1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Message Signaled Interrupt (MSI)
4 *
5 * Copyright (C) 2003-2004 Intel
6 * Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com)
7 * Copyright (C) 2016 Christoph Hellwig.
8 */
9
10 #include <linux/err.h>
11 #include <linux/mm.h>
12 #include <linux/irq.h>
13 #include <linux/interrupt.h>
14 #include <linux/export.h>
15 #include <linux/ioport.h>
16 #include <linux/pci.h>
17 #include <linux/proc_fs.h>
18 #include <linux/msi.h>
19 #include <linux/smp.h>
20 #include <linux/errno.h>
21 #include <linux/io.h>
22 #include <linux/acpi_iort.h>
23 #include <linux/slab.h>
24 #include <linux/irqdomain.h>
25 #include <linux/of_irq.h>
26
27 #include "pci.h"
28
29 #ifdef CONFIG_PCI_MSI
30
31 static int pci_msi_enable = 1;
32 int pci_msi_ignore_mask;
33
34 #define msix_table_size(flags) ((flags & PCI_MSIX_FLAGS_QSIZE) + 1)
35
36 #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
pci_msi_setup_msi_irqs(struct pci_dev * dev,int nvec,int type)37 static int pci_msi_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
38 {
39 struct irq_domain *domain;
40
41 domain = dev_get_msi_domain(&dev->dev);
42 if (domain && irq_domain_is_hierarchy(domain))
43 return msi_domain_alloc_irqs(domain, &dev->dev, nvec);
44
45 return arch_setup_msi_irqs(dev, nvec, type);
46 }
47
pci_msi_teardown_msi_irqs(struct pci_dev * dev)48 static void pci_msi_teardown_msi_irqs(struct pci_dev *dev)
49 {
50 struct irq_domain *domain;
51
52 domain = dev_get_msi_domain(&dev->dev);
53 if (domain && irq_domain_is_hierarchy(domain))
54 msi_domain_free_irqs(domain, &dev->dev);
55 else
56 arch_teardown_msi_irqs(dev);
57 }
58 #else
59 #define pci_msi_setup_msi_irqs arch_setup_msi_irqs
60 #define pci_msi_teardown_msi_irqs arch_teardown_msi_irqs
61 #endif
62
63 #ifdef CONFIG_PCI_MSI_ARCH_FALLBACKS
64 /* Arch hooks */
arch_setup_msi_irq(struct pci_dev * dev,struct msi_desc * desc)65 int __weak arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
66 {
67 return -EINVAL;
68 }
69
arch_teardown_msi_irq(unsigned int irq)70 void __weak arch_teardown_msi_irq(unsigned int irq)
71 {
72 }
73
arch_setup_msi_irqs(struct pci_dev * dev,int nvec,int type)74 int __weak arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
75 {
76 struct msi_desc *entry;
77 int ret;
78
79 /*
80 * If an architecture wants to support multiple MSI, it needs to
81 * override arch_setup_msi_irqs()
82 */
83 if (type == PCI_CAP_ID_MSI && nvec > 1)
84 return 1;
85
86 for_each_pci_msi_entry(entry, dev) {
87 ret = arch_setup_msi_irq(dev, entry);
88 if (ret < 0)
89 return ret;
90 if (ret > 0)
91 return -ENOSPC;
92 }
93
94 return 0;
95 }
96
arch_teardown_msi_irqs(struct pci_dev * dev)97 void __weak arch_teardown_msi_irqs(struct pci_dev *dev)
98 {
99 int i;
100 struct msi_desc *entry;
101
102 for_each_pci_msi_entry(entry, dev)
103 if (entry->irq)
104 for (i = 0; i < entry->nvec_used; i++)
105 arch_teardown_msi_irq(entry->irq + i);
106 }
107 #endif /* CONFIG_PCI_MSI_ARCH_FALLBACKS */
108
default_restore_msi_irq(struct pci_dev * dev,int irq)109 static void default_restore_msi_irq(struct pci_dev *dev, int irq)
110 {
111 struct msi_desc *entry;
112
113 entry = NULL;
114 if (dev->msix_enabled) {
115 for_each_pci_msi_entry(entry, dev) {
116 if (irq == entry->irq)
117 break;
118 }
119 } else if (dev->msi_enabled) {
120 entry = irq_get_msi_desc(irq);
121 }
122
123 if (entry)
124 __pci_write_msi_msg(entry, &entry->msg);
125 }
126
arch_restore_msi_irqs(struct pci_dev * dev)127 void __weak arch_restore_msi_irqs(struct pci_dev *dev)
128 {
129 return default_restore_msi_irqs(dev);
130 }
131
132 /*
133 * PCI 2.3 does not specify mask bits for each MSI interrupt. Attempting to
134 * mask all MSI interrupts by clearing the MSI enable bit does not work
135 * reliably as devices without an INTx disable bit will then generate a
136 * level IRQ which will never be cleared.
137 */
msi_multi_mask(struct msi_desc * desc)138 static inline __attribute_const__ u32 msi_multi_mask(struct msi_desc *desc)
139 {
140 /* Don't shift by >= width of type */
141 if (desc->msi_attrib.multi_cap >= 5)
142 return 0xffffffff;
143 return (1 << (1 << desc->msi_attrib.multi_cap)) - 1;
144 }
145
pci_msi_update_mask(struct msi_desc * desc,u32 clear,u32 set)146 static noinline void pci_msi_update_mask(struct msi_desc *desc, u32 clear, u32 set)
147 {
148 raw_spinlock_t *lock = &desc->dev->msi_lock;
149 unsigned long flags;
150
151 if (!desc->msi_attrib.can_mask)
152 return;
153
154 raw_spin_lock_irqsave(lock, flags);
155 desc->msi_mask &= ~clear;
156 desc->msi_mask |= set;
157 pci_write_config_dword(msi_desc_to_pci_dev(desc), desc->mask_pos,
158 desc->msi_mask);
159 raw_spin_unlock_irqrestore(lock, flags);
160 }
161
pci_msi_mask(struct msi_desc * desc,u32 mask)162 static inline void pci_msi_mask(struct msi_desc *desc, u32 mask)
163 {
164 pci_msi_update_mask(desc, 0, mask);
165 }
166
pci_msi_unmask(struct msi_desc * desc,u32 mask)167 static inline void pci_msi_unmask(struct msi_desc *desc, u32 mask)
168 {
169 pci_msi_update_mask(desc, mask, 0);
170 }
171
pci_msix_desc_addr(struct msi_desc * desc)172 static inline void __iomem *pci_msix_desc_addr(struct msi_desc *desc)
173 {
174 return desc->mask_base + desc->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
175 }
176
177 /*
178 * This internal function does not flush PCI writes to the device. All
179 * users must ensure that they read from the device before either assuming
180 * that the device state is up to date, or returning out of this file.
181 * It does not affect the msi_desc::msix_ctrl cache either. Use with care!
