1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33
34 #define DM_MSG_PREFIX "core"
35
36 /*
37 * Cookies are numeric values sent with CHANGE and REMOVE
38 * uevents while resuming, removing or renaming the device.
39 */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42
43 static const char *_name = DM_NAME;
44
45 static unsigned int major = 0;
46 static unsigned int _major = 0;
47
48 static DEFINE_IDR(_minor_idr);
49
50 static DEFINE_SPINLOCK(_minor_lock);
51
52 static void do_deferred_remove(struct work_struct *w);
53
54 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
55
56 static struct workqueue_struct *deferred_remove_workqueue;
57
58 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
59 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
60
dm_issue_global_event(void)61 void dm_issue_global_event(void)
62 {
63 atomic_inc(&dm_global_event_nr);
64 wake_up(&dm_global_eventq);
65 }
66
67 /*
68 * One of these is allocated (on-stack) per original bio.
69 */
70 struct clone_info {
71 struct dm_table *map;
72 struct bio *bio;
73 struct dm_io *io;
74 sector_t sector;
75 unsigned sector_count;
76 };
77
78 #define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
79 #define DM_IO_BIO_OFFSET \
80 (offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
81
dm_per_bio_data(struct bio * bio,size_t data_size)82 void *dm_per_bio_data(struct bio *bio, size_t data_size)
83 {
84 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
85 if (!tio->inside_dm_io)
86 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
87 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
88 }
89 EXPORT_SYMBOL_GPL(dm_per_bio_data);
90
dm_bio_from_per_bio_data(void * data,size_t data_size)91 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
92 {
93 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
94 if (io->magic == DM_IO_MAGIC)
95 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
96 BUG_ON(io->magic != DM_TIO_MAGIC);
97 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
98 }
99 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
100
dm_bio_get_target_bio_nr(const struct bio * bio)101 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
102 {
103 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
104 }
105 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
106
107 #define MINOR_ALLOCED ((void *)-1)
108
109 #define DM_NUMA_NODE NUMA_NO_NODE
110 static int dm_numa_node = DM_NUMA_NODE;
111
112 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
113 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)114 static int get_swap_bios(void)
115 {
116 int latch = READ_ONCE(swap_bios);
117 if (unlikely(latch <= 0))
118 latch = DEFAULT_SWAP_BIOS;
119 return latch;
120 }
121
122 /*
123 * For mempools pre-allocation at the table loading time.
124 */
125 struct dm_md_mempools {
126 struct bio_set bs;
127 struct bio_set io_bs;
128 };
129
130 struct table_device {
131 struct list_head list;
132 refcount_t count;
133 struct dm_dev dm_dev;
134 };
135
136 /*
137 * Bio-based DM's mempools' reserved IOs set by the user.
138 */
139 #define RESERVED_BIO_BASED_IOS 16
140 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
141
__dm_get_module_param_int(int * module_param,int min,int max)142 static int __dm_get_module_param_int(int *module_param, int min, int max)
143 {
144 int param = READ_ONCE(*module_param);
145 int modified_param = 0;
146 bool modified = true;
147
148 if (param < min)
149 modified_param = min;
150 else if (param > max)
151 modified_param = max;
152 else
153 modified = false;
154
155 if (modified) {
156 (void)cmpxchg(module_param, param, modified_param);
157 param = modified_param;
158 }
159
160 return param;
161 }
162
__dm_get_module_param(unsigned * module_param,unsigned def,unsigned max)163 unsigned __dm_get_module_param(unsigned *module_param,
164 unsigned def, unsigned max)
165 {
166 unsigned param = READ_ONCE(*module_param);
167 unsigned modified_param = 0;
168
169 if (!param)
170 modified_param = def;
171 else if (param > max)
172 modified_param = max;
173
174 if (modified_param) {
175 (void)cmpxchg(module_param, param, modified_param);
176 param = modified_param;
177 }
178
179 return param;
180 }
181
dm_get_reserved_bio_based_ios(void)182 unsigned dm_get_reserved_bio_based_ios(void)
183 {
184 return __dm_get_module_param(&reserved_bio_based_ios,
185 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
186 }
187 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
188
dm_get_numa_node(void)189 static unsigned dm_get_numa_node(void)
190 {
191 return __dm_get_module_param_int(&dm_numa_node,
192 DM_NUMA_NODE, num_online_nodes() - 1);
193 }
194
local_init(void)195 static int __init local_init(void)
196 {
197 int r;
198
199 r = dm_uevent_init();
200 if (r)
201 return r;
202
203 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
204 if (!deferred_remove_workqueue) {
205 r = -ENOMEM;
206 goto out_uevent_exit;
207 }
208
209 _major = major;
210 r = register_blkdev(_major, _name);
211 if (r < 0)
212 goto out_free_workqueue;
213
214 if (!_major)
215 _major = r;
216
217 return 0;
218
219 out_free_workqueue:
220 destroy_workqueue(deferred_remove_workqueue);
221 out_uevent_exit:
222 dm_uevent_exit();
223
224 return r;
225 }
226
local_exit(void)227 static void local_exit(void)
228 {
229 flush_scheduled_work();
230 destroy_workqueue(deferred_remove_workqueue);
231
232 unregister_blkdev(_major, _name);
233 dm_uevent_exit();
234
235 _major = 0;
236
237 DMINFO("cleaned up");
238 }
239
240 static int (*_inits[])(void) __initdata = {
241 local_init,
242 dm_target_init,
243 dm_linear_init,
244 dm_stripe_init,
245 dm_io_init,
246 dm_kcopyd_init,
247 dm_interface_init,
248 dm_statistics_init,
249 };
250
251 static void (*_exits[])(void) = {
252 local_exit,
253 dm_target_exit,
254 dm_linear_exit,
255 dm_stripe_exit,
256 dm_io_exit,
257 dm_kcopyd_exit,
258 dm_interface_exit,
259 dm_statistics_exit,
260 };
261
dm_init(void)262 static int __init dm_init(void)
263 {
264 const int count = ARRAY_SIZE(_inits);
265 int r, i;
266
267 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
268 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
269 " Duplicate IMA measurements will not be recorded in the IMA log.");
270 #endif
271
272 for (i = 0; i < count; i++) {
273 r = _inits[i]();
274 if (r)
275 goto bad;
276 }
277
278 return 0;
279 bad:
280 while (i--)
281 _exits[i]();
282
283 return r;
284 }
285
dm_exit(void)286 static void __exit dm_exit(void)
287 {
288 int i = ARRAY_SIZE(_exits);
289
290 while (i--)
291 _exits[i]();
292
293 /*
294 * Should be empty by this point.
295 */
296 idr_destroy(&_minor_idr);
297 }
298
299 /*
300 * Block device functions
301 */
dm_deleting_md(struct mapped_device * md)302 int dm_deleting_md(struct mapped_device *md)
303 {
304 return test_bit(DMF_DELETING, &md->flags);
305 }
306
dm_blk_open(struct block_device * bdev,fmode_t mode)307 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
308 {
309 struct mapped_device *md;
310
311 spin_lock(&_minor_lock);
312
313 md = bdev->bd_disk->private_data;
314 if (!md)
315 goto out;
316
317 if (test_bit(DMF_FREEING, &md->flags) ||
318 dm_deleting_md(md)) {
319 md = NULL;
320 goto out;
321 }
322
323 dm_get(md);
324 atomic_inc(&md->open_count);
325 out:
326 spin_unlock(&_minor_lock);
327
328 return md ? 0 : -ENXIO;
329 }
330
dm_blk_close(struct gendisk * disk,fmode_t mode)331 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
332 {
333 struct mapped_device *md;
334
335 spin_lock(&_minor_lock);
336
337 md = disk->private_data;
338 if (WARN_ON(!md))
339 goto out;
340
341 if (atomic_dec_and_test(&md->open_count) &&
342 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
343 queue_work(deferred_remove_workqueue, &deferred_remove_work);
344
345 dm_put(md);
346 out:
347 spin_unlock(&_minor_lock);
348 }
349
dm_open_count(struct mapped_device * md)350 int dm_open_count(struct mapped_device *md)
351 {
352 return atomic_read(&md->open_count);
353 }
354
355 /*
356 * Guarantees nothing is using the device before it's deleted.
357 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)358 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
359 {
360 int r = 0;
361
362 spin_lock(&_minor_lock);
363
364 if (dm_open_count(md)) {
365 r = -EBUSY;
366 if (mark_deferred)
367 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
368 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
369 r = -EEXIST;
370 else
371 set_bit(DMF_DELETING, &md->flags);
372
373 spin_unlock(&_minor_lock);
374
375 return r;
376 }
377
dm_cancel_deferred_remove(struct mapped_device * md)378 int dm_cancel_deferred_remove(struct mapped_device *md)
379 {
380 int r = 0;
381
382 spin_lock(&_minor_lock);
383
384 if (test_bit(DMF_DELETING, &md->flags))
385 r = -EBUSY;
386 else
387 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
388
389 spin_unlock(&_minor_lock);
390
391 return r;
392 }
393
do_deferred_remove(struct work_struct * w)394 static void do_deferred_remove(struct work_struct *w)
395 {
396 dm_deferred_remove();
397 }
398
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)399 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
400 {
401 struct mapped_device *md = bdev->bd_disk->private_data;
402
403 return dm_get_geometry(md, geo);
404 }
405
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)406 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
407 struct block_device **bdev)
408 {
409 struct dm_target *tgt;
410 struct dm_table *map;
411 int r;
412
413 retry:
414 r = -ENOTTY;
415 map = dm_get_live_table(md, srcu_idx);
416 if (!map || !dm_table_get_size(map))
417 return r;
418
419 /* We only support devices that have a single target */
420 if (dm_table_get_num_targets(map) != 1)
421 return r;
422
423 tgt = dm_table_get_target(map, 0);
424 if (!tgt->type->prepare_ioctl)
425 return r;
426
427 if (dm_suspended_md(md))
428 return -EAGAIN;
429
430 r = tgt->type->prepare_ioctl(tgt, bdev);
431 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
432 dm_put_live_table(md, *srcu_idx);
433 msleep(10);
434 goto retry;
435 }
436
437 return r;
438 }
439
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)440 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
441 {
442 dm_put_live_table(md, srcu_idx);
443 }
444
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)445 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
446 unsigned int cmd, unsigned long arg)
447 {
448 struct mapped_device *md = bdev->bd_disk->private_data;
449 int r, srcu_idx;
450
451 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
452 if (r < 0)
453 goto out;
454
455 if (r > 0) {
456 /*
457 * Target determined this ioctl is being issued against a
458 * subset of the parent bdev; require extra privileges.
