFACE(
2840 "Pipe %d: width, height, x, y\n"
2841 "viewport:%d, %d, %d, %d\n"
2842 "recout: %d, %d, %d, %d\n",
2843 pipe_ctx->pipe_idx,
2844 pipe_ctx->plane_res.scl_data.viewport.width,
2845 pipe_ctx->plane_res.scl_data.viewport.height,
2846 pipe_ctx->plane_res.scl_data.viewport.x,
2847 pipe_ctx->plane_res.scl_data.viewport.y,
2848 pipe_ctx->plane_res.scl_data.recout.width,
2849 pipe_ctx->plane_res.scl_data.recout.height,
2850 pipe_ctx->plane_res.scl_data.recout.x,
2851 pipe_ctx->plane_res.scl_data.recout.y);
2852 }
2853
2854 static void dce110_apply_ctx_for_surface(
2855 struct dc *dc,
2856 const struct dc_stream_state *stream,
2857 int num_planes,
2858 struct dc_state *context)
2859 {
2860 int i;
2861
2862 if (num_planes == 0)
2863 return;
2864
2865 if (dc->fbc_compressor)
2866 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2867
2868 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2869 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2870
2871 if (pipe_ctx->stream != stream)
2872 continue;
2873
2874 /* Need to allocate mem before program front end for Fiji */
2875 pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2876 pipe_ctx->plane_res.mi,
2877 pipe_ctx->stream->timing.h_total,
2878 pipe_ctx->stream->timing.v_total,
2879 pipe_ctx->stream->timing.pix_clk_100hz / 10,
2880 context->stream_count);
2881
2882 dce110_program_front_end_for_pipe(dc, pipe_ctx);
2883
2884 dc->hwss.update_plane_addr(dc, pipe_ctx);
2885
2886 program_surface_visibility(dc, pipe_ctx);
2887
2888 }
2889
2890 if (dc->fbc_compressor)
2891 enable_fbc(dc, context);
2892 }
2893
2894 static void dce110_post_unlock_program_front_end(
2895 struct dc *dc,
2896 struct dc_state *context)
2897 {
2898 }
2899
2900 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2901 {
2902 struct dce_hwseq *hws = dc->hwseq;
2903 int fe_idx = pipe_ctx->plane_res.mi ?
2904 pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2905
2906 /* Do not power down fe when stream is active on dce*/
2907 if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2908 return;
2909
2910 hws->funcs.enable_display_power_gating(
2911 dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2912
2913 dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2914 dc->res_pool->transforms[fe_idx]);
2915 }
2916
2917 static void dce110_wait_for_mpcc_disconnect(
2918 struct dc *dc,
2919 struct resource_pool *res_pool,
2920 struct pipe_ctx *pipe_ctx)
2921 {
2922 /* do nothing*/
2923 }
2924
2925 static void program_output_csc(struct dc *dc,
2926 struct pipe_ctx *pipe_ctx,
2927 enum dc_color_space colorspace,
2928 uint16_t *matrix,
2929 int opp_id)
2930 {
2931 int i;
2932 struct out_csc_color_matrix tbl_entry;
2933
2934 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2935 enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2936
2937 for (i = 0; i < 12; i++)
2938 tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2939
2940 tbl_entry.color_space = color_space;
2941
2942 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2943 pipe_ctx->plane_res.xfm, &tbl_entry);
2944 }
2945 }
2946
2947 static void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2948 {
2949 struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2950 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2951 struct mem_input *mi = pipe_ctx->plane_res.mi;
2952 struct dc_cursor_mi_param param = {
2953 .pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2954 .ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2955 .viewport = pipe_ctx->plane_res.scl_data.viewport,
2956 .h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2957 .v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2958 .rotation = pipe_ctx->plane_state->rotation,
2959 .mirror = pipe_ctx->plane_state->horizontal_mirror
2960 };
2961
2962 /**
2963 * If the cursor's source viewport is clipped then we need to
2964 * translate the cursor to appear in the correct position on
2965 * the screen.
2966 *
2967 * This translation isn't affected by scaling so it needs to be
2968 * done *after* we adjust the position for the scale factor.
2969 *
2970 * This is only done by opt-in for now since there are still
2971 * some usecases like tiled display that might enable the
2972 * cursor on both streams while expecting dc to clip it.