182 */
pci_msix_write_vector_ctrl(struct msi_desc * desc,u32 ctrl)183 static void pci_msix_write_vector_ctrl(struct msi_desc *desc, u32 ctrl)
184 {
185 void __iomem *desc_addr = pci_msix_desc_addr(desc);
186
187 if (desc->msi_attrib.can_mask)
188 writel(ctrl, desc_addr + PCI_MSIX_ENTRY_VECTOR_CTRL);
189 }
190
pci_msix_mask(struct msi_desc * desc)191 static inline void pci_msix_mask(struct msi_desc *desc)
192 {
193 desc->msix_ctrl |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
194 pci_msix_write_vector_ctrl(desc, desc->msix_ctrl);
195 /* Flush write to device */
196 readl(desc->mask_base);
197 }
198
pci_msix_unmask(struct msi_desc * desc)199 static inline void pci_msix_unmask(struct msi_desc *desc)
200 {
201 desc->msix_ctrl &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT;
202 pci_msix_write_vector_ctrl(desc, desc->msix_ctrl);
203 }
204
__pci_msi_mask_desc(struct msi_desc * desc,u32 mask)205 static void __pci_msi_mask_desc(struct msi_desc *desc, u32 mask)
206 {
207 if (desc->msi_attrib.is_msix)
208 pci_msix_mask(desc);
209 else
210 pci_msi_mask(desc, mask);
211 }
212
__pci_msi_unmask_desc(struct msi_desc * desc,u32 mask)213 static void __pci_msi_unmask_desc(struct msi_desc *desc, u32 mask)
214 {
215 if (desc->msi_attrib.is_msix)
216 pci_msix_unmask(desc);
217 else
218 pci_msi_unmask(desc, mask);
219 }
220
221 /**
222 * pci_msi_mask_irq - Generic IRQ chip callback to mask PCI/MSI interrupts
223 * @data: pointer to irqdata associated to that interrupt
224 */
pci_msi_mask_irq(struct irq_data * data)225 void pci_msi_mask_irq(struct irq_data *data)
226 {
227 struct msi_desc *desc = irq_data_get_msi_desc(data);
228
229 __pci_msi_mask_desc(desc, BIT(data->irq - desc->irq));
230 }
231 EXPORT_SYMBOL_GPL(pci_msi_mask_irq);
232
233 /**
234 * pci_msi_unmask_irq - Generic IRQ chip callback to unmask PCI/MSI interrupts
235 * @data: pointer to irqdata associated to that interrupt
236 */
pci_msi_unmask_irq(struct irq_data * data)237 void pci_msi_unmask_irq(struct irq_data *data)
238 {
239 struct msi_desc *desc = irq_data_get_msi_desc(data);
240
241 __pci_msi_unmask_desc(desc, BIT(data->irq - desc->irq));
242 }
243 EXPORT_SYMBOL_GPL(pci_msi_unmask_irq);
244
default_restore_msi_irqs(struct pci_dev * dev)245 void default_restore_msi_irqs(struct pci_dev *dev)
246 {
247 struct msi_desc *entry;
248
249 for_each_pci_msi_entry(entry, dev)
250 default_restore_msi_irq(dev, entry->irq);
251 }
252
__pci_read_msi_msg(struct msi_desc * entry,struct msi_msg * msg)253 void __pci_read_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
254 {
255 struct pci_dev *dev = msi_desc_to_pci_dev(entry);
256
257 BUG_ON(dev->current_state != PCI_D0);
258
259 if (entry->msi_attrib.is_msix) {
260 void __iomem *base = pci_msix_desc_addr(entry);
261
262 if (WARN_ON_ONCE(entry->msi_attrib.is_virtual))
263 return;
264
265 msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR);
266 msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR);
267 msg->data = readl(base + PCI_MSIX_ENTRY_DATA);
268 } else {
269 int pos = dev->msi_cap;
270 u16 data;
271
272 pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
273 &msg->address_lo);
274 if (entry->msi_attrib.is_64) {
275 pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
276 &msg->address_hi);
277 pci_read_config_word(dev, pos + PCI_MSI_DATA_64, &data);
278 } else {
279 msg->address_hi = 0;
280 pci_read_config_word(dev, pos + PCI_MSI_DATA_32, &data);
281 }
282 msg->data = data;
283 }
284 }
285
__pci_write_msi_msg(struct msi_desc * entry,struct msi_msg * msg)286 void __pci_write_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
287 {
288 struct pci_dev *dev = msi_desc_to_pci_dev(entry);
289
290 if (dev->current_state != PCI_D0 || pci_dev_is_disconnected(dev)) {
291 /* Don't touch the hardware now */
292 } else if (entry->msi_attrib.is_msix) {
293 void __iomem *base = pci_msix_desc_addr(entry);
294 u32 ctrl = entry->msix_ctrl;
295 bool unmasked = !(ctrl & PCI_MSIX_ENTRY_CTRL_MASKBIT);
296
297 if (entry->msi_attrib.is_virtual)
298 goto skip;
299
300 /*
301 * The specification mandates that the entry is masked
302 * when the message is modified:
303 *
304 * "If software changes the Address or Data value of an
305 * entry while the entry is unmasked, the result is
306 * undefined."
307 */
308 if (unmasked)
309 pci_msix_write_vector_ctrl(entry, ctrl | PCI_MSIX_ENTRY_CTRL_MASKBIT);
310
311 writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR);
312 writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR);
313 writel(msg->data, base + PCI_MSIX_ENTRY_DATA);
314
315 if (unmasked)
316 pci_msix_write_vector_ctrl(entry, ctrl);
317
318 /* Ensure that the writes are visible in the device */
319 readl(base + PCI_MSIX_ENTRY_DATA);
320 } else {
321 int pos = dev->msi_cap;
322 u16 msgctl;
323
324 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
325 msgctl &= ~PCI_MSI_FLAGS_QSIZE;
326 msgctl |= entry->msi_attrib.multiple << 4;
327 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, msgctl);
328
329 pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
330 msg->address_lo);
331 if (entry->msi_attrib.is_64) {
332 pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
333 msg->address_hi);
334 pci_write_config_word(dev, pos + PCI_MSI_DATA_64,
335 msg->data);
336 } else {
337 pci_write_config_word(dev, pos + PCI_MSI_DATA_32,
338 msg->data);
339 }
340 /* Ensure that the writes are visible in the device */
341 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
342 }
343
344 skip:
345 entry->msg = *msg;
346
347 if (entry->write_msi_msg)
348 entry->write_msi_msg(entry, entry->write_msi_msg_data);
349
350 }
351
pci_write_msi_msg(unsigned int irq,struct msi_msg * msg)352 void pci_write_msi_msg(unsigned int irq, struct msi_msg *msg)
353 {
354 struct msi_desc *entry = irq_get_msi_desc(irq);
355
356 __pci_write_msi_msg(entry, msg);