459 */
460 if (!capable(CAP_SYS_RAWIO)) {
461 DMDEBUG_LIMIT(
462 "%s: sending ioctl %x to DM device without required privilege.",
463 current->comm, cmd);
464 r = -ENOIOCTLCMD;
465 goto out;
466 }
467 }
468
469 if (!bdev->bd_disk->fops->ioctl)
470 r = -ENOTTY;
471 else
472 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
473 out:
474 dm_unprepare_ioctl(md, srcu_idx);
475 return r;
476 }
477
dm_start_time_ns_from_clone(struct bio * bio)478 u64 dm_start_time_ns_from_clone(struct bio *bio)
479 {
480 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
481 struct dm_io *io = tio->io;
482
483 return jiffies_to_nsecs(io->start_time);
484 }
485 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
486
start_io_acct(struct dm_io * io)487 static void start_io_acct(struct dm_io *io)
488 {
489 struct mapped_device *md = io->md;
490 struct bio *bio = io->orig_bio;
491
492 io->start_time = bio_start_io_acct(bio);
493 if (unlikely(dm_stats_used(&md->stats)))
494 dm_stats_account_io(&md->stats, bio_data_dir(bio),
495 bio->bi_iter.bi_sector, bio_sectors(bio),
496 false, 0, &io->stats_aux);
497 }
498
end_io_acct(struct mapped_device * md,struct bio * bio,unsigned long start_time,struct dm_stats_aux * stats_aux)499 static void end_io_acct(struct mapped_device *md, struct bio *bio,
500 unsigned long start_time, struct dm_stats_aux *stats_aux)
501 {
502 unsigned long duration = jiffies - start_time;
503
504 bio_end_io_acct(bio, start_time);
505
506 if (unlikely(dm_stats_used(&md->stats)))
507 dm_stats_account_io(&md->stats, bio_data_dir(bio),
508 bio->bi_iter.bi_sector, bio_sectors(bio),
509 true, duration, stats_aux);
510
511 /* nudge anyone waiting on suspend queue */
512 if (unlikely(wq_has_sleeper(&md->wait)))
513 wake_up(&md->wait);
514 }
515
alloc_io(struct mapped_device * md,struct bio * bio)516 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
517 {
518 struct dm_io *io;
519 struct dm_target_io *tio;
520 struct bio *clone;
521
522 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
523 if (!clone)
524 return NULL;
525
526 tio = container_of(clone, struct dm_target_io, clone);
527 tio->inside_dm_io = true;
528 tio->io = NULL;
529
530 io = container_of(tio, struct dm_io, tio);
531 io->magic = DM_IO_MAGIC;
532 io->status = 0;
533 atomic_set(&io->io_count, 1);
534 io->orig_bio = bio;
535 io->md = md;
536 spin_lock_init(&io->endio_lock);
537
538 start_io_acct(io);
539
540 return io;
541 }
542
free_io(struct mapped_device * md,struct dm_io * io)543 static void free_io(struct mapped_device *md, struct dm_io *io)
544 {
545 bio_put(&io->tio.clone);
546 }
547
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned target_bio_nr,gfp_t gfp_mask)548 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
549 unsigned target_bio_nr, gfp_t gfp_mask)
550 {
551 struct dm_target_io *tio;
552
553 if (!ci->io->tio.io) {
554 /* the dm_target_io embedded in ci->io is available */
555 tio = &ci->io->tio;
556 } else {
557 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
558 if (!clone)
559 return NULL;
560
561 tio = container_of(clone, struct dm_target_io, clone);
562 tio->inside_dm_io = false;
563 }
564
565 tio->magic = DM_TIO_MAGIC;
566 tio->io = ci->io;
567 tio->ti = ti;
568 tio->target_bio_nr = target_bio_nr;
569
570 return tio;
571 }
572
free_tio(struct dm_target_io * tio)573 static void free_tio(struct dm_target_io *tio)
574 {
575 if (tio->inside_dm_io)
576 return;
577 bio_put(&tio->clone);
578 }
579
580 /*
581 * Add the bio to the list of deferred io.
582 */
queue_io(struct mapped_device * md,struct bio * bio)583 static void queue_io(struct mapped_device *md, struct bio *bio)
584 {
585 unsigned long flags;
586
587 spin_lock_irqsave(&md->deferred_lock, flags);
588 bio_list_add(&md->deferred, bio);
589 spin_unlock_irqrestore(&md->deferred_lock, flags);
590 queue_work(md->wq, &md->work);
591 }
592
593 /*
594 * Everyone (including functions in this file), should use this
595 * function to access the md->map field, and make sure they call
596 * dm_put_live_table() when finished.
597 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)598 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
599 {
600 *srcu_idx = srcu_read_lock(&md->io_barrier);
601
602 return srcu_dereference(md->map, &md->io_barrier);
603 }
604
dm_put_live_table(struct mapped_device * md,int srcu_idx)605 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
606 {
607 srcu_read_unlock(&md->io_barrier, srcu_idx);
608 }
609
dm_sync_table(struct mapped_device * md)610 void dm_sync_table(struct mapped_device *md)
611 {
612 synchronize_srcu(&md->io_barrier);
613 synchronize_rcu_expedited();
614 }
615
616 /*
617 * A fast alternative to dm_get_live_table/dm_put_live_table.
618 * The caller must not block between these two functions.
619 */
dm_get_live_table_fast(struct mapped_device * md)620 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
621 {
622 rcu_read_lock();
623 return rcu_dereference(md->map);
624 }
625
dm_put_live_table_fast(struct mapped_device * md)626 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
627 {
628 rcu_read_unlock();
629 }
630
631 static char *_dm_claim_ptr = "I belong to device-mapper";
632
633 /*
634 * Open a table device so we can use it as a map destination.
635 */
open_table_device(struct table_device * td,dev_t dev,struct mapped_device * md)636 static int open_table_device(struct table_device *td, dev_t dev,
637 struct mapped_device *md)
638 {
639 struct block_device *bdev;
640
641 int r;
642
643 BUG_ON(td->dm_dev.bdev);
644
645 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
646 if (IS_ERR(bdev))
647 return PTR_ERR(bdev);
648
649 r = bd_link_disk_holder(bdev, dm_disk(md));
650 if (r) {
651 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
652 return r;
653 }
654
655 td->dm_dev.bdev = bdev;
656 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev);
657 return 0;
658 }
659
660 /*
661 * Close a table device that we've been using.
662 */
close_table_device(struct table_device * td,struct mapped_device * md)663 static void close_table_device(struct table_device *td, struct mapped_device *md)
664 {
665 if (!td->dm_dev.bdev)
666 return;
667
668 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
669 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
670 put_dax(td->dm_dev.dax_dev);
671 td->dm_dev.bdev = NULL;
672 td->dm_dev.dax_dev = NULL;
673 }
674
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)675 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
676 fmode_t mode)
677 {
678 struct table_device *td;
679
680 list_for_each_entry(td, l, list)
681 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
682 return td;
683
684 return NULL;
685 }
686
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)687 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
688 struct dm_dev **result)
689 {
690 int r;
691 struct table_device *td;
692
693 mutex_lock(&md->table_devices_lock);
694 td = find_table_device(&md->table_devices, dev, mode);
695 if (!td) {
696 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
697 if (!td) {
698 mutex_unlock(&md->table_devices_lock);
699 return -ENOMEM;
700 }
701
702 td->dm_dev.mode = mode;
703 td->dm_dev.bdev = NULL;
704
705 if ((r = open_table_device(td, dev, md))) {
706 mutex_unlock(&md->table_devices_lock);
707 kfree(td);
708 return r;
709 }
710
711 format_dev_t(td->dm_dev.name, dev);
712
713 refcount_set(&td->count, 1);
714 list_add(&td->list, &md->table_devices);
715 } else {
716 refcount_inc(&td->count);
717 }
718 mutex_unlock(&md->table_devices_lock);
719
720 *result = &td->dm_dev;
721 return 0;
722 }
723
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)724 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
725 {
726 struct table_device *td = container_of(d, struct table_device, dm_dev);
727
728 mutex_lock(&md->table_devices_lock);
729 if (refcount_dec_and_test(&td->count)) {
730 close_table_device(td, md);
731 list_del(&td->list);
732 kfree(td);
733 }
734 mutex_unlock(&md->table_devices_lock);
735 }
736
free_table_devices(struct list_head * devices)737 static void free_table_devices(struct list_head *devices)
738 {
739 struct list_head *tmp, *next;
740
741 list_for_each_safe(tmp, next, devices) {
742 struct table_device *td = list_entry(tmp, struct table_device, list);
743
744 DMWARN("dm_destroy: %s still exists with %d references",
745 td->dm_dev.name, refcount_read(&td->count));
746 kfree(td);
747 }
748 }
749
750 /*
751 * Get the geometry associated with a dm device
752 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)753 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
754 {
755 *geo = md->geometry;
756
757 return 0;
758 }
759
760 /*
761 * Set the geometry of a device.
762 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)763 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
764 {
765 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
766
767 if (geo->start > sz) {
768 DMWARN("Start sector is beyond the geometry limits.");
769 return -EINVAL;
770 }
771
772 md->geometry = *geo;
773
774 return 0;
775 }
776
__noflush_suspending(struct mapped_device * md)777 static int __noflush_suspending(struct mapped_device *md)
778 {
779 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
780 }
781
782 /*
783 * Decrements the number of outstanding ios that a bio has been
784 * cloned into, completing the original io if necc.
785 */
dm_io_dec_pending(struct dm_io * io,blk_status_t error)786 void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
787 {
788 unsigned long flags;
789 blk_status_t io_error;
790 struct bio *bio;
791 struct mapped_device *md = io->md;
792 unsigned long start_time = 0;
793 struct dm_stats_aux stats_aux;
794
795 /* Push-back supersedes any I/O errors */
796 if (unlikely(error)) {
797 spin_lock_irqsave(&io->endio_lock, flags);
798 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
799 io->status = error;
800 spin_unlock_irqrestore(&io->endio_lock, flags);
801 }
802
803 if (atomic_dec_and_test(&io->io_count)) {
804 bio = io->orig_bio;
805 if (io->status == BLK_STS_DM_REQUEUE) {
806 /*
807 * Target requested pushing back the I/O.
808 */
809 spin_lock_irqsave(&md->deferred_lock, flags);
810 if (__noflush_suspending(md) &&
811 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
812 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
813 bio_list_add_head(&md->deferred, bio);
814 } else {
815 /*
816 * noflush suspend was interrupted or this is
817 * a write to a zoned target.
818 */
819 io->status = BLK_STS_IOERR;
820 }
821 spin_unlock_irqrestore(&md->deferred_lock, flags);
822 }
823
824 io_error = io->status;
825 start_time = io->start_time;
826 stats_aux = io->stats_aux;
827 free_io(md, io);
828 end_io_acct(md, bio, start_time, &stats_aux);
829
830 if (io_error == BLK_STS_DM_REQUEUE)
831 return;
832
833 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
834 /*
835 * Preflush done for flush with data, reissue
836 * without REQ_PREFLUSH.
