1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/namei.h>
15 #include <linux/ctype.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/interrupt.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/atomic.h>
22 #include <linux/blk-mq.h>
23 #include <linux/mount.h>
24 #include <linux/dax.h>
25
26 #define DM_MSG_PREFIX "table"
27
28 #define NODE_SIZE L1_CACHE_BYTES
29 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32 /*
33 * Similar to ceiling(log_size(n))
34 */
int_log(unsigned int n,unsigned int base)35 static unsigned int int_log(unsigned int n, unsigned int base)
36 {
37 int result = 0;
38
39 while (n > 1) {
40 n = dm_div_up(n, base);
41 result++;
42 }
43
44 return result;
45 }
46
47 /*
48 * Calculate the index of the child node of the n'th node k'th key.
49 */
get_child(unsigned int n,unsigned int k)50 static inline unsigned int get_child(unsigned int n, unsigned int k)
51 {
52 return (n * CHILDREN_PER_NODE) + k;
53 }
54
55 /*
56 * Return the n'th node of level l from table t.
57 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)58 static inline sector_t *get_node(struct dm_table *t,
59 unsigned int l, unsigned int n)
60 {
61 return t->index[l] + (n * KEYS_PER_NODE);
62 }
63
64 /*
65 * Return the highest key that you could lookup from the n'th
66 * node on level l of the btree.
67 */
high(struct dm_table * t,unsigned int l,unsigned int n)68 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
69 {
70 for (; l < t->depth - 1; l++)
71 n = get_child(n, CHILDREN_PER_NODE - 1);
72
73 if (n >= t->counts[l])
74 return (sector_t) - 1;
75
76 return get_node(t, l, n)[KEYS_PER_NODE - 1];
77 }
78
79 /*
80 * Fills in a level of the btree based on the highs of the level
81 * below it.
82 */
setup_btree_index(unsigned int l,struct dm_table * t)83 static int setup_btree_index(unsigned int l, struct dm_table *t)
84 {
85 unsigned int n, k;
86 sector_t *node;
87
88 for (n = 0U; n < t->counts[l]; n++) {
89 node = get_node(t, l, n);
90
91 for (k = 0U; k < KEYS_PER_NODE; k++)
92 node[k] = high(t, l + 1, get_child(n, k));
93 }
94
95 return 0;
96 }
97
98 /*
99 * highs, and targets are managed as dynamic arrays during a
100 * table load.
101 */
alloc_targets(struct dm_table * t,unsigned int num)102 static int alloc_targets(struct dm_table *t, unsigned int num)
103 {
104 sector_t *n_highs;
105 struct dm_target *n_targets;
106
107 /*
108 * Allocate both the target array and offset array at once.
109 */
110 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
111 GFP_KERNEL);
112 if (!n_highs)
113 return -ENOMEM;
114
115 n_targets = (struct dm_target *) (n_highs + num);
116
117 memset(n_highs, -1, sizeof(*n_highs) * num);
118 kvfree(t->highs);
119
120 t->num_allocated = num;
121 t->highs = n_highs;
122 t->targets = n_targets;
123
124 return 0;
125 }
126
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)127 int dm_table_create(struct dm_table **result, fmode_t mode,
128 unsigned num_targets, struct mapped_device *md)
129 {
130 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
131
132 if (!t)
133 return -ENOMEM;
134
135 INIT_LIST_HEAD(&t->devices);
136
137 if (!num_targets)
138 num_targets = KEYS_PER_NODE;
139
140 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
141
142 if (!num_targets) {
143 kfree(t);
144 return -ENOMEM;
145 }
146
147 if (alloc_targets(t, num_targets)) {
148 kfree(t);
149 return -ENOMEM;
150 }
151
152 t->type = DM_TYPE_NONE;
153 t->mode = mode;
154 t->md = md;
155 *result = t;
156 return 0;
157 }
158
free_devices(struct list_head * devices,struct mapped_device * md)159 static void free_devices(struct list_head *devices, struct mapped_device *md)
160 {
161 struct list_head *tmp, *next;
162
163 list_for_each_safe(tmp, next, devices) {
164 struct dm_dev_internal *dd =
165 list_entry(tmp, struct dm_dev_internal, list);
166 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
167 dm_device_name(md), dd->dm_dev->name);
168 dm_put_table_device(md, dd->dm_dev);
169 kfree(dd);
170 }
171 }
172
173 static void dm_table_destroy_crypto_profile(struct dm_table *t);
174
dm_table_destroy(struct dm_table * t)175 void dm_table_destroy(struct dm_table *t)
176 {
177 unsigned int i;
178
179 if (!t)
180 return;
181
182 /* free the indexes */
183 if (t->depth >= 2)
184 kvfree(t->index[t->depth - 2]);
185
186 /* free the targets */
187 for (i = 0; i < t->num_targets; i++) {
188 struct dm_target *tgt = t->targets + i;
189
190 if (tgt->type->dtr)
191 tgt->type->dtr(tgt);
192
193 dm_put_target_type(tgt->type);
194 }
195
196 kvfree(t->highs);
197
198 /* free the device list */
199 free_devices(&t->devices, t->md);
200
201 dm_free_md_mempools(t->mempools);
202
203 dm_table_destroy_crypto_profile(t);
204
205 kfree(t);
206 }
207
208 /*
209 * See if we've already got a device in the list.
210 */
find_device(struct list_head * l,dev_t dev)211 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
212 {
213 struct dm_dev_internal *dd;
214
215 list_for_each_entry (dd, l, list)
216 if (dd->dm_dev->bdev->bd_dev == dev)
217 return dd;
218
219 return NULL;
220 }
221
222 /*
223 * If possible, this checks an area of a destination device is invalid.
224 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)225 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
226 sector_t start, sector_t len, void *data)
227 {
228 struct queue_limits *limits = data;
229 struct block_device *bdev = dev->bdev;
230 sector_t dev_size = bdev_nr_sectors(bdev);
231 unsigned short logical_block_size_sectors =
232 limits->logical_block_size >> SECTOR_SHIFT;
233 char b[BDEVNAME_SIZE];
234
235 if (!dev_size)
236 return 0;
237
238 if ((start >= dev_size) || (start + len > dev_size)) {
239 DMWARN("%s: %s too small for target: "
240 "start=%llu, len=%llu, dev_size=%llu",
241 dm_device_name(ti->table->md), bdevname(bdev, b),
242 (unsigned long long)start,
243 (unsigned long long)len,
244 (unsigned long long)dev_size);
245 return 1;
246 }
247
248 /*
249 * If the target is mapped to zoned block device(s), check
250 * that the zones are not partially mapped.
251 */
252 if (bdev_is_zoned(bdev)) {
253 unsigned int zone_sectors = bdev_zone_sectors(bdev);
254
255 if (start & (zone_sectors - 1)) {
256 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
257 dm_device_name(ti->table->md),
258 (unsigned long long)start,
259 zone_sectors, bdevname(bdev, b));
260 return 1;
261 }
262
263 /*
264 * Note: The last zone of a zoned block device may be smaller
265 * than other zones. So for a target mapping the end of a
266 * zoned block device with such a zone, len would not be zone
267 * aligned. We do not allow such last smaller zone to be part
268 * of the mapping here to ensure that mappings with multiple
269 * devices do not end up with a smaller zone in the middle of
270 * the sector range.
271 */
272 if (len & (zone_sectors - 1)) {
273 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
274 dm_device_name(ti->table->md),
275 (unsigned long long)len,
276 zone_sectors, bdevname(bdev, b));
277 return 1;
278 }
279 }
280
281 if (logical_block_size_sectors <= 1)
282 return 0;
283
284 if (start & (logical_block_size_sectors - 1)) {
285 DMWARN("%s: start=%llu not aligned to h/w "
286 "logical block size %u of %s",
287 dm_device_name(ti->table->md),
288 (unsigned long long)start,
289 limits->logical_block_size, bdevname(bdev, b));
290 return 1;
291 }
292
293 if (len & (logical_block_size_sectors - 1)) {
294 DMWARN("%s: len=%llu not aligned to h/w "
295 "logical block size %u of %s",
296 dm_device_name(ti->table->md),
297 (unsigned long long)len,
298 limits->logical_block_size, bdevname(bdev, b));
299 return 1;
300 }
301
302 return 0;
303 }
304
305 /*
306 * This upgrades the mode on an already open dm_dev, being
307 * careful to leave things as they were if we fail to reopen the
308 * device and not to touch the existing bdev field in case
309 * it is accessed concurrently.