357 }
358 EXPORT_SYMBOL_GPL(pci_write_msi_msg);
359
free_msi_irqs(struct pci_dev * dev)360 static void free_msi_irqs(struct pci_dev *dev)
361 {
362 struct list_head *msi_list = dev_to_msi_list(&dev->dev);
363 struct msi_desc *entry, *tmp;
364 int i;
365
366 for_each_pci_msi_entry(entry, dev)
367 if (entry->irq)
368 for (i = 0; i < entry->nvec_used; i++)
369 BUG_ON(irq_has_action(entry->irq + i));
370
371 if (dev->msi_irq_groups) {
372 msi_destroy_sysfs(&dev->dev, dev->msi_irq_groups);
373 dev->msi_irq_groups = NULL;
374 }
375
376 pci_msi_teardown_msi_irqs(dev);
377
378 list_for_each_entry_safe(entry, tmp, msi_list, list) {
379 if (entry->msi_attrib.is_msix) {
380 if (list_is_last(&entry->list, msi_list))
381 iounmap(entry->mask_base);
382 }
383
384 list_del(&entry->list);
385 free_msi_entry(entry);
386 }
387 }
388
pci_intx_for_msi(struct pci_dev * dev,int enable)389 static void pci_intx_for_msi(struct pci_dev *dev, int enable)
390 {
391 if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG))
392 pci_intx(dev, enable);
393 }
394
pci_msi_set_enable(struct pci_dev * dev,int enable)395 static void pci_msi_set_enable(struct pci_dev *dev, int enable)
396 {
397 u16 control;
398
399 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
400 control &= ~PCI_MSI_FLAGS_ENABLE;
401 if (enable)
402 control |= PCI_MSI_FLAGS_ENABLE;
403 pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
404 }
405
__pci_restore_msi_state(struct pci_dev * dev)406 static void __pci_restore_msi_state(struct pci_dev *dev)
407 {
408 u16 control;
409 struct msi_desc *entry;
410
411 if (!dev->msi_enabled)
412 return;
413
414 entry = irq_get_msi_desc(dev->irq);
415
416 pci_intx_for_msi(dev, 0);
417 pci_msi_set_enable(dev, 0);
418 arch_restore_msi_irqs(dev);
419
420 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
421 pci_msi_update_mask(entry, 0, 0);
422 control &= ~PCI_MSI_FLAGS_QSIZE;
423 control |= (entry->msi_attrib.multiple << 4) | PCI_MSI_FLAGS_ENABLE;
424 pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
425 }
426
pci_msix_clear_and_set_ctrl(struct pci_dev * dev,u16 clear,u16 set)427 static void pci_msix_clear_and_set_ctrl(struct pci_dev *dev, u16 clear, u16 set)
428 {
429 u16 ctrl;
430
431 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
432 ctrl &= ~clear;
433 ctrl |= set;
434 pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, ctrl);
435 }
436
__pci_restore_msix_state(struct pci_dev * dev)437 static void __pci_restore_msix_state(struct pci_dev *dev)
438 {
439 struct msi_desc *entry;
440
441 if (!dev->msix_enabled)
442 return;
443 BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
444
445 /* route the table */
446 pci_intx_for_msi(dev, 0);
447 pci_msix_clear_and_set_ctrl(dev, 0,
448 PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL);
449
450 arch_restore_msi_irqs(dev);
451 for_each_pci_msi_entry(entry, dev)
452 pci_msix_write_vector_ctrl(entry, entry->msix_ctrl);
453
454 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
455 }
456
pci_restore_msi_state(struct pci_dev * dev)457 void pci_restore_msi_state(struct pci_dev *dev)
458 {
459 __pci_restore_msi_state(dev);
460 __pci_restore_msix_state(dev);
461 }
462 EXPORT_SYMBOL_GPL(pci_restore_msi_state);
463
464 static struct msi_desc *
msi_setup_entry(struct pci_dev * dev,int nvec,struct irq_affinity * affd)465 msi_setup_entry(struct pci_dev *dev, int nvec, struct irq_affinity *affd)
466 {
467 struct irq_affinity_desc *masks = NULL;
468 struct msi_desc *entry;
469 u16 control;
470
471 if (affd)
472 masks = irq_create_affinity_masks(nvec, affd);
473
474 /* MSI Entry Initialization */
475 entry = alloc_msi_entry(&dev->dev, nvec, masks);
476 if (!entry)
477 goto out;
478
479 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
480 /* Lies, damned lies, and MSIs */
481 if (dev->dev_flags & PCI_DEV_FLAGS_HAS_MSI_MASKING)
482 control |= PCI_MSI_FLAGS_MASKBIT;
483
484 entry->msi_attrib.is_msix = 0;
485 entry->msi_attrib.is_64 = !!(control & PCI_MSI_FLAGS_64BIT);
486 entry->msi_attrib.is_virtual = 0;
487 entry->msi_attrib.entry_nr = 0;
488 entry->msi_attrib.can_mask = !pci_msi_ignore_mask &&
489 !!(control & PCI_MSI_FLAGS_MASKBIT);
490 entry->msi_attrib.default_irq = dev->irq; /* Save IOAPIC IRQ */
491 entry->msi_attrib.multi_cap = (control & PCI_MSI_FLAGS_QMASK) >> 1;
492 entry->msi_attrib.multiple = ilog2(__roundup_pow_of_two(nvec));
493
494 if (control & PCI_MSI_FLAGS_64BIT)
495 entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_64;
496 else
497 entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_32;
498
499 /* Save the initial mask status */
500 if (entry->msi_attrib.can_mask)
501 pci_read_config_dword(dev, entry->mask_pos, &entry->msi_mask);
502
503 out:
504 kfree(masks);
505 return entry;
506 }
507
msi_verify_entries(struct pci_dev * dev)508 static int msi_verify_entries(struct pci_dev *dev)
509 {
510 struct msi_desc *entry;
511
512 if (!dev->no_64bit_msi)
513 return 0;
514
515 for_each_pci_msi_entry(entry, dev) {
516 if (entry->msg.address_hi) {
517 pci_err(dev, "arch assigned 64-bit MSI address %#x%08x but device only supports 32 bits\n",
518 entry->msg.address_hi, entry->msg.address_lo);
519 return -EIO;
520 }
521 }
522 return 0;
523 }
524
525 /**
526 * msi_capability_init - configure device's MSI capability structure
527 * @dev: pointer to the pci_dev data structure of MSI device function
528 * @nvec: number of interrupts to allocate
529 * @affd: description of automatic IRQ affinity assignments (may be %NULL)
530 *
531 * Setup the MSI capability structure of the device with the requested
532 * number of interrupts. A return value of zero indicates the successful
533 * setup of an entry with the new MSI IRQ. A negative return value indicates
534 * an error, and a positive return value indicates the number of interrupts
535 * which could have been allocated.