837 */
838 bio->bi_opf &= ~REQ_PREFLUSH;
839 queue_io(md, bio);
840 } else {
841 /* done with normal IO or empty flush */
842 if (io_error)
843 bio->bi_status = io_error;
844 bio_endio(bio);
845 }
846 }
847 }
848
disable_discard(struct mapped_device * md)849 void disable_discard(struct mapped_device *md)
850 {
851 struct queue_limits *limits = dm_get_queue_limits(md);
852
853 /* device doesn't really support DISCARD, disable it */
854 limits->max_discard_sectors = 0;
855 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
856 }
857
disable_write_same(struct mapped_device * md)858 void disable_write_same(struct mapped_device *md)
859 {
860 struct queue_limits *limits = dm_get_queue_limits(md);
861
862 /* device doesn't really support WRITE SAME, disable it */
863 limits->max_write_same_sectors = 0;
864 }
865
disable_write_zeroes(struct mapped_device * md)866 void disable_write_zeroes(struct mapped_device *md)
867 {
868 struct queue_limits *limits = dm_get_queue_limits(md);
869
870 /* device doesn't really support WRITE ZEROES, disable it */
871 limits->max_write_zeroes_sectors = 0;
872 }
873
swap_bios_limit(struct dm_target * ti,struct bio * bio)874 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
875 {
876 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
877 }
878
clone_endio(struct bio * bio)879 static void clone_endio(struct bio *bio)
880 {
881 blk_status_t error = bio->bi_status;
882 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
883 struct dm_io *io = tio->io;
884 struct mapped_device *md = tio->io->md;
885 dm_endio_fn endio = tio->ti->type->end_io;
886 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
887
888 if (unlikely(error == BLK_STS_TARGET)) {
889 if (bio_op(bio) == REQ_OP_DISCARD &&
890 !q->limits.max_discard_sectors)
891 disable_discard(md);
892 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
893 !q->limits.max_write_same_sectors)
894 disable_write_same(md);
895 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
896 !q->limits.max_write_zeroes_sectors)
897 disable_write_zeroes(md);
898 }
899
900 if (blk_queue_is_zoned(q))
901 dm_zone_endio(io, bio);
902
903 if (endio) {
904 int r = endio(tio->ti, bio, &error);
905 switch (r) {
906 case DM_ENDIO_REQUEUE:
907 /*
908 * Requeuing writes to a sequential zone of a zoned
909 * target will break the sequential write pattern:
910 * fail such IO.
911 */
912 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
913 error = BLK_STS_IOERR;
914 else
915 error = BLK_STS_DM_REQUEUE;
916 fallthrough;
917 case DM_ENDIO_DONE:
918 break;
919 case DM_ENDIO_INCOMPLETE:
920 /* The target will handle the io */
921 return;
922 default:
923 DMWARN("unimplemented target endio return value: %d", r);
924 BUG();
925 }
926 }
927
928 if (unlikely(swap_bios_limit(tio->ti, bio))) {
929 struct mapped_device *md = io->md;
930 up(&md->swap_bios_semaphore);
931 }
932
933 free_tio(tio);
934 dm_io_dec_pending(io, error);
935 }
936
937 /*
938 * Return maximum size of I/O possible at the supplied sector up to the current
939 * target boundary.
940 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)941 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
942 sector_t target_offset)
943 {
944 return ti->len - target_offset;
945 }
946
max_io_len(struct dm_target * ti,sector_t sector)947 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
948 {
949 sector_t target_offset = dm_target_offset(ti, sector);
950 sector_t len = max_io_len_target_boundary(ti, target_offset);
951 sector_t max_len;
952
953 /*
954 * Does the target need to split IO even further?
955 * - varied (per target) IO splitting is a tenet of DM; this
956 * explains why stacked chunk_sectors based splitting via
957 * blk_max_size_offset() isn't possible here. So pass in
958 * ti->max_io_len to override stacked chunk_sectors.
959 */
960 if (ti->max_io_len) {
961 max_len = blk_max_size_offset(ti->table->md->queue,
962 target_offset, ti->max_io_len);
963 if (len > max_len)
964 len = max_len;
965 }
966
967 return len;
968 }
969
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)970 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
971 {
972 if (len > UINT_MAX) {
973 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
974 (unsigned long long)len, UINT_MAX);
975 ti->error = "Maximum size of target IO is too large";
976 return -EINVAL;
977 }
978
979 ti->max_io_len = (uint32_t) len;
980
981 return 0;
982 }
983 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
984
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)985 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
986 sector_t sector, int *srcu_idx)
987 __acquires(md->io_barrier)
988 {
989 struct dm_table *map;
990 struct dm_target *ti;
991
992 map = dm_get_live_table(md, srcu_idx);
993 if (!map)
994 return NULL;
995
996 ti = dm_table_find_target(map, sector);
997 if (!ti)
998 return NULL;
999
1000 return ti;
1001 }
1002
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)1003 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1004 long nr_pages, void **kaddr, pfn_t *pfn)
1005 {
1006 struct mapped_device *md = dax_get_private(dax_dev);
1007 sector_t sector = pgoff * PAGE_SECTORS;
1008 struct dm_target *ti;
1009 long len, ret = -EIO;
1010 int srcu_idx;
1011
1012 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1013
1014 if (!ti)
1015 goto out;
1016 if (!ti->type->direct_access)
1017 goto out;
1018 len = max_io_len(ti, sector) / PAGE_SECTORS;
1019 if (len < 1)
1020 goto out;
1021 nr_pages = min(len, nr_pages);
1022 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1023
1024 out:
1025 dm_put_live_table(md, srcu_idx);
1026
1027 return ret;
1028 }
1029
dm_dax_supported(struct dax_device * dax_dev,struct block_device * bdev,int blocksize,sector_t start,sector_t len)1030 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1031 int blocksize, sector_t start, sector_t len)
1032 {
1033 struct mapped_device *md = dax_get_private(dax_dev);
1034 struct dm_table *map;
1035 bool ret = false;
1036 int srcu_idx;
1037
1038 map = dm_get_live_table(md, &srcu_idx);
1039 if (!map)
1040 goto out;
1041
1042 ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1043
1044 out:
1045 dm_put_live_table(md, srcu_idx);
1046
1047 return ret;
1048 }
1049
dm_dax_copy_from_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1050 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1051 void *addr, size_t bytes, struct iov_iter *i)
1052 {
1053 struct mapped_device *md = dax_get_private(dax_dev);
1054 sector_t sector = pgoff * PAGE_SECTORS;
1055 struct dm_target *ti;
1056 long ret = 0;
1057 int srcu_idx;
1058
1059 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1060
1061 if (!ti)
1062 goto out;
1063 if (!ti->type->dax_copy_from_iter) {
1064 ret = copy_from_iter(addr, bytes, i);
1065 goto out;
1066 }
1067 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1068 out:
1069 dm_put_live_table(md, srcu_idx);
1070
1071 return ret;
1072 }
1073
dm_dax_copy_to_iter(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1074 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1075 void *addr, size_t bytes, struct iov_iter *i)
1076 {
1077 struct mapped_device *md = dax_get_private(dax_dev);
1078 sector_t sector = pgoff * PAGE_SECTORS;
1079 struct dm_target *ti;
1080 long ret = 0;
1081 int srcu_idx;
1082
1083 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1084
1085 if (!ti)
1086 goto out;
1087 if (!ti->type->dax_copy_to_iter) {
1088 ret = copy_to_iter(addr, bytes, i);
1089 goto out;
1090 }
1091 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1092 out:
1093 dm_put_live_table(md, srcu_idx);
1094
1095 return ret;
1096 }
1097
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1098 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1099 size_t nr_pages)
1100 {
1101 struct mapped_device *md = dax_get_private(dax_dev);
1102 sector_t sector = pgoff * PAGE_SECTORS;
1103 struct dm_target *ti;
1104 int ret = -EIO;
1105 int srcu_idx;
1106
1107 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1108
1109 if (!ti)
1110 goto out;
1111 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1112 /*
1113 * ->zero_page_range() is mandatory dax operation. If we are
1114 * here, something is wrong.
1115 */
1116 goto out;
1117 }
1118 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1119 out:
1120 dm_put_live_table(md, srcu_idx);
1121
1122 return ret;
1123 }
1124
1125 /*
1126 * A target may call dm_accept_partial_bio only from the map routine. It is
1127 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1128 * operations and REQ_OP_ZONE_APPEND (zone append writes).
1129 *
1130 * dm_accept_partial_bio informs the dm that the target only wants to process
1131 * additional n_sectors sectors of the bio and the rest of the data should be
1132 * sent in a next bio.
1133 *
1134 * A diagram that explains the arithmetics:
1135 * +--------------------+---------------+-------+
1136 * | 1 | 2 | 3 |
1137 * +--------------------+---------------+-------+
1138 *
1139 * <-------------- *tio->len_ptr --------------->
1140 * <------- bi_size ------->
1141 * <-- n_sectors -->
1142 *
1143 * Region 1 was already iterated over with bio_advance or similar function.
1144 * (it may be empty if the target doesn't use bio_advance)
1145 * Region 2 is the remaining bio size that the target wants to process.
1146 * (it may be empty if region 1 is non-empty, although there is no reason
1147 * to make it empty)
1148 * The target requires that region 3 is to be sent in the next bio.
1149 *
1150 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1151 * the partially processed part (the sum of regions 1+2) must be the same for all
1152 * copies of the bio.
1153 */
dm_accept_partial_bio(struct bio * bio,unsigned n_sectors)1154 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1155 {
1156 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1157 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1158
1159 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1160 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1161 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1162 BUG_ON(bi_size > *tio->len_ptr);
1163 BUG_ON(n_sectors > bi_size);
1164
1165 *tio->len_ptr -= bi_size - n_sectors;
1166 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1167 }
1168 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1169
__set_swap_bios_limit(struct mapped_device * md,int latch)1170 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1171 {
1172 mutex_lock(&md->swap_bios_lock);
1173 while (latch < md->swap_bios) {
1174 cond_resched();
1175 down(&md->swap_bios_semaphore);
1176 md->swap_bios--;
1177 }
1178 while (latch > md->swap_bios) {
1179 cond_resched();
1180 up(&md->swap_bios_semaphore);
1181 md->swap_bios++;
1182 }
1183 mutex_unlock(&md->swap_bios_lock);
1184 }
1185
__map_bio(struct dm_target_io * tio)1186 static void __map_bio(struct dm_target_io *tio)
1187 {
1188 int r;
1189 sector_t sector;
1190 struct bio *clone = &tio->clone;
1191 struct dm_io *io = tio->io;
1192 struct dm_target *ti = tio->ti;
1193
1194 clone->bi_end_io = clone_endio;
1195
1196 /*
1197 * Map the clone. If r == 0 we don't need to do
1198 * anything, the target has assumed ownership of
1199 * this io.
1200 */
1201 dm_io_inc_pending(io);
1202 sector = clone->bi_iter.bi_sector;
1203
1204 if (unlikely(swap_bios_limit(ti, clone))) {
1205 struct mapped_device *md = io->md;
1206 int latch = get_swap_bios();
1207 if (unlikely(latch != md->swap_bios))
1208 __set_swap_bios_limit(md, latch);
1209 down(&md->swap_bios_semaphore);
1210 }
1211
1212 /*
1213 * Check if the IO needs a special mapping due to zone append emulation
1214 * on zoned target. In this case, dm_zone_map_bio() calls the target
1215 * map operation.