310 */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)311 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
312 struct mapped_device *md)
313 {
314 int r;
315 struct dm_dev *old_dev, *new_dev;
316
317 old_dev = dd->dm_dev;
318
319 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
320 dd->dm_dev->mode | new_mode, &new_dev);
321 if (r)
322 return r;
323
324 dd->dm_dev = new_dev;
325 dm_put_table_device(md, old_dev);
326
327 return 0;
328 }
329
330 /*
331 * Convert the path to a device
332 */
dm_get_dev_t(const char * path)333 dev_t dm_get_dev_t(const char *path)
334 {
335 dev_t dev;
336
337 if (lookup_bdev(path, &dev))
338 dev = name_to_dev_t(path);
339 return dev;
340 }
341 EXPORT_SYMBOL_GPL(dm_get_dev_t);
342
343 /*
344 * Add a device to the list, or just increment the usage count if
345 * it's already present.
346 */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)347 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
348 struct dm_dev **result)
349 {
350 int r;
351 dev_t dev;
352 unsigned int major, minor;
353 char dummy;
354 struct dm_dev_internal *dd;
355 struct dm_table *t = ti->table;
356
357 BUG_ON(!t);
358
359 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
360 /* Extract the major/minor numbers */
361 dev = MKDEV(major, minor);
362 if (MAJOR(dev) != major || MINOR(dev) != minor)
363 return -EOVERFLOW;
364 } else {
365 dev = dm_get_dev_t(path);
366 if (!dev)
367 return -ENODEV;
368 }
369
370 dd = find_device(&t->devices, dev);
371 if (!dd) {
372 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 if (!dd)
374 return -ENOMEM;
375
376 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
377 kfree(dd);
378 return r;
379 }
380
381 refcount_set(&dd->count, 1);
382 list_add(&dd->list, &t->devices);
383 goto out;
384
385 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
386 r = upgrade_mode(dd, mode, t->md);
387 if (r)
388 return r;
389 }
390 refcount_inc(&dd->count);
391 out:
392 *result = dd->dm_dev;
393 return 0;
394 }
395 EXPORT_SYMBOL(dm_get_device);
396
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)397 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
398 sector_t start, sector_t len, void *data)
399 {
400 struct queue_limits *limits = data;
401 struct block_device *bdev = dev->bdev;
402 struct request_queue *q = bdev_get_queue(bdev);
403 char b[BDEVNAME_SIZE];
404
405 if (unlikely(!q)) {
406 DMWARN("%s: Cannot set limits for nonexistent device %s",
407 dm_device_name(ti->table->md), bdevname(bdev, b));
408 return 0;
409 }
410
411 if (blk_stack_limits(limits, &q->limits,
412 get_start_sect(bdev) + start) < 0)
413 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
414 "physical_block_size=%u, logical_block_size=%u, "
415 "alignment_offset=%u, start=%llu",
416 dm_device_name(ti->table->md), bdevname(bdev, b),
417 q->limits.physical_block_size,
418 q->limits.logical_block_size,
419 q->limits.alignment_offset,
420 (unsigned long long) start << SECTOR_SHIFT);
421 return 0;
422 }
423
424 /*
425 * Decrement a device's use count and remove it if necessary.
426 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)427 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
428 {
429 int found = 0;
430 struct list_head *devices = &ti->table->devices;
431 struct dm_dev_internal *dd;
432
433 list_for_each_entry(dd, devices, list) {
434 if (dd->dm_dev == d) {
435 found = 1;
436 break;
437 }
438 }
439 if (!found) {
440 DMWARN("%s: device %s not in table devices list",
441 dm_device_name(ti->table->md), d->name);
442 return;
443 }
444 if (refcount_dec_and_test(&dd->count)) {
445 dm_put_table_device(ti->table->md, d);
446 list_del(&dd->list);
447 kfree(dd);
448 }
449 }
450 EXPORT_SYMBOL(dm_put_device);
451
452 /*
453 * Checks to see if the target joins onto the end of the table.
454 */
adjoin(struct dm_table * table,struct dm_target * ti)455 static int adjoin(struct dm_table *table, struct dm_target *ti)
456 {
457 struct dm_target *prev;
458
459 if (!table->num_targets)
460 return !ti->begin;
461
462 prev = &table->targets[table->num_targets - 1];
463 return (ti->begin == (prev->begin + prev->len));
464 }
465
466 /*
467 * Used to dynamically allocate the arg array.
468 *
469 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
470 * process messages even if some device is suspended. These messages have a
471 * small fixed number of arguments.
472 *
473 * On the other hand, dm-switch needs to process bulk data using messages and
474 * excessive use of GFP_NOIO could cause trouble.
475 */
realloc_argv(unsigned * size,char ** old_argv)476 static char **realloc_argv(unsigned *size, char **old_argv)
477 {
478 char **argv;
479 unsigned new_size;
480 gfp_t gfp;
481
482 if (*size) {
483 new_size = *size * 2;
484 gfp = GFP_KERNEL;
485 } else {
486 new_size = 8;
487 gfp = GFP_NOIO;
488 }
489 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
490 if (argv && old_argv) {
491 memcpy(argv, old_argv, *size * sizeof(*argv));
492 *size = new_size;
493 }
494
495 kfree(old_argv);
496 return argv;
497 }
498
499 /*
500 * Destructively splits up the argument list to pass to ctr.
501 */
dm_split_args(int * argc,char *** argvp,char * input)502 int dm_split_args(int *argc, char ***argvp, char *input)
503 {
504 char *start, *end = input, *out, **argv = NULL;
505 unsigned array_size = 0;
506
507 *argc = 0;
508
509 if (!input) {
510 *argvp = NULL;
511 return 0;
512 }
513
514 argv = realloc_argv(&array_size, argv);
515 if (!argv)
516 return -ENOMEM;
517
518 while (1) {
519 /* Skip whitespace */
520 start = skip_spaces(end);
521
522 if (!*start)
523 break; /* success, we hit the end */
524
525 /* 'out' is used to remove any back-quotes */
526 end = out = start;
527 while (*end) {
528 /* Everything apart from '\0' can be quoted */
529 if (*end == '\\' && *(end + 1)) {
530 *out++ = *(end + 1);
531 end += 2;
532 continue;
533 }
534
535 if (isspace(*end))
536 break; /* end of token */
537
538 *out++ = *end++;
539 }
540
541 /* have we already filled the array ? */
542 if ((*argc + 1) > array_size) {
543 argv = realloc_argv(&array_size, argv);
544 if (!argv)
545 return -ENOMEM;
546 }
547
548 /* we know this is whitespace */
549 if (*end)
550 end++;
551
552 /* terminate the string and put it in the array */
553 *out = '\0';
554 argv[*argc] = start;
555 (*argc)++;
556 }
557
558 *argvp = argv;
559 return 0;
560 }
561
562 /*
563 * Impose necessary and sufficient conditions on a devices's table such
564 * that any incoming bio which respects its logical_block_size can be
565 * processed successfully. If it falls across the boundary between
566 * two or more targets, the size of each piece it gets split into must
567 * be compatible with the logical_block_size of the target processing it.
568 */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)569 static int validate_hardware_logical_block_alignment(struct dm_table *table,
570 struct queue_limits *limits)
571 {
572 /*
573 * This function uses arithmetic modulo the logical_block_size
574 * (in units of 512-byte sectors).
575 */
576 unsigned short device_logical_block_size_sects =
577 limits->logical_block_size >> SECTOR_SHIFT;
578
579 /*
580 * Offset of the start of the next table entry, mod logical_block_size.