536 */
msi_capability_init(struct pci_dev * dev,int nvec,struct irq_affinity * affd)537 static int msi_capability_init(struct pci_dev *dev, int nvec,
538 struct irq_affinity *affd)
539 {
540 const struct attribute_group **groups;
541 struct msi_desc *entry;
542 int ret;
543
544 pci_msi_set_enable(dev, 0); /* Disable MSI during set up */
545
546 entry = msi_setup_entry(dev, nvec, affd);
547 if (!entry)
548 return -ENOMEM;
549
550 /* All MSIs are unmasked by default; mask them all */
551 pci_msi_mask(entry, msi_multi_mask(entry));
552
553 list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
554
555 /* Configure MSI capability structure */
556 ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI);
557 if (ret)
558 goto err;
559
560 ret = msi_verify_entries(dev);
561 if (ret)
562 goto err;
563
564 groups = msi_populate_sysfs(&dev->dev);
565 if (IS_ERR(groups)) {
566 ret = PTR_ERR(groups);
567 goto err;
568 }
569
570 dev->msi_irq_groups = groups;
571
572 /* Set MSI enabled bits */
573 pci_intx_for_msi(dev, 0);
574 pci_msi_set_enable(dev, 1);
575 dev->msi_enabled = 1;
576
577 pcibios_free_irq(dev);
578 dev->irq = entry->irq;
579 return 0;
580
581 err:
582 pci_msi_unmask(entry, msi_multi_mask(entry));
583 free_msi_irqs(dev);
584 return ret;
585 }
586
msix_map_region(struct pci_dev * dev,unsigned int nr_entries)587 static void __iomem *msix_map_region(struct pci_dev *dev,
588 unsigned int nr_entries)
589 {
590 resource_size_t phys_addr;
591 u32 table_offset;
592 unsigned long flags;
593 u8 bir;
594
595 pci_read_config_dword(dev, dev->msix_cap + PCI_MSIX_TABLE,
596 &table_offset);
597 bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR);
598 flags = pci_resource_flags(dev, bir);
599 if (!flags || (flags & IORESOURCE_UNSET))
600 return NULL;
601
602 table_offset &= PCI_MSIX_TABLE_OFFSET;
603 phys_addr = pci_resource_start(dev, bir) + table_offset;
604
605 return ioremap(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE);
606 }
607
msix_setup_entries(struct pci_dev * dev,void __iomem * base,struct msix_entry * entries,int nvec,struct irq_affinity * affd)608 static int msix_setup_entries(struct pci_dev *dev, void __iomem *base,
609 struct msix_entry *entries, int nvec,
610 struct irq_affinity *affd)
611 {
612 struct irq_affinity_desc *curmsk, *masks = NULL;
613 struct msi_desc *entry;
614 void __iomem *addr;
615 int ret, i;
616 int vec_count = pci_msix_vec_count(dev);
617
618 if (affd)
619 masks = irq_create_affinity_masks(nvec, affd);
620
621 for (i = 0, curmsk = masks; i < nvec; i++) {
622 entry = alloc_msi_entry(&dev->dev, 1, curmsk);
623 if (!entry) {
624 if (!i)
625 iounmap(base);
626 else
627 free_msi_irqs(dev);
628 /* No enough memory. Don't try again */
629 ret = -ENOMEM;
630 goto out;
631 }
632
633 entry->msi_attrib.is_msix = 1;
634 entry->msi_attrib.is_64 = 1;
635
636 if (entries)
637 entry->msi_attrib.entry_nr = entries[i].entry;
638 else
639 entry->msi_attrib.entry_nr = i;
640
641 entry->msi_attrib.is_virtual =
642 entry->msi_attrib.entry_nr >= vec_count;
643
644 entry->msi_attrib.can_mask = !pci_msi_ignore_mask &&
645 !entry->msi_attrib.is_virtual;
646
647 entry->msi_attrib.default_irq = dev->irq;
648 entry->mask_base = base;
649
650 if (entry->msi_attrib.can_mask) {
651 addr = pci_msix_desc_addr(entry);
652 entry->msix_ctrl = readl(addr + PCI_MSIX_ENTRY_VECTOR_CTRL);
653 }
654
655 list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
656 if (masks)
657 curmsk++;
658 }
659 ret = 0;
660 out:
661 kfree(masks);
662 return ret;
663 }
664
msix_update_entries(struct pci_dev * dev,struct msix_entry * entries)665 static void msix_update_entries(struct pci_dev *dev, struct msix_entry *entries)
666 {
667 struct msi_desc *entry;
668
669 for_each_pci_msi_entry(entry, dev) {
670 if (entries) {
671 entries->vector = entry->irq;
672 entries++;
673 }
674 }
675 }
676
msix_mask_all(void __iomem * base,int tsize)677 static void msix_mask_all(void __iomem *base, int tsize)
678 {
679 u32 ctrl = PCI_MSIX_ENTRY_CTRL_MASKBIT;
680 int i;
681
682 if (pci_msi_ignore_mask)
683 return;
684
685 for (i = 0; i < tsize; i++, base += PCI_MSIX_ENTRY_SIZE)
686 writel(ctrl, base + PCI_MSIX_ENTRY_VECTOR_CTRL);
687 }
688
689 /**
690 * msix_capability_init - configure device's MSI-X capability
691 * @dev: pointer to the pci_dev data structure of MSI-X device function
692 * @entries: pointer to an array of struct msix_entry entries
693 * @nvec: number of @entries
694 * @affd: Optional pointer to enable automatic affinity assignment
695 *
696 * Setup the MSI-X capability structure of device function with a
697 * single MSI-X IRQ. A return of zero indicates the successful setup of
698 * requested MSI-X entries with allocated IRQs or non-zero for otherwise.
699 **/
msix_capability_init(struct pci_dev * dev,struct msix_entry * entries,int nvec,struct irq_affinity * affd)700 static int msix_capability_init(struct pci_dev *dev, struct msix_entry *entries,
701 int nvec, struct irq_affinity *affd)
702 {
703 const struct attribute_group **groups;
704 void __iomem *base;
705 int ret, tsize;
706 u16 control;
707
708 /*
709 * Some devices require MSI-X to be enabled before the MSI-X
710 * registers can be accessed. Mask all the vectors to prevent
711 * interrupts coming in before they're fully set up.
712 */
713 pci_msix_clear_and_set_ctrl(dev, 0, PCI_MSIX_FLAGS_MASKALL |
714 PCI_MSIX_FLAGS_ENABLE);
715
716 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
717 /* Request & Map MSI-X table region */
718 tsize = msix_table_size(control);
719 base = msix_map_region(dev, tsize);
720 if (!base) {
721 ret = -ENOMEM;
722 goto out_disable;
723 }
724
725 ret = msix_setup_entries(dev, base, entries, nvec, affd);
726 if (ret)
727 goto out_disable;
728
729 ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX);
730 if (ret)
731 goto out_avail;
732
733 /* Check if all MSI entries honor device restrictions */
734 ret = msi_verify_entries(dev);
735 if (ret)
736 goto out_free;
737
738 msix_update_entries(dev, entries);
739
740 groups = msi_populate_sysfs(&dev->dev);
741 if (IS_ERR(groups)) {
742 ret = PTR_ERR(groups);
743 goto out_free;
744 }
745
746 dev->msi_irq_groups = groups;
747
748 /* Set MSI-X enabled bits and unmask the function */
749 pci_intx_for_msi(dev, 0);
750 dev->msix_enabled = 1;
751
752 /*
753 * Ensure that all table entries are masked to prevent
754 * stale entries from firing in a crash kernel.
755 *
756 * Done late to deal with a broken Marvell NVME device
757 * which takes the MSI-X mask bits into account even
758 * when MSI-X is disabled, which prevents MSI delivery.
759 */
760 msix_mask_all(base, tsize);
761 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
762
763 pcibios_free_irq(dev);
764 return 0;
765
766 out_avail:
767 if (ret < 0) {
768 /*
769 * If we had some success, report the number of IRQs
770 * we succeeded in setting up.
771 */
772 struct msi_desc *entry;
773 int avail = 0;
774
775 for_each_pci_msi_entry(entry, dev) {
776 if (entry->irq != 0)
777 avail++;
778 }
779 if (avail != 0)
780 ret = avail;
781 }
782
783 out_free:
784 free_msi_irqs(dev);
785
786 out_disable:
787 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE, 0);
788
789 return ret;
790 }
791
792 /**
793 * pci_msi_supported - check whether MSI may be enabled on a device
794 * @dev: pointer to the pci_dev data structure of MSI device function
795 * @nvec: how many MSIs have been requested?
796 *
797 * Look at global flags, the device itself, and its parent buses
798 * to determine if MSI/-X are supported for the device. If MSI/-X is
799 * supported return 1, else return 0.
800 **/
pci_msi_supported(struct pci_dev * dev,int nvec)801 static int pci_msi_supported(struct pci_dev *dev, int nvec)
802 {
803 struct pci_bus *bus;
804
805 /* MSI must be globally enabled and supported by the device */
806 if (!pci_msi_enable)
807 return 0;
808
809 if (!dev || dev->no_msi)
810 return 0;
811
812 /*
813 * You can't ask to have 0 or less MSIs configured.
814 * a) it's stupid ..
815 * b) the list manipulation code assumes nvec >= 1.