1216 */
1217 if (dm_emulate_zone_append(io->md))
1218 r = dm_zone_map_bio(tio);
1219 else
1220 r = ti->type->map(ti, clone);
1221
1222 switch (r) {
1223 case DM_MAPIO_SUBMITTED:
1224 break;
1225 case DM_MAPIO_REMAPPED:
1226 /* the bio has been remapped so dispatch it */
1227 trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1228 submit_bio_noacct(clone);
1229 break;
1230 case DM_MAPIO_KILL:
1231 if (unlikely(swap_bios_limit(ti, clone))) {
1232 struct mapped_device *md = io->md;
1233 up(&md->swap_bios_semaphore);
1234 }
1235 free_tio(tio);
1236 dm_io_dec_pending(io, BLK_STS_IOERR);
1237 break;
1238 case DM_MAPIO_REQUEUE:
1239 if (unlikely(swap_bios_limit(ti, clone))) {
1240 struct mapped_device *md = io->md;
1241 up(&md->swap_bios_semaphore);
1242 }
1243 free_tio(tio);
1244 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1245 break;
1246 default:
1247 DMWARN("unimplemented target map return value: %d", r);
1248 BUG();
1249 }
1250 }
1251
bio_setup_sector(struct bio * bio,sector_t sector,unsigned len)1252 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1253 {
1254 bio->bi_iter.bi_sector = sector;
1255 bio->bi_iter.bi_size = to_bytes(len);
1256 }
1257
1258 /*
1259 * Creates a bio that consists of range of complete bvecs.
1260 */
clone_bio(struct dm_target_io * tio,struct bio * bio,sector_t sector,unsigned len)1261 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1262 sector_t sector, unsigned len)
1263 {
1264 struct bio *clone = &tio->clone;
1265 int r;
1266
1267 __bio_clone_fast(clone, bio);
1268
1269 r = bio_crypt_clone(clone, bio, GFP_NOIO);
1270 if (r < 0)
1271 return r;
1272
1273 if (bio_integrity(bio)) {
1274 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1275 !dm_target_passes_integrity(tio->ti->type))) {
1276 DMWARN("%s: the target %s doesn't support integrity data.",
1277 dm_device_name(tio->io->md),
1278 tio->ti->type->name);
1279 return -EIO;
1280 }
1281
1282 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1283 if (r < 0)
1284 return r;
1285 }
1286
1287 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1288 clone->bi_iter.bi_size = to_bytes(len);
1289
1290 if (bio_integrity(bio))
1291 bio_integrity_trim(clone);
1292
1293 return 0;
1294 }
1295
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1296 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1297 struct dm_target *ti, unsigned num_bios)
1298 {
1299 struct dm_target_io *tio;
1300 int try;
1301
1302 if (!num_bios)
1303 return;
1304
1305 if (num_bios == 1) {
1306 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1307 bio_list_add(blist, &tio->clone);
1308 return;
1309 }
1310
1311 for (try = 0; try < 2; try++) {
1312 int bio_nr;
1313 struct bio *bio;
1314
1315 if (try)
1316 mutex_lock(&ci->io->md->table_devices_lock);
1317 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1318 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1319 if (!tio)
1320 break;
1321
1322 bio_list_add(blist, &tio->clone);
1323 }
1324 if (try)
1325 mutex_unlock(&ci->io->md->table_devices_lock);
1326 if (bio_nr == num_bios)
1327 return;
1328
1329 while ((bio = bio_list_pop(blist))) {
1330 tio = container_of(bio, struct dm_target_io, clone);
1331 free_tio(tio);
1332 }
1333 }
1334 }
1335
__clone_and_map_simple_bio(struct clone_info * ci,struct dm_target_io * tio,unsigned * len)1336 static void __clone_and_map_simple_bio(struct clone_info *ci,
1337 struct dm_target_io *tio, unsigned *len)
1338 {
1339 struct bio *clone = &tio->clone;
1340
1341 tio->len_ptr = len;
1342
1343 __bio_clone_fast(clone, ci->bio);
1344 if (len)
1345 bio_setup_sector(clone, ci->sector, *len);
1346 __map_bio(tio);
1347 }
1348
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned num_bios,unsigned * len)1349 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1350 unsigned num_bios, unsigned *len)
1351 {
1352 struct bio_list blist = BIO_EMPTY_LIST;
1353 struct bio *bio;
1354 struct dm_target_io *tio;
1355
1356 alloc_multiple_bios(&blist, ci, ti, num_bios);
1357
1358 while ((bio = bio_list_pop(&blist))) {
1359 tio = container_of(bio, struct dm_target_io, clone);
1360 __clone_and_map_simple_bio(ci, tio, len);
1361 }
1362 }
1363
__send_empty_flush(struct clone_info * ci)1364 static int __send_empty_flush(struct clone_info *ci)
1365 {
1366 unsigned target_nr = 0;
1367 struct dm_target *ti;
1368 struct bio flush_bio;
1369
1370 /*
1371 * Use an on-stack bio for this, it's safe since we don't
1372 * need to reference it after submit. It's just used as
1373 * the basis for the clone(s).
1374 */
1375 bio_init(&flush_bio, NULL, 0);
1376 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1377 bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1378
1379 ci->bio = &flush_bio;
1380 ci->sector_count = 0;
1381
1382 BUG_ON(bio_has_data(ci->bio));
1383 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1384 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1385
1386 bio_uninit(ci->bio);
1387 return 0;
1388 }
1389
__clone_and_map_data_bio(struct clone_info * ci,struct dm_target * ti,sector_t sector,unsigned * len)1390 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1391 sector_t sector, unsigned *len)
1392 {
1393 struct bio *bio = ci->bio;
1394 struct dm_target_io *tio;
1395 int r;
1396
1397 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1398 tio->len_ptr = len;
1399 r = clone_bio(tio, bio, sector, *len);
1400 if (r < 0) {
1401 free_tio(tio);
1402 return r;
1403 }
1404 __map_bio(tio);
1405
1406 return 0;
1407 }
1408
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned num_bios)1409 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1410 unsigned num_bios)
1411 {
1412 unsigned len;
1413
1414 /*
1415 * Even though the device advertised support for this type of
1416 * request, that does not mean every target supports it, and
1417 * reconfiguration might also have changed that since the
1418 * check was performed.
1419 */
1420 if (!num_bios)
1421 return -EOPNOTSUPP;
1422
1423 len = min_t(sector_t, ci->sector_count,
1424 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1425
1426 __send_duplicate_bios(ci, ti, num_bios, &len);
1427
1428 ci->sector += len;
1429 ci->sector_count -= len;
1430
1431 return 0;
1432 }
1433
is_abnormal_io(struct bio * bio)1434 static bool is_abnormal_io(struct bio *bio)
1435 {
1436 bool r = false;
1437
1438 switch (bio_op(bio)) {
1439 case REQ_OP_DISCARD:
1440 case REQ_OP_SECURE_ERASE:
1441 case REQ_OP_WRITE_SAME:
1442 case REQ_OP_WRITE_ZEROES:
1443 r = true;
1444 break;
1445 }
1446
1447 return r;
1448 }
1449
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti,int * result)1450 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1451 int *result)
1452 {
1453 struct bio *bio = ci->bio;
1454 unsigned num_bios = 0;
1455
1456 switch (bio_op(bio)) {
1457 case REQ_OP_DISCARD:
1458 num_bios = ti->num_discard_bios;
1459 break;
1460 case REQ_OP_SECURE_ERASE:
1461 num_bios = ti->num_secure_erase_bios;
1462 break;
1463 case REQ_OP_WRITE_SAME:
1464 num_bios = ti->num_write_same_bios;
1465 break;
1466 case REQ_OP_WRITE_ZEROES:
1467 num_bios = ti->num_write_zeroes_bios;
1468 break;
1469 default:
1470 return false;
1471 }
1472
1473 *result = __send_changing_extent_only(ci, ti, num_bios);
1474 return true;
1475 }
1476
1477 /*
1478 * Select the correct strategy for processing a non-flush bio.
1479 */
__split_and_process_non_flush(struct clone_info * ci)1480 static int __split_and_process_non_flush(struct clone_info *ci)
1481 {
1482 struct dm_target *ti;
1483 unsigned len;
1484 int r;
1485
1486 ti = dm_table_find_target(ci->map, ci->sector);
1487 if (!ti)
1488 return -EIO;
1489
1490 if (__process_abnormal_io(ci, ti, &r))
1491 return r;
1492
1493 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1494
1495 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1496 if (r < 0)
1497 return r;
1498
1499 ci->sector += len;
1500 ci->sector_count -= len;
1501
1502 return 0;
1503 }
1504
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio)1505 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1506 struct dm_table *map, struct bio *bio)
1507 {
1508 ci->map = map;
1509 ci->io = alloc_io(md, bio);
1510 ci->sector = bio->bi_iter.bi_sector;
1511 }
1512
1513 #define __dm_part_stat_sub(part, field, subnd) \
1514 (part_stat_get(part, field) -= (subnd))
1515
1516 /*
1517 * Entry point to split a bio into clones and submit them to the targets.
1518 */
__split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1519 static void __split_and_process_bio(struct mapped_device *md,
1520 struct dm_table *map, struct bio *bio)
1521 {
1522 struct clone_info ci;
1523 int error = 0;
1524
1525 init_clone_info(&ci, md, map, bio);
1526
1527 if (bio->bi_opf & REQ_PREFLUSH) {
1528 error = __send_empty_flush(&ci);
1529 /* dm_io_dec_pending submits any data associated with flush */
1530 } else if (op_is_zone_mgmt(bio_op(bio))) {
1531 ci.bio = bio;
1532 ci.sector_count = 0;
1533 error = __split_and_process_non_flush(&ci);
1534 } else {
1535 ci.bio = bio;
1536 ci.sector_count = bio_sectors(bio);
1537 error = __split_and_process_non_flush(&ci);
1538 if (ci.sector_count && !error) {
1539 /*
1540 * Remainder must be passed to submit_bio_noacct()
1541 * so that it gets handled *after* bios already submitted
1542 * have been completely processed.
1543 * We take a clone of the original to store in
1544 * ci.io->orig_bio to be used by end_io_acct() and
1545 * for dec_pending to use for completion handling.
1546 */
1547 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1548 GFP_NOIO, &md->queue->bio_split);
1549 ci.io->orig_bio = b;
1550
1551 /*
1552 * Adjust IO stats for each split, otherwise upon queue
1553 * reentry there will be redundant IO accounting.
1554 * NOTE: this is a stop-gap fix, a proper fix involves
1555 * significant refactoring of DM core's bio splitting
1556 * (by eliminating DM's splitting and just using bio_split)
1557 */
1558 part_stat_lock();
1559 __dm_part_stat_sub(dm_disk(md)->part0,
1560 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1561 part_stat_unlock();
1562
1563 bio_chain(b, bio);
1564 trace_block_split(b, bio->bi_iter.bi_sector);
1565 submit_bio_noacct(bio);
1566 }
1567 }
1568
1569 /* drop the extra reference count */
1570 dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1571 }
1572
dm_submit_bio(struct bio * bio)1573 static void dm_submit_bio(struct bio *bio)
1574 {
1575 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1576 int srcu_idx;
1577 struct dm_table *map;
1578
1579 map = dm_get_live_table(md, &srcu_idx);
1580 if (unlikely(!map)) {
1581 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1582 dm_device_name(md));
1583 bio_io_error(bio);
1584 goto out;
1585 }
1586
1587 /* If suspended, queue this IO for later */
1588 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1589 if (bio->bi_opf & REQ_NOWAIT)
1590 bio_wouldblock_error(bio);
1591 else if (bio->bi_opf & REQ_RAHEAD)
1592 bio_io_error(bio);
1593 else
1594 queue_io(md, bio);
1595 goto out;
1596 }
1597
1598 /*
1599 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1600 * otherwise associated queue_limits won't be imposed.