581 */
582 unsigned short next_target_start = 0;
583
584 /*
585 * Given an aligned bio that extends beyond the end of a
586 * target, how many sectors must the next target handle?
587 */
588 unsigned short remaining = 0;
589
590 struct dm_target *ti;
591 struct queue_limits ti_limits;
592 unsigned i;
593
594 /*
595 * Check each entry in the table in turn.
596 */
597 for (i = 0; i < dm_table_get_num_targets(table); i++) {
598 ti = dm_table_get_target(table, i);
599
600 blk_set_stacking_limits(&ti_limits);
601
602 /* combine all target devices' limits */
603 if (ti->type->iterate_devices)
604 ti->type->iterate_devices(ti, dm_set_device_limits,
605 &ti_limits);
606
607 /*
608 * If the remaining sectors fall entirely within this
609 * table entry are they compatible with its logical_block_size?
610 */
611 if (remaining < ti->len &&
612 remaining & ((ti_limits.logical_block_size >>
613 SECTOR_SHIFT) - 1))
614 break; /* Error */
615
616 next_target_start =
617 (unsigned short) ((next_target_start + ti->len) &
618 (device_logical_block_size_sects - 1));
619 remaining = next_target_start ?
620 device_logical_block_size_sects - next_target_start : 0;
621 }
622
623 if (remaining) {
624 DMWARN("%s: table line %u (start sect %llu len %llu) "
625 "not aligned to h/w logical block size %u",
626 dm_device_name(table->md), i,
627 (unsigned long long) ti->begin,
628 (unsigned long long) ti->len,
629 limits->logical_block_size);
630 return -EINVAL;
631 }
632
633 return 0;
634 }
635
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)636 int dm_table_add_target(struct dm_table *t, const char *type,
637 sector_t start, sector_t len, char *params)
638 {
639 int r = -EINVAL, argc;
640 char **argv;
641 struct dm_target *tgt;
642
643 if (t->singleton) {
644 DMERR("%s: target type %s must appear alone in table",
645 dm_device_name(t->md), t->targets->type->name);
646 return -EINVAL;
647 }
648
649 BUG_ON(t->num_targets >= t->num_allocated);
650
651 tgt = t->targets + t->num_targets;
652 memset(tgt, 0, sizeof(*tgt));
653
654 if (!len) {
655 DMERR("%s: zero-length target", dm_device_name(t->md));
656 return -EINVAL;
657 }
658
659 tgt->type = dm_get_target_type(type);
660 if (!tgt->type) {
661 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
662 return -EINVAL;
663 }
664
665 if (dm_target_needs_singleton(tgt->type)) {
666 if (t->num_targets) {
667 tgt->error = "singleton target type must appear alone in table";
668 goto bad;
669 }
670 t->singleton = true;
671 }
672
673 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
674 tgt->error = "target type may not be included in a read-only table";
675 goto bad;
676 }
677
678 if (t->immutable_target_type) {
679 if (t->immutable_target_type != tgt->type) {
680 tgt->error = "immutable target type cannot be mixed with other target types";
681 goto bad;
682 }
683 } else if (dm_target_is_immutable(tgt->type)) {
684 if (t->num_targets) {
685 tgt->error = "immutable target type cannot be mixed with other target types";
686 goto bad;
687 }
688 t->immutable_target_type = tgt->type;
689 }
690
691 if (dm_target_has_integrity(tgt->type))
692 t->integrity_added = 1;
693
694 tgt->table = t;
695 tgt->begin = start;
696 tgt->len = len;
697 tgt->error = "Unknown error";
698
699 /*
700 * Does this target adjoin the previous one ?
701 */
702 if (!adjoin(t, tgt)) {
703 tgt->error = "Gap in table";
704 goto bad;
705 }
706
707 r = dm_split_args(&argc, &argv, params);
708 if (r) {
709 tgt->error = "couldn't split parameters";
710 goto bad;
711 }
712
713 r = tgt->type->ctr(tgt, argc, argv);
714 kfree(argv);
715 if (r)
716 goto bad;
717
718 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
719
720 if (!tgt->num_discard_bios && tgt->discards_supported)
721 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
722 dm_device_name(t->md), type);
723
724 return 0;
725
726 bad:
727 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, tgt->error, ERR_PTR(r));
728 dm_put_target_type(tgt->type);
729 return r;
730 }
731
732 /*
733 * Target argument parsing helpers.
734 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)735 static int validate_next_arg(const struct dm_arg *arg,
736 struct dm_arg_set *arg_set,
737 unsigned *value, char **error, unsigned grouped)
738 {
739 const char *arg_str = dm_shift_arg(arg_set);
740 char dummy;
741
742 if (!arg_str ||
743 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
744 (*value < arg->min) ||
745 (*value > arg->max) ||
746 (grouped && arg_set->argc < *value)) {
747 *error = arg->error;
748 return -EINVAL;
749 }
750
751 return 0;
752 }
753
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)754 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
755 unsigned *value, char **error)
756 {
757 return validate_next_arg(arg, arg_set, value, error, 0);
758 }
759 EXPORT_SYMBOL(dm_read_arg);
760
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)761 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
762 unsigned *value, char **error)
763 {
764 return validate_next_arg(arg, arg_set, value, error, 1);
765 }
766 EXPORT_SYMBOL(dm_read_arg_group);
767
dm_shift_arg(struct dm_arg_set * as)768 const char *dm_shift_arg(struct dm_arg_set *as)
769 {
770 char *r;
771
772 if (as->argc) {
773 as->argc--;
774 r = *as->argv;
775 as->argv++;
776 return r;
777 }
778
779 return NULL;
780 }
781 EXPORT_SYMBOL(dm_shift_arg);
782
dm_consume_args(struct dm_arg_set * as,unsigned num_args)783 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
784 {
785 BUG_ON(as->argc < num_args);
786 as->argc -= num_args;
787 as->argv += num_args;
788 }
789 EXPORT_SYMBOL(dm_consume_args);
790
__table_type_bio_based(enum dm_queue_mode table_type)791 static bool __table_type_bio_based(enum dm_queue_mode table_type)
792 {
793 return (table_type == DM_TYPE_BIO_BASED ||
794 table_type == DM_TYPE_DAX_BIO_BASED);
795 }
796
__table_type_request_based(enum dm_queue_mode table_type)797 static bool __table_type_request_based(enum dm_queue_mode table_type)
798 {
799 return table_type == DM_TYPE_REQUEST_BASED;
800 }
801
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)802 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
803 {
804 t->type = type;
805 }
806 EXPORT_SYMBOL_GPL(dm_table_set_type);
807
808 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)809 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
810 sector_t start, sector_t len, void *data)
811 {
812 int blocksize = *(int *) data;
813
814 return !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
815 }
816
817 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)818 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
819 sector_t start, sector_t len, void *data)
820 {
821 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
822 }
823
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn,int * blocksize)824 bool dm_table_supports_dax(struct dm_table *t,
825 iterate_devices_callout_fn iterate_fn, int *blocksize)
826 {
827 struct dm_target *ti;
828 unsigned i;
829
830 /* Ensure that all targets support DAX. */
831 for (i = 0; i < dm_table_get_num_targets(t); i++) {
832 ti = dm_table_get_target(t, i);
833
834 if (!ti->type->direct_access)
835 return false;
836
837 if (!ti->type->iterate_devices ||
838 ti->type->iterate_devices(ti, iterate_fn, blocksize))
839 return false;
840 }
841
842 return true;
843 }
844
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)845 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
846 sector_t start, sector_t len, void *data)
847 {
848 struct block_device *bdev = dev->bdev;
849 struct request_queue *q = bdev_get_queue(bdev);
850
851 /* request-based cannot stack on partitions! */
852 if (bdev_is_partition(bdev))
853 return false;
854
855 return queue_is_mq(q);
856 }
857
dm_table_determine_type(struct dm_table * t)858 static int dm_table_determine_type(struct dm_table *t)
859 {
860 unsigned i;
861 unsigned bio_based = 0, request_based = 0, hybrid = 0;
862 struct dm_target *tgt;
863 struct list_head *devices = dm_table_get_devices(t);
864 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
865 int page_size = PAGE_SIZE;
866
867 if (t->type != DM_TYPE_NONE) {
868 /* target already set the table's type */
869 if (t->type == DM_TYPE_BIO_BASED) {
870 /* possibly upgrade to a variant of bio-based */
871 goto verify_bio_based;
872 }
873 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
874 goto verify_rq_based;
875 }
876
877 for (i = 0; i < t->num_targets; i++) {
878 tgt = t->targets + i;
879 if (dm_target_hybrid(tgt))
880 hybrid = 1;
881 else if (dm_target_request_based(tgt))
882 request_based = 1;
883 else
884 bio_based = 1;
885
886 if (bio_based && request_based) {
887 DMERR("Inconsistent table: different target types"
888 " can't be mixed up");
889 return -EINVAL;
890 }
891 }
892
893 if (hybrid && !bio_based && !request_based) {
894 /*
895 * The targets can work either way.