816 */
817 if (nvec < 1)
818 return 0;
819
820 /*
821 * Any bridge which does NOT route MSI transactions from its
822 * secondary bus to its primary bus must set NO_MSI flag on
823 * the secondary pci_bus.
824 *
825 * The NO_MSI flag can either be set directly by:
826 * - arch-specific PCI host bus controller drivers (deprecated)
827 * - quirks for specific PCI bridges
828 *
829 * or indirectly by platform-specific PCI host bridge drivers by
830 * advertising the 'msi_domain' property, which results in
831 * the NO_MSI flag when no MSI domain is found for this bridge
832 * at probe time.
833 */
834 for (bus = dev->bus; bus; bus = bus->parent)
835 if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI)
836 return 0;
837
838 return 1;
839 }
840
841 /**
842 * pci_msi_vec_count - Return the number of MSI vectors a device can send
843 * @dev: device to report about
844 *
845 * This function returns the number of MSI vectors a device requested via
846 * Multiple Message Capable register. It returns a negative errno if the
847 * device is not capable sending MSI interrupts. Otherwise, the call succeeds
848 * and returns a power of two, up to a maximum of 2^5 (32), according to the
849 * MSI specification.
850 **/
pci_msi_vec_count(struct pci_dev * dev)851 int pci_msi_vec_count(struct pci_dev *dev)
852 {
853 int ret;
854 u16 msgctl;
855
856 if (!dev->msi_cap)
857 return -EINVAL;
858
859 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl);
860 ret = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1);
861
862 return ret;
863 }
864 EXPORT_SYMBOL(pci_msi_vec_count);
865
pci_msi_shutdown(struct pci_dev * dev)866 static void pci_msi_shutdown(struct pci_dev *dev)
867 {
868 struct msi_desc *desc;
869
870 if (!pci_msi_enable || !dev || !dev->msi_enabled)
871 return;
872
873 BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
874 desc = first_pci_msi_entry(dev);
875
876 pci_msi_set_enable(dev, 0);
877 pci_intx_for_msi(dev, 1);
878 dev->msi_enabled = 0;
879
880 /* Return the device with MSI unmasked as initial states */
881 pci_msi_unmask(desc, msi_multi_mask(desc));
882
883 /* Restore dev->irq to its default pin-assertion IRQ */
884 dev->irq = desc->msi_attrib.default_irq;
885 pcibios_alloc_irq(dev);
886 }
887
pci_disable_msi(struct pci_dev * dev)888 void pci_disable_msi(struct pci_dev *dev)
889 {
890 if (!pci_msi_enable || !dev || !dev->msi_enabled)
891 return;
892
893 pci_msi_shutdown(dev);
894 free_msi_irqs(dev);
895 }
896 EXPORT_SYMBOL(pci_disable_msi);
897
898 /**
899 * pci_msix_vec_count - return the number of device's MSI-X table entries
900 * @dev: pointer to the pci_dev data structure of MSI-X device function
901 * This function returns the number of device's MSI-X table entries and
902 * therefore the number of MSI-X vectors device is capable of sending.
903 * It returns a negative errno if the device is not capable of sending MSI-X
904 * interrupts.
905 **/
pci_msix_vec_count(struct pci_dev * dev)906 int pci_msix_vec_count(struct pci_dev *dev)
907 {
908 u16 control;
909
910 if (!dev->msix_cap)
911 return -EINVAL;
912
913 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
914 return msix_table_size(control);
915 }
916 EXPORT_SYMBOL(pci_msix_vec_count);
917
__pci_enable_msix(struct pci_dev * dev,struct msix_entry * entries,int nvec,struct irq_affinity * affd,int flags)918 static int __pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries,
919 int nvec, struct irq_affinity *affd, int flags)
920 {
921 int nr_entries;
922 int i, j;
923
924 if (!pci_msi_supported(dev, nvec) || dev->current_state != PCI_D0)
925 return -EINVAL;
926
927 nr_entries = pci_msix_vec_count(dev);
928 if (nr_entries < 0)
929 return nr_entries;
930 if (nvec > nr_entries && !(flags & PCI_IRQ_VIRTUAL))
931 return nr_entries;
932
933 if (entries) {
934 /* Check for any invalid entries */
935 for (i = 0; i < nvec; i++) {
936 if (entries[i].entry >= nr_entries)
937 return -EINVAL; /* invalid entry */
938 for (j = i + 1; j < nvec; j++) {
939 if (entries[i].entry == entries[j].entry)
940 return -EINVAL; /* duplicate entry */
941 }
942 }
943 }
944
945 /* Check whether driver already requested for MSI IRQ */
946 if (dev->msi_enabled) {
947 pci_info(dev, "can't enable MSI-X (MSI IRQ already assigned)\n");
948 return -EINVAL;
949 }
950 return msix_capability_init(dev, entries, nvec, affd);
951 }
952
pci_msix_shutdown(struct pci_dev * dev)953 static void pci_msix_shutdown(struct pci_dev *dev)
954 {
955 struct msi_desc *entry;
956
957 if (!pci_msi_enable || !dev || !dev->msix_enabled)
958 return;
959
960 if (pci_dev_is_disconnected(dev)) {
961 dev->msix_enabled = 0;
962 return;
963 }
964
965 /* Return the device with MSI-X masked as initial states */
966 for_each_pci_msi_entry(entry, dev)
967 pci_msix_mask(entry);
968
969 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0);
970 pci_intx_for_msi(dev, 1);
971 dev->msix_enabled = 0;
972 pcibios_alloc_irq(dev);
973 }
974
pci_disable_msix(struct pci_dev * dev)975 void pci_disable_msix(struct pci_dev *dev)
976 {
977 if (!pci_msi_enable || !dev || !dev->msix_enabled)
978 return;
979
980 pci_msix_shutdown(dev);
981 free_msi_irqs(dev);
982 }
983 EXPORT_SYMBOL(pci_disable_msix);
984
pci_no_msi(void)985 void pci_no_msi(void)
986 {
987 pci_msi_enable = 0;
988 }
989
990 /**
991 * pci_msi_enabled - is MSI enabled?
992 *
993 * Returns true if MSI has not been disabled by the command-line option
994 * pci=nomsi.