1601 */
1602 if (is_abnormal_io(bio))
1603 blk_queue_split(&bio);
1604
1605 __split_and_process_bio(md, map, bio);
1606 out:
1607 dm_put_live_table(md, srcu_idx);
1608 }
1609
1610 /*-----------------------------------------------------------------
1611 * An IDR is used to keep track of allocated minor numbers.
1612 *---------------------------------------------------------------*/
free_minor(int minor)1613 static void free_minor(int minor)
1614 {
1615 spin_lock(&_minor_lock);
1616 idr_remove(&_minor_idr, minor);
1617 spin_unlock(&_minor_lock);
1618 }
1619
1620 /*
1621 * See if the device with a specific minor # is free.
1622 */
specific_minor(int minor)1623 static int specific_minor(int minor)
1624 {
1625 int r;
1626
1627 if (minor >= (1 << MINORBITS))
1628 return -EINVAL;
1629
1630 idr_preload(GFP_KERNEL);
1631 spin_lock(&_minor_lock);
1632
1633 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1634
1635 spin_unlock(&_minor_lock);
1636 idr_preload_end();
1637 if (r < 0)
1638 return r == -ENOSPC ? -EBUSY : r;
1639 return 0;
1640 }
1641
next_free_minor(int * minor)1642 static int next_free_minor(int *minor)
1643 {
1644 int r;
1645
1646 idr_preload(GFP_KERNEL);
1647 spin_lock(&_minor_lock);
1648
1649 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1650
1651 spin_unlock(&_minor_lock);
1652 idr_preload_end();
1653 if (r < 0)
1654 return r;
1655 *minor = r;
1656 return 0;
1657 }
1658
1659 static const struct block_device_operations dm_blk_dops;
1660 static const struct block_device_operations dm_rq_blk_dops;
1661 static const struct dax_operations dm_dax_ops;
1662
1663 static void dm_wq_work(struct work_struct *work);
1664
1665 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_crypto_profile(struct request_queue * q)1666 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1667 {
1668 dm_destroy_crypto_profile(q->crypto_profile);
1669 }
1670
1671 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1672
dm_queue_destroy_crypto_profile(struct request_queue * q)1673 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1674 {
1675 }
1676 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1677
cleanup_mapped_device(struct mapped_device * md)1678 static void cleanup_mapped_device(struct mapped_device *md)
1679 {
1680 if (md->wq)
1681 destroy_workqueue(md->wq);
1682 bioset_exit(&md->bs);
1683 bioset_exit(&md->io_bs);
1684
1685 if (md->dax_dev) {
1686 kill_dax(md->dax_dev);
1687 put_dax(md->dax_dev);
1688 md->dax_dev = NULL;
1689 }
1690
1691 if (md->disk) {
1692 spin_lock(&_minor_lock);
1693 md->disk->private_data = NULL;
1694 spin_unlock(&_minor_lock);
1695 if (dm_get_md_type(md) != DM_TYPE_NONE) {
1696 dm_sysfs_exit(md);
1697 del_gendisk(md->disk);
1698 }
1699 dm_queue_destroy_crypto_profile(md->queue);
1700 blk_cleanup_disk(md->disk);
1701 }
1702
1703 cleanup_srcu_struct(&md->io_barrier);
1704
1705 mutex_destroy(&md->suspend_lock);
1706 mutex_destroy(&md->type_lock);
1707 mutex_destroy(&md->table_devices_lock);
1708 mutex_destroy(&md->swap_bios_lock);
1709
1710 dm_mq_cleanup_mapped_device(md);
1711 dm_cleanup_zoned_dev(md);
1712 }
1713
1714 /*
1715 * Allocate and initialise a blank device with a given minor.
1716 */
alloc_dev(int minor)1717 static struct mapped_device *alloc_dev(int minor)
1718 {
1719 int r, numa_node_id = dm_get_numa_node();
1720 struct mapped_device *md;
1721 void *old_md;
1722
1723 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1724 if (!md) {
1725 DMWARN("unable to allocate device, out of memory.");
1726 return NULL;
1727 }
1728
1729 if (!try_module_get(THIS_MODULE))
1730 goto bad_module_get;
1731
1732 /* get a minor number for the dev */
1733 if (minor == DM_ANY_MINOR)
1734 r = next_free_minor(&minor);
1735 else
1736 r = specific_minor(minor);
1737 if (r < 0)
1738 goto bad_minor;
1739
1740 r = init_srcu_struct(&md->io_barrier);
1741 if (r < 0)
1742 goto bad_io_barrier;
1743
1744 md->numa_node_id = numa_node_id;
1745 md->init_tio_pdu = false;
1746 md->type = DM_TYPE_NONE;
1747 mutex_init(&md->suspend_lock);
1748 mutex_init(&md->type_lock);
1749 mutex_init(&md->table_devices_lock);
1750 spin_lock_init(&md->deferred_lock);
1751 atomic_set(&md->holders, 1);
1752 atomic_set(&md->open_count, 0);
1753 atomic_set(&md->event_nr, 0);
1754 atomic_set(&md->uevent_seq, 0);
1755 INIT_LIST_HEAD(&md->uevent_list);
1756 INIT_LIST_HEAD(&md->table_devices);
1757 spin_lock_init(&md->uevent_lock);
1758
1759 /*
1760 * default to bio-based until DM table is loaded and md->type
1761 * established. If request-based table is loaded: blk-mq will
1762 * override accordingly.
1763 */
1764 md->disk = blk_alloc_disk(md->numa_node_id);
1765 if (!md->disk)
1766 goto bad;
1767 md->queue = md->disk->queue;
1768
1769 init_waitqueue_head(&md->wait);
1770 INIT_WORK(&md->work, dm_wq_work);
1771 init_waitqueue_head(&md->eventq);
1772 init_completion(&md->kobj_holder.completion);
1773
1774 md->swap_bios = get_swap_bios();
1775 sema_init(&md->swap_bios_semaphore, md->swap_bios);
1776 mutex_init(&md->swap_bios_lock);
1777
1778 md->disk->major = _major;
1779 md->disk->first_minor = minor;
1780 md->disk->minors = 1;
1781 md->disk->fops = &dm_blk_dops;
1782 md->disk->queue = md->queue;
1783 md->disk->private_data = md;
1784 sprintf(md->disk->disk_name, "dm-%d", minor);
1785
1786 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1787 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1788 &dm_dax_ops, 0);
1789 if (IS_ERR(md->dax_dev))
1790 goto bad;
1791 }
1792
1793 format_dev_t(md->name, MKDEV(_major, minor));
1794
1795 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
1796 if (!md->wq)
1797 goto bad;
1798
1799 dm_stats_init(&md->stats);
1800
1801 /* Populate the mapping, nobody knows we exist yet */
1802 spin_lock(&_minor_lock);
1803 old_md = idr_replace(&_minor_idr, md, minor);
1804 spin_unlock(&_minor_lock);
1805
1806 BUG_ON(old_md != MINOR_ALLOCED);
1807
1808 return md;
1809
1810 bad:
1811 cleanup_mapped_device(md);
1812 bad_io_barrier:
1813 free_minor(minor);
1814 bad_minor:
1815 module_put(THIS_MODULE);
1816 bad_module_get:
1817 kvfree(md);
1818 return NULL;
1819 }
1820
1821 static void unlock_fs(struct mapped_device *md);
1822
free_dev(struct mapped_device * md)1823 static void free_dev(struct mapped_device *md)
1824 {
1825 int minor = MINOR(disk_devt(md->disk));
1826
1827 unlock_fs(md);
1828
1829 cleanup_mapped_device(md);
1830
1831 free_table_devices(&md->table_devices);
1832 dm_stats_cleanup(&md->stats);
1833 free_minor(minor);
1834
1835 module_put(THIS_MODULE);
1836 kvfree(md);
1837 }
1838
__bind_mempools(struct mapped_device * md,struct dm_table * t)1839 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1840 {
1841 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1842 int ret = 0;
1843
1844 if (dm_table_bio_based(t)) {
1845 /*
1846 * The md may already have mempools that need changing.
1847 * If so, reload bioset because front_pad may have changed
1848 * because a different table was loaded.
1849 */
1850 bioset_exit(&md->bs);
1851 bioset_exit(&md->io_bs);
1852
1853 } else if (bioset_initialized(&md->bs)) {
1854 /*
1855 * There's no need to reload with request-based dm
1856 * because the size of front_pad doesn't change.
1857 * Note for future: If you are to reload bioset,
1858 * prep-ed requests in the queue may refer
1859 * to bio from the old bioset, so you must walk
1860 * through the queue to unprep.
1861 */
1862 goto out;
1863 }
1864
1865 BUG_ON(!p ||
1866 bioset_initialized(&md->bs) ||
1867 bioset_initialized(&md->io_bs));
1868
1869 ret = bioset_init_from_src(&md->bs, &p->bs);
1870 if (ret)
1871 goto out;
1872 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1873 if (ret)
1874 bioset_exit(&md->bs);
1875 out:
1876 /* mempool bind completed, no longer need any mempools in the table */
1877 dm_table_free_md_mempools(t);
1878 return ret;
1879 }
1880
1881 /*
1882 * Bind a table to the device.
1883 */
event_callback(void * context)1884 static void event_callback(void *context)
1885 {
1886 unsigned long flags;
1887 LIST_HEAD(uevents);
1888 struct mapped_device *md = (struct mapped_device *) context;
1889
1890 spin_lock_irqsave(&md->uevent_lock, flags);
1891 list_splice_init(&md->uevent_list, &uevents);
1892 spin_unlock_irqrestore(&md->uevent_lock, flags);
1893
1894 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1895
1896 atomic_inc(&md->event_nr);
1897 wake_up(&md->eventq);
1898 dm_issue_global_event();
1899 }
1900
1901 /*
1902 * Returns old map, which caller must destroy.
1903 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)1904 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1905 struct queue_limits *limits)
1906 {
1907 struct dm_table *old_map;
1908 struct request_queue *q = md->queue;
1909 bool request_based = dm_table_request_based(t);
1910 sector_t size;
1911 int ret;
1912
1913 lockdep_assert_held(&md->suspend_lock);
1914
1915 size = dm_table_get_size(t);
1916
1917 /*
1918 * Wipe any geometry if the size of the table changed.
1919 */
1920 if (size != dm_get_size(md))
1921 memset(&md->geometry, 0, sizeof(md->geometry));
1922
1923 if (!get_capacity(md->disk))
1924 set_capacity(md->disk, size);
1925 else
1926 set_capacity_and_notify(md->disk, size);
1927
1928 dm_table_event_callback(t, event_callback, md);
1929
1930 if (request_based) {
1931 /*
1932 * Leverage the fact that request-based DM targets are
1933 * immutable singletons - used to optimize dm_mq_queue_rq.