2973 */
2974 if (pos_cpy.translate_by_source) {
2975 pos_cpy.x += pipe_ctx->plane_state->src_rect.x;
2976 pos_cpy.y += pipe_ctx->plane_state->src_rect.y;
2977 }
2978
2979 if (pipe_ctx->plane_state->address.type
2980 == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2981 pos_cpy.enable = false;
2982
2983 if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2984 pos_cpy.enable = false;
2985
2986 if (ipp->funcs->ipp_cursor_set_position)
2987 ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, ¶m);
2988 if (mi->funcs->set_cursor_position)
2989 mi->funcs->set_cursor_position(mi, &pos_cpy, ¶m);
2990 }
2991
2992 static void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2993 {
2994 struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2995
2996 if (pipe_ctx->plane_res.ipp &&
2997 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2998 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2999 pipe_ctx->plane_res.ipp, attributes);
3000
3001 if (pipe_ctx->plane_res.mi &&
3002 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
3003 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
3004 pipe_ctx->plane_res.mi, attributes);
3005
3006 if (pipe_ctx->plane_res.xfm &&
3007 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
3008 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
3009 pipe_ctx->plane_res.xfm, attributes);
3010 }
3011
3012 bool dce110_set_backlight_level(struct pipe_ctx *pipe_ctx,
3013 uint32_t backlight_pwm_u16_16,
3014 uint32_t frame_ramp)
3015 {
3016 struct dc_link *link = pipe_ctx->stream->link;
3017 struct dc *dc = link->ctx->dc;
3018 struct abm *abm = pipe_ctx->stream_res.abm;
3019 struct panel_cntl *panel_cntl = link->panel_cntl;
3020 struct dmcu *dmcu = dc->res_pool->dmcu;
3021 bool fw_set_brightness = true;
3022 /* DMCU -1 for all controller id values,
3023 * therefore +1 here
3024 */
3025 uint32_t controller_id = pipe_ctx->stream_res.tg->inst + 1;
3026
3027 if (abm == NULL || panel_cntl == NULL || (abm->funcs->set_backlight_level_pwm == NULL))
3028 return false;
3029
3030 if (dmcu)
3031 fw_set_brightness = dmcu->funcs->is_dmcu_initialized(dmcu);
3032
3033 if (!fw_set_brightness && panel_cntl->funcs->driver_set_backlight)
3034 panel_cntl->funcs->driver_set_backlight(panel_cntl, backlight_pwm_u16_16);
3035 else
3036 abm->funcs->set_backlight_level_pwm(
3037 abm,
3038 backlight_pwm_u16_16,
3039 frame_ramp,
3040 controller_id,
3041 link->panel_cntl->inst);
3042
3043 return true;
3044 }
3045
3046 void dce110_set_abm_immediate_disable(struct pipe_ctx *pipe_ctx)
3047 {
3048 struct abm *abm = pipe_ctx->stream_res.abm;
3049 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3050
3051 if (abm)
3052 abm->funcs->set_abm_immediate_disable(abm,
3053 pipe_ctx->stream->link->panel_cntl->inst);
3054
3055 if (panel_cntl)
3056 panel_cntl->funcs->store_backlight_level(panel_cntl);
3057 }
3058
3059 void dce110_set_pipe(struct pipe_ctx *pipe_ctx)
3060 {
3061 struct abm *abm = pipe_ctx->stream_res.abm;
3062 struct panel_cntl *panel_cntl = pipe_ctx->stream->link->panel_cntl;
3063 uint32_t otg_inst = pipe_ctx->stream_res.tg->inst + 1;
3064
3065 if (abm && panel_cntl)
3066 abm->funcs->set_pipe(abm, otg_inst, panel_cntl->inst);
3067 }
3068
3069 static const struct hw_sequencer_funcs dce110_funcs = {
3070 .program_gamut_remap = program_gamut_remap,
3071 .program_output_csc = program_output_csc,
3072 .init_hw = init_hw,
3073 .apply_ctx_to_hw = dce110_apply_ctx_to_hw,
3074 .apply_ctx_for_surface = dce110_apply_ctx_for_surface,
3075 .post_unlock_program_front_end = dce110_post_unlock_program_front_end,
3076 .update_plane_addr = update_plane_addr,
3077 .update_pending_status = dce110_update_pending_status,
3078 .enable_accelerated_mode = dce110_enable_accelerated_mode,
3079 .enable_timing_synchronization = dce110_enable_timing_synchronization,
3080 .enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
3081 .update_info_frame = dce110_update_info_frame,
3082 .enable_stream = dce110_enable_stream,
3083 .disable_stream = dce110_disable_stream,
3084 .unblank_stream = dce110_unblank_stream,
3085 .blank_stream = dce110_blank_stream,
3086 .enable_audio_stream = dce110_enable_audio_stream,
3087 .disable_audio_stream = dce110_disable_audio_stream,
3088 .disable_plane = dce110_power_down_fe,
3089 .pipe_control_lock = dce_pipe_control_lock,
3090 .interdependent_update_lock = NULL,
3091 .cursor_lock = dce_pipe_control_lock,
3092 .prepare_bandwidth = dce110_prepare_bandwidth,
3093 .optimize_bandwidth = dce110_optimize_bandwidth,
3094 .set_drr = set_drr,
3095 .get_position = get_position,
3096 .set_static_screen_control = set_static_screen_control,
3097 .setup_stereo = NULL,
3098 .set_avmute = dce110_set_avmute,
3099 .wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
3100 .edp_backlight_control = dce110_edp_backlight_control,
3101 .edp_power_control = dce110_edp_power_control,
3102 .edp_wait_for_hpd_ready = dce110_edp_wait_for_hpd_ready,
3103 .set_cursor_position = dce110_set_cursor_position,
3104 .set_cursor_attribute = dce110_set_cursor_attribute,
3105 .set_backlight_level = dce110_set_backlight_level,
3106 .set_abm_immediate_disable = dce110_set_abm_immediate_disable,
3107 .set_pipe = dce110_set_pipe,
3108 };
3109
3110 static const struct hwseq_private_funcs dce110_private_funcs = {
3111 .init_pipes = init_pipes,
3112 .update_plane_addr = update_plane_addr,
3113 .set_input_transfer_func = dce110_set_input_transfer_func,
3114 .set_output_transfer_func = dce110_set_output_transfer_func,
3115 .power_down = dce110_power_down,
3116 .enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
3117 .enable_display_power_gating = dce110_enable_display_power_gating,
3118 .reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
3119 .enable_stream_timing = dce110_enable_stream_timing,
3120 .disable_stream_gating = NULL,
3121 .enable_stream_gating = NULL,
3122 .edp_backlight_control = dce110_edp_backlight_control,
3123 };
3124
3125 void dce110_hw_sequencer_construct(struct dc *dc)
3126 {
3127 dc->hwss = dce110_funcs;
3128 dc->hwseq->funcs = dce110_private_funcs;
3129 }
3130
3131