896 * Determine the type from the live device.
897 * Default to bio-based if device is new.
898 */
899 if (__table_type_request_based(live_md_type))
900 request_based = 1;
901 else
902 bio_based = 1;
903 }
904
905 if (bio_based) {
906 verify_bio_based:
907 /* We must use this table as bio-based */
908 t->type = DM_TYPE_BIO_BASED;
909 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
910 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
911 t->type = DM_TYPE_DAX_BIO_BASED;
912 }
913 return 0;
914 }
915
916 BUG_ON(!request_based); /* No targets in this table */
917
918 t->type = DM_TYPE_REQUEST_BASED;
919
920 verify_rq_based:
921 /*
922 * Request-based dm supports only tables that have a single target now.
923 * To support multiple targets, request splitting support is needed,
924 * and that needs lots of changes in the block-layer.
925 * (e.g. request completion process for partial completion.)
926 */
927 if (t->num_targets > 1) {
928 DMERR("request-based DM doesn't support multiple targets");
929 return -EINVAL;
930 }
931
932 if (list_empty(devices)) {
933 int srcu_idx;
934 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
935
936 /* inherit live table's type */
937 if (live_table)
938 t->type = live_table->type;
939 dm_put_live_table(t->md, srcu_idx);
940 return 0;
941 }
942
943 tgt = dm_table_get_immutable_target(t);
944 if (!tgt) {
945 DMERR("table load rejected: immutable target is required");
946 return -EINVAL;
947 } else if (tgt->max_io_len) {
948 DMERR("table load rejected: immutable target that splits IO is not supported");
949 return -EINVAL;
950 }
951
952 /* Non-request-stackable devices can't be used for request-based dm */
953 if (!tgt->type->iterate_devices ||
954 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
955 DMERR("table load rejected: including non-request-stackable devices");
956 return -EINVAL;
957 }
958
959 return 0;
960 }
961
dm_table_get_type(struct dm_table * t)962 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
963 {
964 return t->type;
965 }
966
dm_table_get_immutable_target_type(struct dm_table * t)967 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
968 {
969 return t->immutable_target_type;
970 }
971
dm_table_get_immutable_target(struct dm_table * t)972 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
973 {
974 /* Immutable target is implicitly a singleton */
975 if (t->num_targets > 1 ||
976 !dm_target_is_immutable(t->targets[0].type))
977 return NULL;
978
979 return t->targets;
980 }
981
dm_table_get_wildcard_target(struct dm_table * t)982 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
983 {
984 struct dm_target *ti;
985 unsigned i;
986
987 for (i = 0; i < dm_table_get_num_targets(t); i++) {
988 ti = dm_table_get_target(t, i);
989 if (dm_target_is_wildcard(ti->type))
990 return ti;
991 }
992
993 return NULL;
994 }
995
dm_table_bio_based(struct dm_table * t)996 bool dm_table_bio_based(struct dm_table *t)
997 {
998 return __table_type_bio_based(dm_table_get_type(t));
999 }
1000
dm_table_request_based(struct dm_table * t)1001 bool dm_table_request_based(struct dm_table *t)
1002 {
1003 return __table_type_request_based(dm_table_get_type(t));
1004 }
1005
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1006 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1007 {
1008 enum dm_queue_mode type = dm_table_get_type(t);
1009 unsigned per_io_data_size = 0;
1010 unsigned min_pool_size = 0;
1011 struct dm_target *ti;
1012 unsigned i;
1013
1014 if (unlikely(type == DM_TYPE_NONE)) {
1015 DMWARN("no table type is set, can't allocate mempools");
1016 return -EINVAL;
1017 }
1018
1019 if (__table_type_bio_based(type))
1020 for (i = 0; i < t->num_targets; i++) {
1021 ti = t->targets + i;
1022 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1023 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1024 }
1025
1026 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1027 per_io_data_size, min_pool_size);
1028 if (!t->mempools)
1029 return -ENOMEM;
1030
1031 return 0;
1032 }
1033
dm_table_free_md_mempools(struct dm_table * t)1034 void dm_table_free_md_mempools(struct dm_table *t)
1035 {
1036 dm_free_md_mempools(t->mempools);
1037 t->mempools = NULL;
1038 }
1039
dm_table_get_md_mempools(struct dm_table * t)1040 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1041 {
1042 return t->mempools;
1043 }
1044
setup_indexes(struct dm_table * t)1045 static int setup_indexes(struct dm_table *t)
1046 {
1047 int i;
1048 unsigned int total = 0;
1049 sector_t *indexes;
1050
1051 /* allocate the space for *all* the indexes */
1052 for (i = t->depth - 2; i >= 0; i--) {
1053 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1054 total += t->counts[i];
1055 }
1056
1057 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1058 if (!indexes)
1059 return -ENOMEM;
1060
1061 /* set up internal nodes, bottom-up */
1062 for (i = t->depth - 2; i >= 0; i--) {
1063 t->index[i] = indexes;
1064 indexes += (KEYS_PER_NODE * t->counts[i]);
1065 setup_btree_index(i, t);
1066 }
1067
1068 return 0;
1069 }
1070
1071 /*
1072 * Builds the btree to index the map.
1073 */
dm_table_build_index(struct dm_table * t)1074 static int dm_table_build_index(struct dm_table *t)
1075 {
1076 int r = 0;
1077 unsigned int leaf_nodes;
1078
1079 /* how many indexes will the btree have ? */
1080 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1081 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1082
1083 /* leaf layer has already been set up */
1084 t->counts[t->depth - 1] = leaf_nodes;
1085 t->index[t->depth - 1] = t->highs;
1086
1087 if (t->depth >= 2)
1088 r = setup_indexes(t);
1089
1090 return r;
1091 }
1092
integrity_profile_exists(struct gendisk * disk)1093 static bool integrity_profile_exists(struct gendisk *disk)
1094 {
1095 return !!blk_get_integrity(disk);
1096 }
1097
1098 /*
1099 * Get a disk whose integrity profile reflects the table's profile.
1100 * Returns NULL if integrity support was inconsistent or unavailable.
1101 */
dm_table_get_integrity_disk(struct dm_table * t)1102 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1103 {
1104 struct list_head *devices = dm_table_get_devices(t);
1105 struct dm_dev_internal *dd = NULL;
1106 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1107 unsigned i;
1108
1109 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1110 struct dm_target *ti = dm_table_get_target(t, i);
1111 if (!dm_target_passes_integrity(ti->type))
1112 goto no_integrity;
1113 }
1114
1115 list_for_each_entry(dd, devices, list) {
1116 template_disk = dd->dm_dev->bdev->bd_disk;
1117 if (!integrity_profile_exists(template_disk))
1118 goto no_integrity;
1119 else if (prev_disk &&
1120 blk_integrity_compare(prev_disk, template_disk) < 0)
1121 goto no_integrity;
1122 prev_disk = template_disk;
1123 }
1124
1125 return template_disk;
1126
1127 no_integrity:
1128 if (prev_disk)
1129 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1130 dm_device_name(t->md),
1131 prev_disk->disk_name,
1132 template_disk->disk_name);
1133 return NULL;
1134 }
1135
1136 /*
1137 * Register the mapped device for blk_integrity support if the
1138 * underlying devices have an integrity profile. But all devices may
1139 * not have matching profiles (checking all devices isn't reliable
1140 * during table load because this table may use other DM device(s) which
1141 * must be resumed before they will have an initialized integity
1142 * profile). Consequently, stacked DM devices force a 2 stage integrity
1143 * profile validation: First pass during table load, final pass during
1144 * resume.