1934 */
1935 md->immutable_target = dm_table_get_immutable_target(t);
1936 }
1937
1938 ret = __bind_mempools(md, t);
1939 if (ret) {
1940 old_map = ERR_PTR(ret);
1941 goto out;
1942 }
1943
1944 ret = dm_table_set_restrictions(t, q, limits);
1945 if (ret) {
1946 old_map = ERR_PTR(ret);
1947 goto out;
1948 }
1949
1950 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1951 rcu_assign_pointer(md->map, (void *)t);
1952 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1953
1954 if (old_map)
1955 dm_sync_table(md);
1956
1957 out:
1958 return old_map;
1959 }
1960
1961 /*
1962 * Returns unbound table for the caller to free.
1963 */
__unbind(struct mapped_device * md)1964 static struct dm_table *__unbind(struct mapped_device *md)
1965 {
1966 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1967
1968 if (!map)
1969 return NULL;
1970
1971 dm_table_event_callback(map, NULL, NULL);
1972 RCU_INIT_POINTER(md->map, NULL);
1973 dm_sync_table(md);
1974
1975 return map;
1976 }
1977
1978 /*
1979 * Constructor for a new device.
1980 */
dm_create(int minor,struct mapped_device ** result)1981 int dm_create(int minor, struct mapped_device **result)
1982 {
1983 struct mapped_device *md;
1984
1985 md = alloc_dev(minor);
1986 if (!md)
1987 return -ENXIO;
1988
1989 dm_ima_reset_data(md);
1990
1991 *result = md;
1992 return 0;
1993 }
1994
1995 /*
1996 * Functions to manage md->type.
1997 * All are required to hold md->type_lock.
1998 */
dm_lock_md_type(struct mapped_device * md)1999 void dm_lock_md_type(struct mapped_device *md)
2000 {
2001 mutex_lock(&md->type_lock);
2002 }
2003
dm_unlock_md_type(struct mapped_device * md)2004 void dm_unlock_md_type(struct mapped_device *md)
2005 {
2006 mutex_unlock(&md->type_lock);
2007 }
2008
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2009 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2010 {
2011 BUG_ON(!mutex_is_locked(&md->type_lock));
2012 md->type = type;
2013 }
2014
dm_get_md_type(struct mapped_device * md)2015 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2016 {
2017 return md->type;
2018 }
2019
dm_get_immutable_target_type(struct mapped_device * md)2020 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2021 {
2022 return md->immutable_target_type;
2023 }
2024
2025 /*
2026 * The queue_limits are only valid as long as you have a reference
2027 * count on 'md'.
2028 */
dm_get_queue_limits(struct mapped_device * md)2029 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2030 {
2031 BUG_ON(!atomic_read(&md->holders));
2032 return &md->queue->limits;
2033 }
2034 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2035
2036 /*
2037 * Setup the DM device's queue based on md's type
2038 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2039 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2040 {
2041 enum dm_queue_mode type = dm_table_get_type(t);
2042 struct queue_limits limits;
2043 int r;
2044
2045 switch (type) {
2046 case DM_TYPE_REQUEST_BASED:
2047 md->disk->fops = &dm_rq_blk_dops;
2048 r = dm_mq_init_request_queue(md, t);
2049 if (r) {
2050 DMERR("Cannot initialize queue for request-based dm mapped device");
2051 return r;
2052 }
2053 break;
2054 case DM_TYPE_BIO_BASED:
2055 case DM_TYPE_DAX_BIO_BASED:
2056 break;
2057 case DM_TYPE_NONE:
2058 WARN_ON_ONCE(true);
2059 break;
2060 }
2061
2062 r = dm_calculate_queue_limits(t, &limits);
2063 if (r) {
2064 DMERR("Cannot calculate initial queue limits");
2065 return r;
2066 }
2067 r = dm_table_set_restrictions(t, md->queue, &limits);
2068 if (r)
2069 return r;
2070
2071 r = add_disk(md->disk);
2072 if (r)
2073 return r;
2074
2075 r = dm_sysfs_init(md);
2076 if (r) {
2077 del_gendisk(md->disk);
2078 return r;
2079 }
2080 md->type = type;
2081 return 0;
2082 }
2083
dm_get_md(dev_t dev)2084 struct mapped_device *dm_get_md(dev_t dev)
2085 {
2086 struct mapped_device *md;
2087 unsigned minor = MINOR(dev);
2088
2089 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2090 return NULL;
2091
2092 spin_lock(&_minor_lock);
2093
2094 md = idr_find(&_minor_idr, minor);
2095 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2096 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2097 md = NULL;
2098 goto out;
2099 }
2100 dm_get(md);
2101 out:
2102 spin_unlock(&_minor_lock);
2103
2104 return md;
2105 }
2106 EXPORT_SYMBOL_GPL(dm_get_md);
2107
dm_get_mdptr(struct mapped_device * md)2108 void *dm_get_mdptr(struct mapped_device *md)
2109 {
2110 return md->interface_ptr;
2111 }
2112
dm_set_mdptr(struct mapped_device * md,void * ptr)2113 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2114 {
2115 md->interface_ptr = ptr;
2116 }
2117
dm_get(struct mapped_device * md)2118 void dm_get(struct mapped_device *md)
2119 {
2120 atomic_inc(&md->holders);
2121 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2122 }
2123
dm_hold(struct mapped_device * md)2124 int dm_hold(struct mapped_device *md)
2125 {
2126 spin_lock(&_minor_lock);
2127 if (test_bit(DMF_FREEING, &md->flags)) {
2128 spin_unlock(&_minor_lock);
2129 return -EBUSY;
2130 }
2131 dm_get(md);
2132 spin_unlock(&_minor_lock);
2133 return 0;
2134 }
2135 EXPORT_SYMBOL_GPL(dm_hold);
2136
dm_device_name(struct mapped_device * md)2137 const char *dm_device_name(struct mapped_device *md)
2138 {
2139 return md->name;
2140 }
2141 EXPORT_SYMBOL_GPL(dm_device_name);
2142
__dm_destroy(struct mapped_device * md,bool wait)2143 static void __dm_destroy(struct mapped_device *md, bool wait)
2144 {
2145 struct dm_table *map;
2146 int srcu_idx;
2147
2148 might_sleep();
2149
2150 spin_lock(&_minor_lock);
2151 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2152 set_bit(DMF_FREEING, &md->flags);
2153 spin_unlock(&_minor_lock);
2154
2155 blk_set_queue_dying(md->queue);
2156
2157 /*
2158 * Take suspend_lock so that presuspend and postsuspend methods
2159 * do not race with internal suspend.
2160 */
2161 mutex_lock(&md->suspend_lock);
2162 map = dm_get_live_table(md, &srcu_idx);
2163 if (!dm_suspended_md(md)) {
2164 dm_table_presuspend_targets(map);
2165 set_bit(DMF_SUSPENDED, &md->flags);
2166 set_bit(DMF_POST_SUSPENDING, &md->flags);
2167 dm_table_postsuspend_targets(map);
2168 }
2169 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2170 dm_put_live_table(md, srcu_idx);
2171 mutex_unlock(&md->suspend_lock);
2172
2173 /*
2174 * Rare, but there may be I/O requests still going to complete,
2175 * for example. Wait for all references to disappear.
2176 * No one should increment the reference count of the mapped_device,
2177 * after the mapped_device state becomes DMF_FREEING.
2178 */
2179 if (wait)
2180 while (atomic_read(&md->holders))
2181 msleep(1);
2182 else if (atomic_read(&md->holders))
2183 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2184 dm_device_name(md), atomic_read(&md->holders));
2185
2186 dm_table_destroy(__unbind(md));
2187 free_dev(md);
2188 }
2189
dm_destroy(struct mapped_device * md)2190 void dm_destroy(struct mapped_device *md)
2191 {
2192 __dm_destroy(md, true);
2193 }
2194
dm_destroy_immediate(struct mapped_device * md)2195 void dm_destroy_immediate(struct mapped_device *md)
2196 {
2197 __dm_destroy(md, false);
2198 }
2199
dm_put(struct mapped_device * md)2200 void dm_put(struct mapped_device *md)
2201 {
2202 atomic_dec(&md->holders);
2203 }
2204 EXPORT_SYMBOL_GPL(dm_put);
2205
md_in_flight_bios(struct mapped_device * md)2206 static bool md_in_flight_bios(struct mapped_device *md)
2207 {
2208 int cpu;
2209 struct block_device *part = dm_disk(md)->part0;
2210 long sum = 0;
2211
2212 for_each_possible_cpu(cpu) {
2213 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2214 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2215 }
2216
2217 return sum != 0;
2218 }
2219
dm_wait_for_bios_completion(struct mapped_device * md,unsigned int task_state)2220 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2221 {
2222 int r = 0;
2223 DEFINE_WAIT(wait);
2224
2225 while (true) {
2226 prepare_to_wait(&md->wait, &wait, task_state);
2227
2228 if (!md_in_flight_bios(md))
2229 break;
2230
2231 if (signal_pending_state(task_state, current)) {
2232 r = -EINTR;
2233 break;
2234 }
2235
2236 io_schedule();
2237 }
2238 finish_wait(&md->wait, &wait);
2239
2240 return r;
2241 }
2242
dm_wait_for_completion(struct mapped_device * md,unsigned int task_state)2243 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2244 {
2245 int r = 0;
2246
2247 if (!queue_is_mq(md->queue))
2248 return dm_wait_for_bios_completion(md, task_state);
2249
2250 while (true) {
2251 if (!blk_mq_queue_inflight(md->queue))
2252 break;
2253
2254 if (signal_pending_state(task_state, current)) {
2255 r = -EINTR;
2256 break;
2257 }
2258
2259 msleep(5);
2260 }
2261
2262 return r;
2263 }
2264
2265 /*
2266 * Process the deferred bios
2267 */
dm_wq_work(struct work_struct * work)2268 static void dm_wq_work(struct work_struct *work)
2269 {
2270 struct mapped_device *md = container_of(work, struct mapped_device, work);
2271 struct bio *bio;
2272
2273 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2274 spin_lock_irq(&md->deferred_lock);
2275 bio = bio_list_pop(&md->deferred);
2276 spin_unlock_irq(&md->deferred_lock);
2277
2278 if (!bio)
2279 break;
2280
2281 submit_bio_noacct(bio);
2282 }
2283 }
2284
dm_queue_flush(struct mapped_device * md)2285 static void dm_queue_flush(struct mapped_device *md)
2286 {
2287 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2288 smp_mb__after_atomic();
2289 queue_work(md->wq, &md->work);
2290 }
2291
2292 /*
2293 * Swap in a new table, returning the old one for the caller to destroy.
2294 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2295 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2296 {
2297 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2298 struct queue_limits limits;
2299 int r;
2300
2301 mutex_lock(&md->suspend_lock);
2302
2303 /* device must be suspended */
2304 if (!dm_suspended_md(md))
2305 goto out;
2306
2307 /*
2308 * If the new table has no data devices, retain the existing limits.
2309 * This helps multipath with queue_if_no_path if all paths disappear,
2310 * then new I/O is queued based on these limits, and then some paths
2311 * reappear.