995 **/
pci_msi_enabled(void)996 int pci_msi_enabled(void)
997 {
998 return pci_msi_enable;
999 }
1000 EXPORT_SYMBOL(pci_msi_enabled);
1001
__pci_enable_msi_range(struct pci_dev * dev,int minvec,int maxvec,struct irq_affinity * affd)1002 static int __pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec,
1003 struct irq_affinity *affd)
1004 {
1005 int nvec;
1006 int rc;
1007
1008 if (!pci_msi_supported(dev, minvec) || dev->current_state != PCI_D0)
1009 return -EINVAL;
1010
1011 /* Check whether driver already requested MSI-X IRQs */
1012 if (dev->msix_enabled) {
1013 pci_info(dev, "can't enable MSI (MSI-X already enabled)\n");
1014 return -EINVAL;
1015 }
1016
1017 if (maxvec < minvec)
1018 return -ERANGE;
1019
1020 if (WARN_ON_ONCE(dev->msi_enabled))
1021 return -EINVAL;
1022
1023 nvec = pci_msi_vec_count(dev);
1024 if (nvec < 0)
1025 return nvec;
1026 if (nvec < minvec)
1027 return -ENOSPC;
1028
1029 if (nvec > maxvec)
1030 nvec = maxvec;
1031
1032 for (;;) {
1033 if (affd) {
1034 nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
1035 if (nvec < minvec)
1036 return -ENOSPC;
1037 }
1038
1039 rc = msi_capability_init(dev, nvec, affd);
1040 if (rc == 0)
1041 return nvec;
1042
1043 if (rc < 0)
1044 return rc;
1045 if (rc < minvec)
1046 return -ENOSPC;
1047
1048 nvec = rc;
1049 }
1050 }
1051
1052 /* deprecated, don't use */
pci_enable_msi(struct pci_dev * dev)1053 int pci_enable_msi(struct pci_dev *dev)
1054 {
1055 int rc = __pci_enable_msi_range(dev, 1, 1, NULL);
1056 if (rc < 0)
1057 return rc;
1058 return 0;
1059 }
1060 EXPORT_SYMBOL(pci_enable_msi);
1061
__pci_enable_msix_range(struct pci_dev * dev,struct msix_entry * entries,int minvec,int maxvec,struct irq_affinity * affd,int flags)1062 static int __pci_enable_msix_range(struct pci_dev *dev,
1063 struct msix_entry *entries, int minvec,
1064 int maxvec, struct irq_affinity *affd,
1065 int flags)
1066 {
1067 int rc, nvec = maxvec;
1068
1069 if (maxvec < minvec)
1070 return -ERANGE;
1071
1072 if (WARN_ON_ONCE(dev->msix_enabled))
1073 return -EINVAL;
1074
1075 for (;;) {
1076 if (affd) {
1077 nvec = irq_calc_affinity_vectors(minvec, nvec, affd);
1078 if (nvec < minvec)
1079 return -ENOSPC;
1080 }
1081
1082 rc = __pci_enable_msix(dev, entries, nvec, affd, flags);
1083 if (rc == 0)
1084 return nvec;
1085
1086 if (rc < 0)
1087 return rc;
1088 if (rc < minvec)
1089 return -ENOSPC;
1090
1091 nvec = rc;
1092 }
1093 }
1094
1095 /**
1096 * pci_enable_msix_range - configure device's MSI-X capability structure
1097 * @dev: pointer to the pci_dev data structure of MSI-X device function
1098 * @entries: pointer to an array of MSI-X entries
1099 * @minvec: minimum number of MSI-X IRQs requested
1100 * @maxvec: maximum number of MSI-X IRQs requested
1101 *
1102 * Setup the MSI-X capability structure of device function with a maximum
1103 * possible number of interrupts in the range between @minvec and @maxvec
1104 * upon its software driver call to request for MSI-X mode enabled on its
1105 * hardware device function. It returns a negative errno if an error occurs.
1106 * If it succeeds, it returns the actual number of interrupts allocated and
1107 * indicates the successful configuration of MSI-X capability structure
1108 * with new allocated MSI-X interrupts.
1109 **/
pci_enable_msix_range(struct pci_dev * dev,struct msix_entry * entries,int minvec,int maxvec)1110 int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries,
1111 int minvec, int maxvec)
1112 {
1113 return __pci_enable_msix_range(dev, entries, minvec, maxvec, NULL, 0);
1114 }
1115 EXPORT_SYMBOL(pci_enable_msix_range);
1116
1117 /**
1118 * pci_alloc_irq_vectors_affinity - allocate multiple IRQs for a device
1119 * @dev: PCI device to operate on
1120 * @min_vecs: minimum number of vectors required (must be >= 1)
1121 * @max_vecs: maximum (desired) number of vectors
1122 * @flags: flags or quirks for the allocation
1123 * @affd: optional description of the affinity requirements
1124 *
1125 * Allocate up to @max_vecs interrupt vectors for @dev, using MSI-X or MSI
1126 * vectors if available, and fall back to a single legacy vector
1127 * if neither is available. Return the number of vectors allocated,
1128 * (which might be smaller than @max_vecs) if successful, or a negative
1129 * error code on error. If less than @min_vecs interrupt vectors are
1130 * available for @dev the function will fail with -ENOSPC.
1131 *
1132 * To get the Linux IRQ number used for a vector that can be passed to
1133 * request_irq() use the pci_irq_vector() helper.
1134 */
pci_alloc_irq_vectors_affinity(struct pci_dev * dev,unsigned int min_vecs,unsigned int max_vecs,unsigned int flags,struct irq_affinity * affd)1135 int pci_alloc_irq_vectors_affinity(struct pci_dev *dev, unsigned int min_vecs,
1136 unsigned int max_vecs, unsigned int flags,
1137 struct irq_affinity *affd)
1138 {
1139 struct irq_affinity msi_default_affd = {0};
1140 int nvecs = -ENOSPC;
1141
1142 if (flags & PCI_IRQ_AFFINITY) {
1143 if (!affd)
1144 affd = &msi_default_affd;
1145 } else {
1146 if (WARN_ON(affd))
1147 affd = NULL;
1148 }
1149
1150 if (flags & PCI_IRQ_MSIX) {
1151 nvecs = __pci_enable_msix_range(dev, NULL, min_vecs, max_vecs,
1152 affd, flags);
1153 if (nvecs > 0)
1154 return nvecs;
1155 }
1156
1157 if (flags & PCI_IRQ_MSI) {
1158 nvecs = __pci_enable_msi_range(dev, min_vecs, max_vecs, affd);
1159 if (nvecs > 0)
1160 return nvecs;
1161 }
1162
1163 /* use legacy IRQ if allowed */
1164 if (flags & PCI_IRQ_LEGACY) {
1165 if (min_vecs == 1 && dev->irq) {
1166 /*
1167 * Invoke the affinity spreading logic to ensure that
1168 * the device driver can adjust queue configuration
1169 * for the single interrupt case.
1170 */
1171 if (affd)
1172 irq_create_affinity_masks(1, affd);
1173 pci_intx(dev, 1);
1174 return 1;
1175 }
1176 }
1177
1178 return nvecs;
1179 }
1180 EXPORT_SYMBOL(pci_alloc_irq_vectors_affinity);
1181
1182 /**
1183 * pci_free_irq_vectors - free previously allocated IRQs for a device
1184 * @dev: PCI device to operate on
1185 *
1186 * Undoes the allocations and enabling in pci_alloc_irq_vectors().
1187 */
pci_free_irq_vectors(struct pci_dev * dev)1188 void pci_free_irq_vectors(struct pci_dev *dev)
1189 {
1190 pci_disable_msix(dev);
1191 pci_disable_msi(dev);
1192 }
1193 EXPORT_SYMBOL(pci_free_irq_vectors);
1194
1195 /**
1196 * pci_irq_vector - return Linux IRQ number of a device vector
1197 * @dev: PCI device to operate on
1198 * @nr: device-relative interrupt vector index (0-based).
1199 */
pci_irq_vector(struct pci_dev * dev,unsigned int nr)1200 int pci_irq_vector(struct pci_dev *dev, unsigned int nr)
1201 {
1202 if (dev->msix_enabled) {
1203 struct msi_desc *entry;
1204 int i = 0;
1205
1206 for_each_pci_msi_entry(entry, dev) {
1207 if (i == nr)
1208 return entry->irq;
1209 i++;
1210 }
1211 WARN_ON_ONCE(1);
1212 return -EINVAL;
1213 }
1214
1215 if (dev->msi_enabled) {
1216 struct msi_desc *entry = first_pci_msi_entry(dev);
1217
1218 if (WARN_ON_ONCE(nr >= entry->nvec_used))
1219 return -EINVAL;
1220 } else {
1221 if (WARN_ON_ONCE(nr > 0))
1222 return -EINVAL;
1223 }
1224
1225 return dev->irq + nr;
1226 }
1227 EXPORT_SYMBOL(pci_irq_vector);
1228
1229 /**
1230 * pci_irq_get_affinity - return the affinity of a particular MSI vector
1231 * @dev: PCI device to operate on
1232 * @nr: device-relative interrupt vector index (0-based).