1145 */
dm_table_register_integrity(struct dm_table * t)1146 static int dm_table_register_integrity(struct dm_table *t)
1147 {
1148 struct mapped_device *md = t->md;
1149 struct gendisk *template_disk = NULL;
1150
1151 /* If target handles integrity itself do not register it here. */
1152 if (t->integrity_added)
1153 return 0;
1154
1155 template_disk = dm_table_get_integrity_disk(t);
1156 if (!template_disk)
1157 return 0;
1158
1159 if (!integrity_profile_exists(dm_disk(md))) {
1160 t->integrity_supported = true;
1161 /*
1162 * Register integrity profile during table load; we can do
1163 * this because the final profile must match during resume.
1164 */
1165 blk_integrity_register(dm_disk(md),
1166 blk_get_integrity(template_disk));
1167 return 0;
1168 }
1169
1170 /*
1171 * If DM device already has an initialized integrity
1172 * profile the new profile should not conflict.
1173 */
1174 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1175 DMWARN("%s: conflict with existing integrity profile: "
1176 "%s profile mismatch",
1177 dm_device_name(t->md),
1178 template_disk->disk_name);
1179 return 1;
1180 }
1181
1182 /* Preserve existing integrity profile */
1183 t->integrity_supported = true;
1184 return 0;
1185 }
1186
1187 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1188
1189 struct dm_crypto_profile {
1190 struct blk_crypto_profile profile;
1191 struct mapped_device *md;
1192 };
1193
1194 struct dm_keyslot_evict_args {
1195 const struct blk_crypto_key *key;
1196 int err;
1197 };
1198
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1199 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1200 sector_t start, sector_t len, void *data)
1201 {
1202 struct dm_keyslot_evict_args *args = data;
1203 int err;
1204
1205 err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1206 if (!args->err)
1207 args->err = err;
1208 /* Always try to evict the key from all devices. */
1209 return 0;
1210 }
1211
1212 /*
1213 * When an inline encryption key is evicted from a device-mapper device, evict
1214 * it from all the underlying devices.
1215 */
dm_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)1216 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1217 const struct blk_crypto_key *key, unsigned int slot)
1218 {
1219 struct mapped_device *md =
1220 container_of(profile, struct dm_crypto_profile, profile)->md;
1221 struct dm_keyslot_evict_args args = { key };
1222 struct dm_table *t;
1223 int srcu_idx;
1224 int i;
1225 struct dm_target *ti;
1226
1227 t = dm_get_live_table(md, &srcu_idx);
1228 if (!t)
1229 return 0;
1230 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1231 ti = dm_table_get_target(t, i);
1232 if (!ti->type->iterate_devices)
1233 continue;
1234 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1235 }
1236 dm_put_live_table(md, srcu_idx);
1237 return args.err;
1238 }
1239
1240 static int
device_intersect_crypto_capabilities(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1241 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1242 sector_t start, sector_t len, void *data)
1243 {
1244 struct blk_crypto_profile *parent = data;
1245 struct blk_crypto_profile *child =
1246 bdev_get_queue(dev->bdev)->crypto_profile;
1247
1248 blk_crypto_intersect_capabilities(parent, child);
1249 return 0;
1250 }
1251
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1252 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1253 {
1254 struct dm_crypto_profile *dmcp = container_of(profile,
1255 struct dm_crypto_profile,
1256 profile);
1257
1258 if (!profile)
1259 return;
1260
1261 blk_crypto_profile_destroy(profile);
1262 kfree(dmcp);
1263 }
1264
dm_table_destroy_crypto_profile(struct dm_table * t)1265 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1266 {
1267 dm_destroy_crypto_profile(t->crypto_profile);
1268 t->crypto_profile = NULL;
1269 }
1270
1271 /*
1272 * Constructs and initializes t->crypto_profile with a crypto profile that
1273 * represents the common set of crypto capabilities of the devices described by
1274 * the dm_table. However, if the constructed crypto profile doesn't support all
1275 * crypto capabilities that are supported by the current mapped_device, it
1276 * returns an error instead, since we don't support removing crypto capabilities
1277 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1278 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1279 */
dm_table_construct_crypto_profile(struct dm_table * t)1280 static int dm_table_construct_crypto_profile(struct dm_table *t)
1281 {
1282 struct dm_crypto_profile *dmcp;
1283 struct blk_crypto_profile *profile;
1284 struct dm_target *ti;
1285 unsigned int i;
1286 bool empty_profile = true;
1287
1288 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1289 if (!dmcp)
1290 return -ENOMEM;
1291 dmcp->md = t->md;
1292
1293 profile = &dmcp->profile;
1294 blk_crypto_profile_init(profile, 0);
1295 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1296 profile->max_dun_bytes_supported = UINT_MAX;
1297 memset(profile->modes_supported, 0xFF,
1298 sizeof(profile->modes_supported));
1299
1300 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1301 ti = dm_table_get_target(t, i);
1302
1303 if (!dm_target_passes_crypto(ti->type)) {
1304 blk_crypto_intersect_capabilities(profile, NULL);
1305 break;
1306 }
1307 if (!ti->type->iterate_devices)
1308 continue;
1309 ti->type->iterate_devices(ti,
1310 device_intersect_crypto_capabilities,
1311 profile);
1312 }
1313
1314 if (t->md->queue &&
1315 !blk_crypto_has_capabilities(profile,
1316 t->md->queue->crypto_profile)) {
1317 DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1318 dm_destroy_crypto_profile(profile);
1319 return -EINVAL;
1320 }
1321
1322 /*
1323 * If the new profile doesn't actually support any crypto capabilities,
1324 * we may as well represent it with a NULL profile.
1325 */
1326 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1327 if (profile->modes_supported[i]) {
1328 empty_profile = false;
1329 break;
1330 }
1331 }
1332
1333 if (empty_profile) {
1334 dm_destroy_crypto_profile(profile);
1335 profile = NULL;
1336 }
1337
1338 /*
1339 * t->crypto_profile is only set temporarily while the table is being
1340 * set up, and it gets set to NULL after the profile has been
1341 * transferred to the request_queue.
1342 */
1343 t->crypto_profile = profile;
1344
1345 return 0;
1346 }
1347
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1348 static void dm_update_crypto_profile(struct request_queue *q,
1349 struct dm_table *t)
1350 {
1351 if (!t->crypto_profile)
1352 return;
1353
1354 /* Make the crypto profile less restrictive. */
1355 if (!q->crypto_profile) {
1356 blk_crypto_register(t->crypto_profile, q);
1357 } else {
1358 blk_crypto_update_capabilities(q->crypto_profile,
1359 t->crypto_profile);
1360 dm_destroy_crypto_profile(t->crypto_profile);
1361 }
1362 t->crypto_profile = NULL;
1363 }
1364
1365 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1366
dm_table_construct_crypto_profile(struct dm_table * t)1367 static int dm_table_construct_crypto_profile(struct dm_table *t)
1368 {
1369 return 0;
1370 }
1371
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1372 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1373 {
1374 }
1375
dm_table_destroy_crypto_profile(struct dm_table * t)1376 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1377 {
1378 }
1379
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1380 static void dm_update_crypto_profile(struct request_queue *q,
1381 struct dm_table *t)
1382 {
1383 }
1384
1385 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1386
1387 /*
1388 * Prepares the table for use by building the indices,
1389 * setting the type, and allocating mempools.