2312 */
2313 if (dm_table_has_no_data_devices(table)) {
2314 live_map = dm_get_live_table_fast(md);
2315 if (live_map)
2316 limits = md->queue->limits;
2317 dm_put_live_table_fast(md);
2318 }
2319
2320 if (!live_map) {
2321 r = dm_calculate_queue_limits(table, &limits);
2322 if (r) {
2323 map = ERR_PTR(r);
2324 goto out;
2325 }
2326 }
2327
2328 map = __bind(md, table, &limits);
2329 dm_issue_global_event();
2330
2331 out:
2332 mutex_unlock(&md->suspend_lock);
2333 return map;
2334 }
2335
2336 /*
2337 * Functions to lock and unlock any filesystem running on the
2338 * device.
2339 */
lock_fs(struct mapped_device * md)2340 static int lock_fs(struct mapped_device *md)
2341 {
2342 int r;
2343
2344 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2345
2346 r = freeze_bdev(md->disk->part0);
2347 if (!r)
2348 set_bit(DMF_FROZEN, &md->flags);
2349 return r;
2350 }
2351
unlock_fs(struct mapped_device * md)2352 static void unlock_fs(struct mapped_device *md)
2353 {
2354 if (!test_bit(DMF_FROZEN, &md->flags))
2355 return;
2356 thaw_bdev(md->disk->part0);
2357 clear_bit(DMF_FROZEN, &md->flags);
2358 }
2359
2360 /*
2361 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2362 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2363 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2364 *
2365 * If __dm_suspend returns 0, the device is completely quiescent
2366 * now. There is no request-processing activity. All new requests
2367 * are being added to md->deferred list.
2368 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned suspend_flags,unsigned int task_state,int dmf_suspended_flag)2369 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2370 unsigned suspend_flags, unsigned int task_state,
2371 int dmf_suspended_flag)
2372 {
2373 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2374 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2375 int r;
2376
2377 lockdep_assert_held(&md->suspend_lock);
2378
2379 /*
2380 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2381 * This flag is cleared before dm_suspend returns.
2382 */
2383 if (noflush)
2384 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2385 else
2386 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2387
2388 /*
2389 * This gets reverted if there's an error later and the targets
2390 * provide the .presuspend_undo hook.
2391 */
2392 dm_table_presuspend_targets(map);
2393
2394 /*
2395 * Flush I/O to the device.
2396 * Any I/O submitted after lock_fs() may not be flushed.
2397 * noflush takes precedence over do_lockfs.
2398 * (lock_fs() flushes I/Os and waits for them to complete.)
2399 */
2400 if (!noflush && do_lockfs) {
2401 r = lock_fs(md);
2402 if (r) {
2403 dm_table_presuspend_undo_targets(map);
2404 return r;
2405 }
2406 }
2407
2408 /*
2409 * Here we must make sure that no processes are submitting requests
2410 * to target drivers i.e. no one may be executing
2411 * __split_and_process_bio from dm_submit_bio.
2412 *
2413 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2414 * we take the write lock. To prevent any process from reentering
2415 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2416 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2417 * flush_workqueue(md->wq).
2418 */
2419 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2420 if (map)
2421 synchronize_srcu(&md->io_barrier);
2422
2423 /*
2424 * Stop md->queue before flushing md->wq in case request-based
2425 * dm defers requests to md->wq from md->queue.
2426 */
2427 if (dm_request_based(md))
2428 dm_stop_queue(md->queue);
2429
2430 flush_workqueue(md->wq);
2431
2432 /*
2433 * At this point no more requests are entering target request routines.
2434 * We call dm_wait_for_completion to wait for all existing requests
2435 * to finish.
2436 */
2437 r = dm_wait_for_completion(md, task_state);
2438 if (!r)
2439 set_bit(dmf_suspended_flag, &md->flags);
2440
2441 if (noflush)
2442 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2443 if (map)
2444 synchronize_srcu(&md->io_barrier);
2445
2446 /* were we interrupted ? */
2447 if (r < 0) {
2448 dm_queue_flush(md);
2449
2450 if (dm_request_based(md))
2451 dm_start_queue(md->queue);
2452
2453 unlock_fs(md);
2454 dm_table_presuspend_undo_targets(map);
2455 /* pushback list is already flushed, so skip flush */
2456 }
2457
2458 return r;
2459 }
2460
2461 /*
2462 * We need to be able to change a mapping table under a mounted
2463 * filesystem. For example we might want to move some data in
2464 * the background. Before the table can be swapped with
2465 * dm_bind_table, dm_suspend must be called to flush any in
2466 * flight bios and ensure that any further io gets deferred.
2467 */
2468 /*
2469 * Suspend mechanism in request-based dm.
2470 *
2471 * 1. Flush all I/Os by lock_fs() if needed.
2472 * 2. Stop dispatching any I/O by stopping the request_queue.
2473 * 3. Wait for all in-flight I/Os to be completed or requeued.
2474 *
2475 * To abort suspend, start the request_queue.
2476 */
dm_suspend(struct mapped_device * md,unsigned suspend_flags)2477 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2478 {
2479 struct dm_table *map = NULL;
2480 int r = 0;
2481
2482 retry:
2483 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2484
2485 if (dm_suspended_md(md)) {
2486 r = -EINVAL;
2487 goto out_unlock;
2488 }
2489
2490 if (dm_suspended_internally_md(md)) {
2491 /* already internally suspended, wait for internal resume */
2492 mutex_unlock(&md->suspend_lock);
2493 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2494 if (r)
2495 return r;
2496 goto retry;
2497 }
2498
2499 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2500
2501 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2502 if (r)
2503 goto out_unlock;
2504
2505 set_bit(DMF_POST_SUSPENDING, &md->flags);
2506 dm_table_postsuspend_targets(map);
2507 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2508
2509 out_unlock:
2510 mutex_unlock(&md->suspend_lock);
2511 return r;
2512 }
2513
__dm_resume(struct mapped_device * md,struct dm_table * map)2514 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2515 {
2516 if (map) {
2517 int r = dm_table_resume_targets(map);
2518 if (r)
2519 return r;
2520 }
2521
2522 dm_queue_flush(md);
2523
2524 /*
2525 * Flushing deferred I/Os must be done after targets are resumed
2526 * so that mapping of targets can work correctly.
2527 * Request-based dm is queueing the deferred I/Os in its request_queue.
2528 */
2529 if (dm_request_based(md))
2530 dm_start_queue(md->queue);
2531
2532 unlock_fs(md);
2533
2534 return 0;
2535 }
2536
dm_resume(struct mapped_device * md)2537 int dm_resume(struct mapped_device *md)
2538 {
2539 int r;
2540 struct dm_table *map = NULL;
2541
2542 retry:
2543 r = -EINVAL;
2544 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2545
2546 if (!dm_suspended_md(md))
2547 goto out;
2548
2549 if (dm_suspended_internally_md(md)) {
2550 /* already internally suspended, wait for internal resume */
2551 mutex_unlock(&md->suspend_lock);
2552 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2553 if (r)
2554 return r;
2555 goto retry;
2556 }
2557
2558 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2559 if (!map || !dm_table_get_size(map))
2560 goto out;
2561
2562 r = __dm_resume(md, map);
2563 if (r)
2564 goto out;
2565
2566 clear_bit(DMF_SUSPENDED, &md->flags);
2567 out:
2568 mutex_unlock(&md->suspend_lock);
2569
2570 return r;
2571 }
2572
2573 /*
2574 * Internal suspend/resume works like userspace-driven suspend. It waits
2575 * until all bios finish and prevents issuing new bios to the target drivers.
2576 * It may be used only from the kernel.
2577 */
2578
__dm_internal_suspend(struct mapped_device * md,unsigned suspend_flags)2579 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2580 {
2581 struct dm_table *map = NULL;
2582
2583 lockdep_assert_held(&md->suspend_lock);
2584
2585 if (md->internal_suspend_count++)
2586 return; /* nested internal suspend */
2587
2588 if (dm_suspended_md(md)) {
2589 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2590 return; /* nest suspend */
2591 }
2592
2593 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2594
2595 /*
2596 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2597 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2598 * would require changing .presuspend to return an error -- avoid this
2599 * until there is a need for more elaborate variants of internal suspend.
2600 */
2601 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2602 DMF_SUSPENDED_INTERNALLY);
2603
2604 set_bit(DMF_POST_SUSPENDING, &md->flags);
2605 dm_table_postsuspend_targets(map);
2606 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2607 }
2608
__dm_internal_resume(struct mapped_device * md)2609 static void __dm_internal_resume(struct mapped_device *md)
2610 {
2611 BUG_ON(!md->internal_suspend_count);
2612
2613 if (--md->internal_suspend_count)
2614 return; /* resume from nested internal suspend */
2615
2616 if (dm_suspended_md(md))
2617 goto done; /* resume from nested suspend */
2618
2619 /*
2620 * NOTE: existing callers don't need to call dm_table_resume_targets
2621 * (which may fail -- so best to avoid it for now by passing NULL map)
2622 */
2623 (void) __dm_resume(md, NULL);
2624
2625 done:
2626 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2627 smp_mb__after_atomic();
2628 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2629 }
2630
dm_internal_suspend_noflush(struct mapped_device * md)2631 void dm_internal_suspend_noflush(struct mapped_device *md)
2632 {
2633 mutex_lock(&md->suspend_lock);
2634 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2635 mutex_unlock(&md->suspend_lock);
2636 }
2637 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2638
dm_internal_resume(struct mapped_device * md)2639 void dm_internal_resume(struct mapped_device *md)
2640 {
2641 mutex_lock(&md->suspend_lock);
2642 __dm_internal_resume(md);
2643 mutex_unlock(&md->suspend_lock);
2644 }
2645 EXPORT_SYMBOL_GPL(dm_internal_resume);
2646
2647 /*
2648 * Fast variants of internal suspend/resume hold md->suspend_lock,
2649 * which prevents interaction with userspace-driven suspend.
2650 */
2651
dm_internal_suspend_fast(struct mapped_device * md)2652 void dm_internal_suspend_fast(struct mapped_device *md)
2653 {
2654 mutex_lock(&md->suspend_lock);
2655 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2656 return;
2657
2658 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2659 synchronize_srcu(&md->io_barrier);
2660 flush_workqueue(md->wq);
2661 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2662 }
2663 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2664
dm_internal_resume_fast(struct mapped_device * md)2665 void dm_internal_resume_fast(struct mapped_device *md)
2666 {
2667 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2668 goto done;
2669
2670 dm_queue_flush(md);
2671
2672 done:
2673 mutex_unlock(&md->suspend_lock);
2674 }
2675 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2676
2677 /*-----------------------------------------------------------------
2678 * Event notification.