1233 */
pci_irq_get_affinity(struct pci_dev * dev,int nr)1234 const struct cpumask *pci_irq_get_affinity(struct pci_dev *dev, int nr)
1235 {
1236 if (dev->msix_enabled) {
1237 struct msi_desc *entry;
1238 int i = 0;
1239
1240 for_each_pci_msi_entry(entry, dev) {
1241 if (i == nr)
1242 return &entry->affinity->mask;
1243 i++;
1244 }
1245 WARN_ON_ONCE(1);
1246 return NULL;
1247 } else if (dev->msi_enabled) {
1248 struct msi_desc *entry = first_pci_msi_entry(dev);
1249
1250 if (WARN_ON_ONCE(!entry || !entry->affinity ||
1251 nr >= entry->nvec_used))
1252 return NULL;
1253
1254 return &entry->affinity[nr].mask;
1255 } else {
1256 return cpu_possible_mask;
1257 }
1258 }
1259 EXPORT_SYMBOL(pci_irq_get_affinity);
1260
msi_desc_to_pci_dev(struct msi_desc * desc)1261 struct pci_dev *msi_desc_to_pci_dev(struct msi_desc *desc)
1262 {
1263 return to_pci_dev(desc->dev);
1264 }
1265 EXPORT_SYMBOL(msi_desc_to_pci_dev);
1266
msi_desc_to_pci_sysdata(struct msi_desc * desc)1267 void *msi_desc_to_pci_sysdata(struct msi_desc *desc)
1268 {
1269 struct pci_dev *dev = msi_desc_to_pci_dev(desc);
1270
1271 return dev->bus->sysdata;
1272 }
1273 EXPORT_SYMBOL_GPL(msi_desc_to_pci_sysdata);
1274
1275 #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
1276 /**
1277 * pci_msi_domain_write_msg - Helper to write MSI message to PCI config space
1278 * @irq_data: Pointer to interrupt data of the MSI interrupt
1279 * @msg: Pointer to the message
1280 */
pci_msi_domain_write_msg(struct irq_data * irq_data,struct msi_msg * msg)1281 void pci_msi_domain_write_msg(struct irq_data *irq_data, struct msi_msg *msg)
1282 {
1283 struct msi_desc *desc = irq_data_get_msi_desc(irq_data);
1284
1285 /*
1286 * For MSI-X desc->irq is always equal to irq_data->irq. For
1287 * MSI only the first interrupt of MULTI MSI passes the test.
1288 */
1289 if (desc->irq == irq_data->irq)
1290 __pci_write_msi_msg(desc, msg);
1291 }
1292
1293 /**
1294 * pci_msi_domain_calc_hwirq - Generate a unique ID for an MSI source
1295 * @desc: Pointer to the MSI descriptor
1296 *
1297 * The ID number is only used within the irqdomain.
1298 */
pci_msi_domain_calc_hwirq(struct msi_desc * desc)1299 static irq_hw_number_t pci_msi_domain_calc_hwirq(struct msi_desc *desc)
1300 {
1301 struct pci_dev *dev = msi_desc_to_pci_dev(desc);
1302
1303 return (irq_hw_number_t)desc->msi_attrib.entry_nr |
1304 pci_dev_id(dev) << 11 |
1305 (pci_domain_nr(dev->bus) & 0xFFFFFFFF) << 27;
1306 }
1307
pci_msi_desc_is_multi_msi(struct msi_desc * desc)1308 static inline bool pci_msi_desc_is_multi_msi(struct msi_desc *desc)
1309 {
1310 return !desc->msi_attrib.is_msix && desc->nvec_used > 1;
1311 }
1312
1313 /**
1314 * pci_msi_domain_check_cap - Verify that @domain supports the capabilities
1315 * for @dev
1316 * @domain: The interrupt domain to check
1317 * @info: The domain info for verification
1318 * @dev: The device to check
1319 *
1320 * Returns:
1321 * 0 if the functionality is supported
1322 * 1 if Multi MSI is requested, but the domain does not support it
1323 * -ENOTSUPP otherwise
1324 */
pci_msi_domain_check_cap(struct irq_domain * domain,struct msi_domain_info * info,struct device * dev)1325 int pci_msi_domain_check_cap(struct irq_domain *domain,
1326 struct msi_domain_info *info, struct device *dev)
1327 {
1328 struct msi_desc *desc = first_pci_msi_entry(to_pci_dev(dev));
1329
1330 /* Special handling to support __pci_enable_msi_range() */
1331 if (pci_msi_desc_is_multi_msi(desc) &&
1332 !(info->flags & MSI_FLAG_MULTI_PCI_MSI))
1333 return 1;
1334 else if (desc->msi_attrib.is_msix && !(info->flags & MSI_FLAG_PCI_MSIX))
1335 return -ENOTSUPP;
1336
1337 return 0;
1338 }
1339
pci_msi_domain_handle_error(struct irq_domain * domain,struct msi_desc * desc,int error)1340 static int pci_msi_domain_handle_error(struct irq_domain *domain,
1341 struct msi_desc *desc, int error)
1342 {
1343 /* Special handling to support __pci_enable_msi_range() */
1344 if (pci_msi_desc_is_multi_msi(desc) && error == -ENOSPC)
1345 return 1;
1346
1347 return error;
1348 }
1349
pci_msi_domain_set_desc(msi_alloc_info_t * arg,struct msi_desc * desc)1350 static void pci_msi_domain_set_desc(msi_alloc_info_t *arg,
1351 struct msi_desc *desc)
1352 {
1353 arg->desc = desc;
1354 arg->hwirq = pci_msi_domain_calc_hwirq(desc);
1355 }
1356
1357 static struct msi_domain_ops pci_msi_domain_ops_default = {
1358 .set_desc = pci_msi_domain_set_desc,
1359 .msi_check = pci_msi_domain_check_cap,
1360 .handle_error = pci_msi_domain_handle_error,
1361 };
1362
pci_msi_domain_update_dom_ops(struct msi_domain_info * info)1363 static void pci_msi_domain_update_dom_ops(struct msi_domain_info *info)
1364 {
1365 struct msi_domain_ops *ops = info->ops;
1366
1367 if (ops == NULL) {
1368 info->ops = &pci_msi_domain_ops_default;
1369 } else {
1370 if (ops->set_desc == NULL)
1371 ops->set_desc = pci_msi_domain_set_desc;
1372 if (ops->msi_check == NULL)
1373 ops->msi_check = pci_msi_domain_check_cap;
1374 if (ops->handle_error == NULL)
1375 ops->handle_error = pci_msi_domain_handle_error;
1376 }
1377 }
1378
pci_msi_domain_update_chip_ops(struct msi_domain_info * info)1379 static void pci_msi_domain_update_chip_ops(struct msi_domain_info *info)
1380 {
1381 struct irq_chip *chip = info->chip;
1382
1383 BUG_ON(!chip);
1384 if (!chip->irq_write_msi_msg)
1385 chip->irq_write_msi_msg = pci_msi_domain_write_msg;
1386 if (!chip->irq_mask)
1387 chip->irq_mask = pci_msi_mask_irq;
1388 if (!chip->irq_unmask)
1389 chip->irq_unmask = pci_msi_unmask_irq;
1390 }
1391
1392 /**
1393 * pci_msi_create_irq_domain - Create a MSI interrupt domain
1394 * @fwnode: Optional fwnode of the interrupt controller
1395 * @info: MSI domain info
1396 * @parent: Parent irq domain
1397 *
1398 * Updates the domain and chip ops and creates a MSI interrupt domain.