1390 */
dm_table_complete(struct dm_table * t)1391 int dm_table_complete(struct dm_table *t)
1392 {
1393 int r;
1394
1395 r = dm_table_determine_type(t);
1396 if (r) {
1397 DMERR("unable to determine table type");
1398 return r;
1399 }
1400
1401 r = dm_table_build_index(t);
1402 if (r) {
1403 DMERR("unable to build btrees");
1404 return r;
1405 }
1406
1407 r = dm_table_register_integrity(t);
1408 if (r) {
1409 DMERR("could not register integrity profile.");
1410 return r;
1411 }
1412
1413 r = dm_table_construct_crypto_profile(t);
1414 if (r) {
1415 DMERR("could not construct crypto profile.");
1416 return r;
1417 }
1418
1419 r = dm_table_alloc_md_mempools(t, t->md);
1420 if (r)
1421 DMERR("unable to allocate mempools");
1422
1423 return r;
1424 }
1425
1426 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1427 void dm_table_event_callback(struct dm_table *t,
1428 void (*fn)(void *), void *context)
1429 {
1430 mutex_lock(&_event_lock);
1431 t->event_fn = fn;
1432 t->event_context = context;
1433 mutex_unlock(&_event_lock);
1434 }
1435
dm_table_event(struct dm_table * t)1436 void dm_table_event(struct dm_table *t)
1437 {
1438 mutex_lock(&_event_lock);
1439 if (t->event_fn)
1440 t->event_fn(t->event_context);
1441 mutex_unlock(&_event_lock);
1442 }
1443 EXPORT_SYMBOL(dm_table_event);
1444
dm_table_get_size(struct dm_table * t)1445 inline sector_t dm_table_get_size(struct dm_table *t)
1446 {
1447 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1448 }
1449 EXPORT_SYMBOL(dm_table_get_size);
1450
dm_table_get_target(struct dm_table * t,unsigned int index)1451 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1452 {
1453 if (index >= t->num_targets)
1454 return NULL;
1455
1456 return t->targets + index;
1457 }
1458
1459 /*
1460 * Search the btree for the correct target.
1461 *
1462 * Caller should check returned pointer for NULL
1463 * to trap I/O beyond end of device.
1464 */
dm_table_find_target(struct dm_table * t,sector_t sector)1465 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1466 {
1467 unsigned int l, n = 0, k = 0;
1468 sector_t *node;
1469
1470 if (unlikely(sector >= dm_table_get_size(t)))
1471 return NULL;
1472
1473 for (l = 0; l < t->depth; l++) {
1474 n = get_child(n, k);
1475 node = get_node(t, l, n);
1476
1477 for (k = 0; k < KEYS_PER_NODE; k++)
1478 if (node[k] >= sector)
1479 break;
1480 }
1481
1482 return &t->targets[(KEYS_PER_NODE * n) + k];
1483 }
1484
1485 /*
1486 * type->iterate_devices() should be called when the sanity check needs to
1487 * iterate and check all underlying data devices. iterate_devices() will
1488 * iterate all underlying data devices until it encounters a non-zero return
1489 * code, returned by whether the input iterate_devices_callout_fn, or
1490 * iterate_devices() itself internally.
1491 *
1492 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1493 * iterate multiple underlying devices internally, in which case a non-zero
1494 * return code returned by iterate_devices_callout_fn will stop the iteration
1495 * in advance.
1496 *
1497 * Cases requiring _any_ underlying device supporting some kind of attribute,
1498 * should use the iteration structure like dm_table_any_dev_attr(), or call
1499 * it directly. @func should handle semantics of positive examples, e.g.
1500 * capable of something.
1501 *
1502 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1503 * should use the iteration structure like dm_table_supports_nowait() or
1504 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1505 * uses an @anti_func that handle semantics of counter examples, e.g. not
1506 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1507 */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1508 static bool dm_table_any_dev_attr(struct dm_table *t,
1509 iterate_devices_callout_fn func, void *data)
1510 {
1511 struct dm_target *ti;
1512 unsigned int i;
1513
1514 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1515 ti = dm_table_get_target(t, i);
1516
1517 if (ti->type->iterate_devices &&
1518 ti->type->iterate_devices(ti, func, data))
1519 return true;
1520 }
1521
1522 return false;
1523 }
1524
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1525 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1526 sector_t start, sector_t len, void *data)
1527 {
1528 unsigned *num_devices = data;
1529
1530 (*num_devices)++;
1531
1532 return 0;
1533 }
1534
1535 /*
1536 * Check whether a table has no data devices attached using each
1537 * target's iterate_devices method.
1538 * Returns false if the result is unknown because a target doesn't
1539 * support iterate_devices.
1540 */
dm_table_has_no_data_devices(struct dm_table * table)1541 bool dm_table_has_no_data_devices(struct dm_table *table)
1542 {
1543 struct dm_target *ti;
1544 unsigned i, num_devices;
1545
1546 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1547 ti = dm_table_get_target(table, i);
1548
1549 if (!ti->type->iterate_devices)
1550 return false;
1551
1552 num_devices = 0;
1553 ti->type->iterate_devices(ti, count_device, &num_devices);
1554 if (num_devices)
1555 return false;
1556 }
1557
1558 return true;
1559 }
1560
device_not_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1561 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1562 sector_t start, sector_t len, void *data)
1563 {
1564 struct request_queue *q = bdev_get_queue(dev->bdev);
1565 enum blk_zoned_model *zoned_model = data;
1566
1567 return blk_queue_zoned_model(q) != *zoned_model;
1568 }
1569
1570 /*
1571 * Check the device zoned model based on the target feature flag. If the target
1572 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1573 * also accepted but all devices must have the same zoned model. If the target
1574 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1575 * zoned model with all zoned devices having the same zone size.
1576 */
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1577 static bool dm_table_supports_zoned_model(struct dm_table *t,
1578 enum blk_zoned_model zoned_model)
1579 {
1580 struct dm_target *ti;
1581 unsigned i;
1582
1583 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1584 ti = dm_table_get_target(t, i);
1585
1586 if (dm_target_supports_zoned_hm(ti->type)) {
1587 if (!ti->type->iterate_devices ||
1588 ti->type->iterate_devices(ti, device_not_zoned_model,
1589 &zoned_model))
1590 return false;
1591 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1592 if (zoned_model == BLK_ZONED_HM)
1593 return false;
1594 }
1595 }
1596
1597 return true;
1598 }
1599
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1600 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1601 sector_t start, sector_t len, void *data)
1602 {
1603 struct request_queue *q = bdev_get_queue(dev->bdev);
1604 unsigned int *zone_sectors = data;
1605
1606 if (!blk_queue_is_zoned(q))
1607 return 0;
1608
1609 return blk_queue_zone_sectors(q) != *zone_sectors;
1610 }
1611
1612 /*
1613 * Check consistency of zoned model and zone sectors across all targets. For
1614 * zone sectors, if the destination device is a zoned block device, it shall
1615 * have the specified zone_sectors.
1616 */
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1617 static int validate_hardware_zoned_model(struct dm_table *table,
1618 enum blk_zoned_model zoned_model,
1619 unsigned int zone_sectors)
1620 {
1621 if (zoned_model == BLK_ZONED_NONE)
1622 return 0;
1623
1624 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1625 DMERR("%s: zoned model is not consistent across all devices",
1626 dm_device_name(table->md));
1627 return -EINVAL;
1628 }
1629
1630 /* Check zone size validity and compatibility */
1631 if (!zone_sectors || !is_power_of_2(zone_sectors))
1632 return -EINVAL;
1633
1634 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1635 DMERR("%s: zone sectors is not consistent across all zoned devices",
1636 dm_device_name(table->md));
1637 return -EINVAL;
1638 }
1639
1640 return 0;
1641 }
1642
1643 /*
1644 * Establish the new table's queue_limits and validate them.