2679 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned cookie)2680 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2681 unsigned cookie)
2682 {
2683 int r;
2684 unsigned noio_flag;
2685 char udev_cookie[DM_COOKIE_LENGTH];
2686 char *envp[] = { udev_cookie, NULL };
2687
2688 noio_flag = memalloc_noio_save();
2689
2690 if (!cookie)
2691 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2692 else {
2693 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2694 DM_COOKIE_ENV_VAR_NAME, cookie);
2695 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2696 action, envp);
2697 }
2698
2699 memalloc_noio_restore(noio_flag);
2700
2701 return r;
2702 }
2703
dm_next_uevent_seq(struct mapped_device * md)2704 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2705 {
2706 return atomic_add_return(1, &md->uevent_seq);
2707 }
2708
dm_get_event_nr(struct mapped_device * md)2709 uint32_t dm_get_event_nr(struct mapped_device *md)
2710 {
2711 return atomic_read(&md->event_nr);
2712 }
2713
dm_wait_event(struct mapped_device * md,int event_nr)2714 int dm_wait_event(struct mapped_device *md, int event_nr)
2715 {
2716 return wait_event_interruptible(md->eventq,
2717 (event_nr != atomic_read(&md->event_nr)));
2718 }
2719
dm_uevent_add(struct mapped_device * md,struct list_head * elist)2720 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2721 {
2722 unsigned long flags;
2723
2724 spin_lock_irqsave(&md->uevent_lock, flags);
2725 list_add(elist, &md->uevent_list);
2726 spin_unlock_irqrestore(&md->uevent_lock, flags);
2727 }
2728
2729 /*
2730 * The gendisk is only valid as long as you have a reference
2731 * count on 'md'.
2732 */
dm_disk(struct mapped_device * md)2733 struct gendisk *dm_disk(struct mapped_device *md)
2734 {
2735 return md->disk;
2736 }
2737 EXPORT_SYMBOL_GPL(dm_disk);
2738
dm_kobject(struct mapped_device * md)2739 struct kobject *dm_kobject(struct mapped_device *md)
2740 {
2741 return &md->kobj_holder.kobj;
2742 }
2743
dm_get_from_kobject(struct kobject * kobj)2744 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2745 {
2746 struct mapped_device *md;
2747
2748 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2749
2750 spin_lock(&_minor_lock);
2751 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2752 md = NULL;
2753 goto out;
2754 }
2755 dm_get(md);
2756 out:
2757 spin_unlock(&_minor_lock);
2758
2759 return md;
2760 }
2761
dm_suspended_md(struct mapped_device * md)2762 int dm_suspended_md(struct mapped_device *md)
2763 {
2764 return test_bit(DMF_SUSPENDED, &md->flags);
2765 }
2766
dm_post_suspending_md(struct mapped_device * md)2767 static int dm_post_suspending_md(struct mapped_device *md)
2768 {
2769 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2770 }
2771
dm_suspended_internally_md(struct mapped_device * md)2772 int dm_suspended_internally_md(struct mapped_device *md)
2773 {
2774 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2775 }
2776
dm_test_deferred_remove_flag(struct mapped_device * md)2777 int dm_test_deferred_remove_flag(struct mapped_device *md)
2778 {
2779 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2780 }
2781
dm_suspended(struct dm_target * ti)2782 int dm_suspended(struct dm_target *ti)
2783 {
2784 return dm_suspended_md(ti->table->md);
2785 }
2786 EXPORT_SYMBOL_GPL(dm_suspended);
2787
dm_post_suspending(struct dm_target * ti)2788 int dm_post_suspending(struct dm_target *ti)
2789 {
2790 return dm_post_suspending_md(ti->table->md);
2791 }
2792 EXPORT_SYMBOL_GPL(dm_post_suspending);
2793
dm_noflush_suspending(struct dm_target * ti)2794 int dm_noflush_suspending(struct dm_target *ti)
2795 {
2796 return __noflush_suspending(ti->table->md);
2797 }
2798 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2799
dm_alloc_md_mempools(struct mapped_device * md,enum dm_queue_mode type,unsigned integrity,unsigned per_io_data_size,unsigned min_pool_size)2800 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2801 unsigned integrity, unsigned per_io_data_size,
2802 unsigned min_pool_size)
2803 {
2804 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2805 unsigned int pool_size = 0;
2806 unsigned int front_pad, io_front_pad;
2807 int ret;
2808
2809 if (!pools)
2810 return NULL;
2811
2812 switch (type) {
2813 case DM_TYPE_BIO_BASED:
2814 case DM_TYPE_DAX_BIO_BASED:
2815 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2816 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2817 io_front_pad = roundup(per_io_data_size, __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2818 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2819 if (ret)
2820 goto out;
2821 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2822 goto out;
2823 break;
2824 case DM_TYPE_REQUEST_BASED:
2825 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2826 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2827 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2828 break;
2829 default:
2830 BUG();
2831 }
2832
2833 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2834 if (ret)
2835 goto out;
2836
2837 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2838 goto out;
2839
2840 return pools;
2841
2842 out:
2843 dm_free_md_mempools(pools);
2844
2845 return NULL;
2846 }
2847
dm_free_md_mempools(struct dm_md_mempools * pools)2848 void dm_free_md_mempools(struct dm_md_mempools *pools)
2849 {
2850 if (!pools)
2851 return;
2852
2853 bioset_exit(&pools->bs);
2854 bioset_exit(&pools->io_bs);
2855
2856 kfree(pools);
2857 }
2858
2859 struct dm_pr {
2860 u64 old_key;
2861 u64 new_key;
2862 u32 flags;
2863 bool fail_early;
2864 };
2865
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,void * data)2866 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2867 void *data)
2868 {
2869 struct mapped_device *md = bdev->bd_disk->private_data;
2870 struct dm_table *table;
2871 struct dm_target *ti;
2872 int ret = -ENOTTY, srcu_idx;
2873
2874 table = dm_get_live_table(md, &srcu_idx);
2875 if (!table || !dm_table_get_size(table))
2876 goto out;
2877
2878 /* We only support devices that have a single target */
2879 if (dm_table_get_num_targets(table) != 1)
2880 goto out;
2881 ti = dm_table_get_target(table, 0);
2882
2883 ret = -EINVAL;
2884 if (!ti->type->iterate_devices)
2885 goto out;
2886
2887 ret = ti->type->iterate_devices(ti, fn, data);
2888 out:
2889 dm_put_live_table(md, srcu_idx);
2890 return ret;
2891 }
2892
2893 /*
2894 * For register / unregister we need to manually call out to every path.
2895 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2896 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2897 sector_t start, sector_t len, void *data)
2898 {
2899 struct dm_pr *pr = data;
2900 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2901
2902 if (!ops || !ops->pr_register)
2903 return -EOPNOTSUPP;
2904 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2905 }
2906
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)2907 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2908 u32 flags)
2909 {
2910 struct dm_pr pr = {
2911 .old_key = old_key,
2912 .new_key = new_key,
2913 .flags = flags,
2914 .fail_early = true,
2915 };
2916 int ret;
2917
2918 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2919 if (ret && new_key) {
2920 /* unregister all paths if we failed to register any path */
2921 pr.old_key = new_key;
2922 pr.new_key = 0;
2923 pr.flags = 0;
2924 pr.fail_early = false;
2925 dm_call_pr(bdev, __dm_pr_register, &pr);
2926 }
2927
2928 return ret;
2929 }
2930
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)2931 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2932 u32 flags)
2933 {
2934 struct mapped_device *md = bdev->bd_disk->private_data;
2935 const struct pr_ops *ops;
2936 int r, srcu_idx;
2937
2938 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2939 if (r < 0)
2940 goto out;
2941
2942 ops = bdev->bd_disk->fops->pr_ops;
2943 if (ops && ops->pr_reserve)
2944 r = ops->pr_reserve(bdev, key, type, flags);
2945 else
2946 r = -EOPNOTSUPP;
2947 out:
2948 dm_unprepare_ioctl(md, srcu_idx);
2949 return r;
2950 }
2951
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)2952 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2953 {
2954 struct mapped_device *md = bdev->bd_disk->private_data;
2955 const struct pr_ops *ops;
2956 int r, srcu_idx;
2957
2958 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2959 if (r < 0)
2960 goto out;
2961
2962 ops = bdev->bd_disk->fops->pr_ops;
2963 if (ops && ops->pr_release)
2964 r = ops->pr_release(bdev, key, type);
2965 else
2966 r = -EOPNOTSUPP;
2967 out:
2968 dm_unprepare_ioctl(md, srcu_idx);
2969 return r;
2970 }
2971
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)2972 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2973 enum pr_type type, bool abort)
2974 {
2975 struct mapped_device *md = bdev->bd_disk->private_data;
2976 const struct pr_ops *ops;
2977 int r, srcu_idx;
2978
2979 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2980 if (r < 0)
2981 goto out;
2982
2983 ops = bdev->bd_disk->fops->pr_ops;
2984 if (ops && ops->pr_preempt)
2985 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2986 else
2987 r = -EOPNOTSUPP;
2988 out:
2989 dm_unprepare_ioctl(md, srcu_idx);
2990 return r;
2991 }
2992
dm_pr_clear(struct block_device * bdev,u64 key)2993 static int dm_pr_clear(struct block_device *bdev, u64 key)
2994 {
2995 struct mapped_device *md = bdev->bd_disk->private_data;
2996 const struct pr_ops *ops;
2997 int r, srcu_idx;
2998
2999 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3000 if (r < 0)
3001 goto out;
3002
3003 ops = bdev->bd_disk->fops->pr_ops;
3004 if (ops && ops->pr_clear)
3005 r = ops->pr_clear(bdev, key);
3006 else
3007 r = -EOPNOTSUPP;
3008 out:
3009 dm_unprepare_ioctl(md, srcu_idx);
3010 return r;
3011 }
3012
3013 static const struct pr_ops dm_pr_ops = {
3014 .pr_register = dm_pr_register,
3015 .pr_reserve = dm_pr_reserve,
3016 .pr_release = dm_pr_release,
3017 .pr_preempt = dm_pr_preempt,
3018 .pr_clear = dm_pr_clear,
3019 };
3020
3021 static const struct block_device_operations dm_blk_dops = {
3022 .submit_bio = dm_submit_bio,
3023 .open = dm_blk_open,
3024 .release = dm_blk_close,
3025 .ioctl = dm_blk_ioctl,
3026 .getgeo = dm_blk_getgeo,
3027 .report_zones = dm_blk_report_zones,
3028 .pr_ops = &dm_pr_ops,
3029 .owner = THIS_MODULE
3030 };
3031
3032 static const struct block_device_operations dm_rq_blk_dops = {
3033 .open = dm_blk_open,
3034 .release = dm_blk_close,
3035 .ioctl = dm_blk_ioctl,
3036 .getgeo = dm_blk_getgeo,
3037 .pr_ops = &dm_pr_ops,
3038 .owner = THIS_MODULE
3039 };
3040
3041 static const struct dax_operations dm_dax_ops = {
3042 .direct_access = dm_dax_direct_access,
3043 .dax_supported = dm_dax_supported,
3044 .copy_from_iter = dm_dax_copy_from_iter,
3045 .copy_to_iter = dm_dax_copy_to_iter,
3046 .zero_page_range = dm_dax_zero_page_range,
3047 };
3048
3049 /*
3050 * module hooks
3051 */
3052 module_init(dm_init);
3053 module_exit(dm_exit);
3054
3055 module_param(major, uint, 0);
3056 MODULE_PARM_DESC(major, "The major number of the device mapper");
3057
3058 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3059 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3060
3061 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3062 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3063
3064 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3065 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3066
3067 MODULE_DESCRIPTION(DM_NAME " driver");
3068 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3069 MODULE_LICENSE("GPL");
3070