1399 *
1400 * Returns:
1401 * A domain pointer or NULL in case of failure.
1402 */
pci_msi_create_irq_domain(struct fwnode_handle * fwnode,struct msi_domain_info * info,struct irq_domain * parent)1403 struct irq_domain *pci_msi_create_irq_domain(struct fwnode_handle *fwnode,
1404 struct msi_domain_info *info,
1405 struct irq_domain *parent)
1406 {
1407 struct irq_domain *domain;
1408
1409 if (WARN_ON(info->flags & MSI_FLAG_LEVEL_CAPABLE))
1410 info->flags &= ~MSI_FLAG_LEVEL_CAPABLE;
1411
1412 if (info->flags & MSI_FLAG_USE_DEF_DOM_OPS)
1413 pci_msi_domain_update_dom_ops(info);
1414 if (info->flags & MSI_FLAG_USE_DEF_CHIP_OPS)
1415 pci_msi_domain_update_chip_ops(info);
1416
1417 info->flags |= MSI_FLAG_ACTIVATE_EARLY;
1418 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
1419 info->flags |= MSI_FLAG_MUST_REACTIVATE;
1420
1421 /* PCI-MSI is oneshot-safe */
1422 info->chip->flags |= IRQCHIP_ONESHOT_SAFE;
1423
1424 domain = msi_create_irq_domain(fwnode, info, parent);
1425 if (!domain)
1426 return NULL;
1427
1428 irq_domain_update_bus_token(domain, DOMAIN_BUS_PCI_MSI);
1429 return domain;
1430 }
1431 EXPORT_SYMBOL_GPL(pci_msi_create_irq_domain);
1432
1433 /*
1434 * Users of the generic MSI infrastructure expect a device to have a single ID,
1435 * so with DMA aliases we have to pick the least-worst compromise. Devices with
1436 * DMA phantom functions tend to still emit MSIs from the real function number,
1437 * so we ignore those and only consider topological aliases where either the
1438 * alias device or RID appears on a different bus number. We also make the
1439 * reasonable assumption that bridges are walked in an upstream direction (so
1440 * the last one seen wins), and the much braver assumption that the most likely
1441 * case is that of PCI->PCIe so we should always use the alias RID. This echoes
1442 * the logic from intel_irq_remapping's set_msi_sid(), which presumably works
1443 * well enough in practice; in the face of the horrible PCIe<->PCI-X conditions
1444 * for taking ownership all we can really do is close our eyes and hope...
1445 */
get_msi_id_cb(struct pci_dev * pdev,u16 alias,void * data)1446 static int get_msi_id_cb(struct pci_dev *pdev, u16 alias, void *data)
1447 {
1448 u32 *pa = data;
1449 u8 bus = PCI_BUS_NUM(*pa);
1450
1451 if (pdev->bus->number != bus || PCI_BUS_NUM(alias) != bus)
1452 *pa = alias;
1453
1454 return 0;
1455 }
1456
1457 /**
1458 * pci_msi_domain_get_msi_rid - Get the MSI requester id (RID)
1459 * @domain: The interrupt domain
1460 * @pdev: The PCI device.
1461 *
1462 * The RID for a device is formed from the alias, with a firmware
1463 * supplied mapping applied
1464 *
1465 * Returns: The RID.
1466 */
pci_msi_domain_get_msi_rid(struct irq_domain * domain,struct pci_dev * pdev)1467 u32 pci_msi_domain_get_msi_rid(struct irq_domain *domain, struct pci_dev *pdev)
1468 {
1469 struct device_node *of_node;
1470 u32 rid = pci_dev_id(pdev);
1471
1472 pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1473
1474 of_node = irq_domain_get_of_node(domain);
1475 rid = of_node ? of_msi_map_id(&pdev->dev, of_node, rid) :
1476 iort_msi_map_id(&pdev->dev, rid);
1477
1478 return rid;
1479 }
1480
1481 /**
1482 * pci_msi_get_device_domain - Get the MSI domain for a given PCI device
1483 * @pdev: The PCI device
1484 *
1485 * Use the firmware data to find a device-specific MSI domain
1486 * (i.e. not one that is set as a default).
1487 *
1488 * Returns: The corresponding MSI domain or NULL if none has been found.
1489 */
pci_msi_get_device_domain(struct pci_dev * pdev)1490 struct irq_domain *pci_msi_get_device_domain(struct pci_dev *pdev)
1491 {
1492 struct irq_domain *dom;
1493 u32 rid = pci_dev_id(pdev);
1494
1495 pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1496 dom = of_msi_map_get_device_domain(&pdev->dev, rid, DOMAIN_BUS_PCI_MSI);
1497 if (!dom)
1498 dom = iort_get_device_domain(&pdev->dev, rid,
1499 DOMAIN_BUS_PCI_MSI);
1500 return dom;
1501 }
1502
1503 /**
1504 * pci_dev_has_special_msi_domain - Check whether the device is handled by
1505 * a non-standard PCI-MSI domain
1506 * @pdev: The PCI device to check.
1507 *
1508 * Returns: True if the device irqdomain or the bus irqdomain is
1509 * non-standard PCI/MSI.
1510 */
pci_dev_has_special_msi_domain(struct pci_dev * pdev)1511 bool pci_dev_has_special_msi_domain(struct pci_dev *pdev)
1512 {
1513 struct irq_domain *dom = dev_get_msi_domain(&pdev->dev);
1514
1515 if (!dom)
1516 dom = dev_get_msi_domain(&pdev->bus->dev);
1517
1518 if (!dom)
1519 return true;
1520
1521 return dom->bus_token != DOMAIN_BUS_PCI_MSI;
1522 }
1523
1524 #endif /* CONFIG_PCI_MSI_IRQ_DOMAIN */
1525 #endif /* CONFIG_PCI_MSI */
1526
pci_msi_init(struct pci_dev * dev)1527 void pci_msi_init(struct pci_dev *dev)
1528 {
1529 u16 ctrl;
1530
1531 /*
1532 * Disable the MSI hardware to avoid screaming interrupts
1533 * during boot. This is the power on reset default so
1534 * usually this should be a noop.
1535 */
1536 dev->msi_cap = pci_find_capability(dev, PCI_CAP_ID_MSI);
1537 if (!dev->msi_cap)
1538 return;
1539
1540 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &ctrl);
1541 if (ctrl & PCI_MSI_FLAGS_ENABLE)
1542 pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS,
1543 ctrl & ~PCI_MSI_FLAGS_ENABLE);
1544
1545 if (!(ctrl & PCI_MSI_FLAGS_64BIT))
1546 dev->no_64bit_msi = 1;
1547 }
1548
pci_msix_init(struct pci_dev * dev)1549 void pci_msix_init(struct pci_dev *dev)
1550 {
1551 u16 ctrl;
1552
1553 dev->msix_cap = pci_find_capability(dev, PCI_CAP_ID_MSIX);
1554 if (!dev->msix_cap)
1555 return;
1556
1557 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
1558 if (ctrl & PCI_MSIX_FLAGS_ENABLE)
1559 pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS,
1560 ctrl & ~PCI_MSIX_FLAGS_ENABLE);
1561 }
1562