1645 */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1646 int dm_calculate_queue_limits(struct dm_table *table,
1647 struct queue_limits *limits)
1648 {
1649 struct dm_target *ti;
1650 struct queue_limits ti_limits;
1651 unsigned i;
1652 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1653 unsigned int zone_sectors = 0;
1654
1655 blk_set_stacking_limits(limits);
1656
1657 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1658 blk_set_stacking_limits(&ti_limits);
1659
1660 ti = dm_table_get_target(table, i);
1661
1662 if (!ti->type->iterate_devices)
1663 goto combine_limits;
1664
1665 /*
1666 * Combine queue limits of all the devices this target uses.
1667 */
1668 ti->type->iterate_devices(ti, dm_set_device_limits,
1669 &ti_limits);
1670
1671 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1672 /*
1673 * After stacking all limits, validate all devices
1674 * in table support this zoned model and zone sectors.
1675 */
1676 zoned_model = ti_limits.zoned;
1677 zone_sectors = ti_limits.chunk_sectors;
1678 }
1679
1680 /* Set I/O hints portion of queue limits */
1681 if (ti->type->io_hints)
1682 ti->type->io_hints(ti, &ti_limits);
1683
1684 /*
1685 * Check each device area is consistent with the target's
1686 * overall queue limits.
1687 */
1688 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1689 &ti_limits))
1690 return -EINVAL;
1691
1692 combine_limits:
1693 /*
1694 * Merge this target's queue limits into the overall limits
1695 * for the table.
1696 */
1697 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1698 DMWARN("%s: adding target device "
1699 "(start sect %llu len %llu) "
1700 "caused an alignment inconsistency",
1701 dm_device_name(table->md),
1702 (unsigned long long) ti->begin,
1703 (unsigned long long) ti->len);
1704 }
1705
1706 /*
1707 * Verify that the zoned model and zone sectors, as determined before
1708 * any .io_hints override, are the same across all devices in the table.
1709 * - this is especially relevant if .io_hints is emulating a disk-managed
1710 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1711 * BUT...
1712 */
1713 if (limits->zoned != BLK_ZONED_NONE) {
1714 /*
1715 * ...IF the above limits stacking determined a zoned model
1716 * validate that all of the table's devices conform to it.
1717 */
1718 zoned_model = limits->zoned;
1719 zone_sectors = limits->chunk_sectors;
1720 }
1721 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1722 return -EINVAL;
1723
1724 return validate_hardware_logical_block_alignment(table, limits);
1725 }
1726
1727 /*
1728 * Verify that all devices have an integrity profile that matches the
1729 * DM device's registered integrity profile. If the profiles don't
1730 * match then unregister the DM device's integrity profile.
1731 */
dm_table_verify_integrity(struct dm_table * t)1732 static void dm_table_verify_integrity(struct dm_table *t)
1733 {
1734 struct gendisk *template_disk = NULL;
1735
1736 if (t->integrity_added)
1737 return;
1738
1739 if (t->integrity_supported) {
1740 /*
1741 * Verify that the original integrity profile
1742 * matches all the devices in this table.
1743 */
1744 template_disk = dm_table_get_integrity_disk(t);
1745 if (template_disk &&
1746 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1747 return;
1748 }
1749
1750 if (integrity_profile_exists(dm_disk(t->md))) {
1751 DMWARN("%s: unable to establish an integrity profile",
1752 dm_device_name(t->md));
1753 blk_integrity_unregister(dm_disk(t->md));
1754 }
1755 }
1756
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1757 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1758 sector_t start, sector_t len, void *data)
1759 {
1760 unsigned long flush = (unsigned long) data;
1761 struct request_queue *q = bdev_get_queue(dev->bdev);
1762
1763 return (q->queue_flags & flush);
1764 }
1765
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1766 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1767 {
1768 struct dm_target *ti;
1769 unsigned i;
1770
1771 /*
1772 * Require at least one underlying device to support flushes.
1773 * t->devices includes internal dm devices such as mirror logs
1774 * so we need to use iterate_devices here, which targets
1775 * supporting flushes must provide.
1776 */
1777 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1778 ti = dm_table_get_target(t, i);
1779
1780 if (!ti->num_flush_bios)
1781 continue;
1782
1783 if (ti->flush_supported)
1784 return true;
1785
1786 if (ti->type->iterate_devices &&
1787 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1788 return true;
1789 }
1790
1791 return false;
1792 }
1793
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1794 static int device_dax_write_cache_enabled(struct dm_target *ti,
1795 struct dm_dev *dev, sector_t start,
1796 sector_t len, void *data)
1797 {
1798 struct dax_device *dax_dev = dev->dax_dev;
1799
1800 if (!dax_dev)
1801 return false;
1802
1803 if (dax_write_cache_enabled(dax_dev))
1804 return true;
1805 return false;
1806 }
1807
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1808 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1809 sector_t start, sector_t len, void *data)
1810 {
1811 struct request_queue *q = bdev_get_queue(dev->bdev);
1812
1813 return !blk_queue_nonrot(q);
1814 }
1815
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1816 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1817 sector_t start, sector_t len, void *data)
1818 {
1819 struct request_queue *q = bdev_get_queue(dev->bdev);
1820
1821 return !blk_queue_add_random(q);
1822 }
1823
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1824 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1825 sector_t start, sector_t len, void *data)
1826 {
1827 struct request_queue *q = bdev_get_queue(dev->bdev);
1828
1829 return !q->limits.max_write_same_sectors;
1830 }
1831
dm_table_supports_write_same(struct dm_table * t)1832 static bool dm_table_supports_write_same(struct dm_table *t)
1833 {
1834 struct dm_target *ti;
1835 unsigned i;
1836
1837 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1838 ti = dm_table_get_target(t, i);
1839
1840 if (!ti->num_write_same_bios)
1841 return false;
1842
1843 if (!ti->type->iterate_devices ||
1844 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1845 return false;
1846 }
1847
1848 return true;
1849 }
1850
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1851 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1852 sector_t start, sector_t len, void *data)
1853 {
1854 struct request_queue *q = bdev_get_queue(dev->bdev);
1855
1856 return !q->limits.max_write_zeroes_sectors;
1857 }
1858
dm_table_supports_write_zeroes(struct dm_table * t)1859 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1860 {
1861 struct dm_target *ti;
1862 unsigned i = 0;
1863
1864 while (i < dm_table_get_num_targets(t)) {
1865 ti = dm_table_get_target(t, i++);
1866
1867 if (!ti->num_write_zeroes_bios)
1868 return false;
1869
1870 if (!ti->type->iterate_devices ||
1871 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1872 return false;
1873 }
1874
1875 return true;
1876 }
1877
device_not_nowait_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1878 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1879 sector_t start, sector_t len, void *data)
1880 {
1881 struct request_queue *q = bdev_get_queue(dev->bdev);
1882
1883 return !blk_queue_nowait(q);
1884 }
1885
dm_table_supports_nowait(struct dm_table * t)1886 static bool dm_table_supports_nowait(struct dm_table *t)
1887 {
1888 struct dm_target *ti;
1889 unsigned i = 0;
1890
1891 while (i < dm_table_get_num_targets(t)) {
1892 ti = dm_table_get_target(t, i++);
1893
1894 if (!dm_target_supports_nowait(ti->type))
1895 return false;
1896
1897 if (!ti->type->iterate_devices ||
1898 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1899 return false;
1900 }
1901
1902 return true;
1903 }
1904
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1905 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1906 sector_t start, sector_t len, void *data)
1907 {
1908 struct request_queue *q = bdev_get_queue(dev->bdev);
1909
1910 return !blk_queue_discard(q);
1911 }
1912
dm_table_supports_discards(struct dm_table * t)1913 static bool dm_table_supports_discards(struct dm_table *t)
1914 {
1915 struct dm_target *ti;
1916 unsigned i;
1917
1918 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1919 ti = dm_table_get_target(t, i);
1920
1921 if (!ti->num_discard_bios)
1922 return false;
1923
1924 /*
1925 * Either the target provides discard support (as implied by setting
1926 * 'discards_supported') or it relies on _all_ data devices having
1927 * discard support.
1928 */
1929 if (!ti->discards_supported &&
1930 (!ti->type->iterate_devices ||
1931 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1932 return false;
1933 }
1934
1935 return true;
1936 }
1937
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1938 static int device_not_secure_erase_capable(struct dm_target *ti,
1939 struct dm_dev *dev, sector_t start,
1940 sector_t len, void *data)
1941 {
1942 struct request_queue *q = bdev_get_queue(dev->bdev);
1943
1944 return !blk_queue_secure_erase(q);
1945 }
1946
dm_table_supports_secure_erase(struct dm_table * t)1947 static bool dm_table_supports_secure_erase(struct dm_table *t)
1948 {
1949 struct dm_target *ti;
1950 unsigned int i;
1951
1952 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1953 ti = dm_table_get_target(t, i);
1954
1955 if (!ti->num_secure_erase_bios)
1956 return false;
1957
1958 if (!ti->type->iterate_devices ||
1959 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1960 return false;
1961 }
1962
1963 return true;
1964 }
1965
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1966 static int device_requires_stable_pages(struct dm_target *ti,
1967 struct dm_dev *dev, sector_t start,
1968 sector_t len, void *data)
1969 {
1970 struct request_queue *q = bdev_get_queue(dev->bdev);
1971
1972 return blk_queue_stable_writes(q);
1973 }
1974
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1975 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1976 struct queue_limits *limits)
1977 {
1978 bool wc = false, fua = false;
1979 int page_size = PAGE_SIZE;
1980 int r;
1981
1982 /*
1983 * Copy table's limits to the DM device's request_queue
1984 */
1985 q->limits = *limits;
1986
1987 if (dm_table_supports_nowait(t))
1988 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1989 else
1990 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1991
1992 if (!dm_table_supports_discards(t)) {
1993 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1994 /* Must also clear discard limits... */
1995 q->limits.max_discard_sectors = 0;
1996 q->limits.max_hw_discard_sectors = 0;
1997 q->limits.discard_granularity = 0;
1998 q->limits.discard_alignment = 0;
1999 q->limits.discard_misaligned = 0;
2000 } else
2001 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
2002
2003 if (dm_table_supports_secure_erase(t))
2004 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
2005
2006 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
2007 wc = true;
2008 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2009 fua = true;
2010 }
2011 blk_queue_write_cache(q, wc, fua);
2012
2013 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
2014 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2015 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
2016 set_dax_synchronous(t->md->dax_dev);
2017 }
2018 else
2019 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2020
2021 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2022 dax_write_cache(t->md->dax_dev, true);
2023
2024 /* Ensure that all underlying devices are non-rotational. */
2025 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2026 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2027 else
2028 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2029
2030 if (!dm_table_supports_write_same(t))
2031 q->limits.max_write_same_sectors = 0;
2032 if (!dm_table_supports_write_zeroes(t))
2033 q->limits.max_write_zeroes_sectors = 0;
2034
2035 dm_table_verify_integrity(t);
2036
2037 /*
2038 * Some devices don't use blk_integrity but still want stable pages
2039 * because they do their own checksumming.
2040 * If any underlying device requires stable pages, a table must require
2041 * them as well. Only targets that support iterate_devices are considered:
2042 * don't want error, zero, etc to require stable pages.
2043 */
2044 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2045 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2046 else
2047 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2048
2049 /*
2050 * Determine whether or not this queue's I/O timings contribute
2051 * to the entropy pool, Only request-based targets use this.
2052 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2053 * have it set.
2054 */
2055 if (blk_queue_add_random(q) &&
2056 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2057 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2058
2059 /*
2060 * For a zoned target, setup the zones related queue attributes
2061 * and resources necessary for zone append emulation if necessary.
2062 */
2063 if (blk_queue_is_zoned(q)) {
2064 r = dm_set_zones_restrictions(t, q);
2065 if (r)
2066 return r;
2067 }
2068
2069 dm_update_crypto_profile(q, t);
2070 disk_update_readahead(t->md->disk);
2071
2072 return 0;
2073 }
2074
dm_table_get_num_targets(struct dm_table * t)2075 unsigned int dm_table_get_num_targets(struct dm_table *t)
2076 {
2077 return t->num_targets;
2078 }
2079
dm_table_get_devices(struct dm_table * t)2080 struct list_head *dm_table_get_devices(struct dm_table *t)
2081 {
2082 return &t->devices;
2083 }
2084
dm_table_get_mode(struct dm_table * t)2085 fmode_t dm_table_get_mode(struct dm_table *t)
2086 {
2087 return t->mode;
2088 }
2089 EXPORT_SYMBOL(dm_table_get_mode);
2090
2091 enum suspend_mode {
2092 PRESUSPEND,
2093 PRESUSPEND_UNDO,
2094 POSTSUSPEND,
2095 };
2096
suspend_targets(struct dm_table * t,enum suspend_mode mode)2097 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2098 {
2099 int i = t->num_targets;
2100 struct dm_target *ti = t->targets;
2101
2102 lockdep_assert_held(&t->md->suspend_lock);
2103
2104 while (i--) {
2105 switch (mode) {
2106 case PRESUSPEND:
2107 if (ti->type->presuspend)
2108 ti->type->presuspend(ti);
2109 break;
2110 case PRESUSPEND_UNDO:
2111 if (ti->type->presuspend_undo)
2112 ti->type->presuspend_undo(ti);
2113 break;
2114 case POSTSUSPEND:
2115 if (ti->type->postsuspend)
2116 ti->type->postsuspend(ti);
2117 break;
2118 }
2119 ti++;
2120 }
2121 }
2122
dm_table_presuspend_targets(struct dm_table * t)2123 void dm_table_presuspend_targets(struct dm_table *t)
2124 {
2125 if (!t)
2126 return;
2127
2128 suspend_targets(t, PRESUSPEND);
2129 }
2130
dm_table_presuspend_undo_targets(struct dm_table * t)2131 void dm_table_presuspend_undo_targets(struct dm_table *t)
2132 {
2133 if (!t)
2134 return;
2135
2136 suspend_targets(t, PRESUSPEND_UNDO);
2137 }
2138
dm_table_postsuspend_targets(struct dm_table * t)2139 void dm_table_postsuspend_targets(struct dm_table *t)
2140 {
2141 if (!t)
2142 return;
2143
2144 suspend_targets(t, POSTSUSPEND);
2145 }
2146
dm_table_resume_targets(struct dm_table * t)2147 int dm_table_resume_targets(struct dm_table *t)
2148 {
2149 int i, r = 0;
2150
2151 lockdep_assert_held(&t->md->suspend_lock);
2152
2153 for (i = 0; i < t->num_targets; i++) {
2154 struct dm_target *ti = t->targets + i;
2155
2156 if (!ti->type->preresume)
2157 continue;
2158
2159 r = ti->type->preresume(ti);
2160 if (r) {
2161 DMERR("%s: %s: preresume failed, error = %d",
2162 dm_device_name(t->md), ti->type->name, r);
2163 return r;
2164 }
2165 }
2166
2167 for (i = 0; i < t->num_targets; i++) {
2168 struct dm_target *ti = t->targets + i;
2169
2170 if (ti->type->resume)
2171 ti->type->resume(ti);
2172 }
2173
2174 return 0;
2175 }
2176
dm_table_get_md(struct dm_table * t)2177 struct mapped_device *dm_table_get_md(struct dm_table *t)
2178 {
2179 return t->md;
2180 }
2181 EXPORT_SYMBOL(dm_table_get_md);
2182
dm_table_device_name(struct dm_table * t)2183 const char *dm_table_device_name(struct dm_table *t)
2184 {
2185 return dm_device_name(t->md);
2186 }
2187 EXPORT_SYMBOL_GPL(dm_table_device_name);
2188
dm_table_run_md_queue_async(struct dm_table * t)2189 void dm_table_run_md_queue_async(struct dm_table *t)
2190 {
2191 if (!dm_table_request_based(t))
2192 return;
2193
2194 if (t->md->queue)
2195 blk_mq_run_hw_queues(t->md->queue, true);
2196 }
2197 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2198
2199