1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Fence mechanism for dma-buf and to allow for asynchronous dma access
4  *
5  * Copyright (C) 2012 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  */
12 
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/atomic.h>
16 #include <linux/dma-fence.h>
17 #include <linux/sched/signal.h>
18 
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/dma_fence.h>
21 
22 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
23 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
24 EXPORT_TRACEPOINT_SYMBOL(dma_fence_signaled);
25 
26 static DEFINE_SPINLOCK(dma_fence_stub_lock);
27 static struct dma_fence dma_fence_stub;
28 
29 /*
30  * fence context counter: each execution context should have its own
31  * fence context, this allows checking if fences belong to the same
32  * context or not. One device can have multiple separate contexts,
33  * and they're used if some engine can run independently of another.
34  */
35 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(1);
36 
37 /**
38  * DOC: DMA fences overview
39  *
40  * DMA fences, represented by &struct dma_fence, are the kernel internal
41  * synchronization primitive for DMA operations like GPU rendering, video
42  * encoding/decoding, or displaying buffers on a screen.
43  *
44  * A fence is initialized using dma_fence_init() and completed using
45  * dma_fence_signal(). Fences are associated with a context, allocated through
46  * dma_fence_context_alloc(), and all fences on the same context are
47  * fully ordered.
48  *
49  * Since the purposes of fences is to facilitate cross-device and
50  * cross-application synchronization, there's multiple ways to use one:
51  *
52  * - Individual fences can be exposed as a &sync_file, accessed as a file
53  *   descriptor from userspace, created by calling sync_file_create(). This is
54  *   called explicit fencing, since userspace passes around explicit
55  *   synchronization points.
56  *
57  * - Some subsystems also have their own explicit fencing primitives, like
58  *   &drm_syncobj. Compared to &sync_file, a &drm_syncobj allows the underlying
59  *   fence to be updated.
60  *
61  * - Then there's also implicit fencing, where the synchronization points are
62  *   implicitly passed around as part of shared &dma_buf instances. Such
63  *   implicit fences are stored in &struct dma_resv through the
64  *   &dma_buf.resv pointer.
65  */
66 
67 /**
68  * DOC: fence cross-driver contract
69  *
70  * Since &dma_fence provide a cross driver contract, all drivers must follow the
71  * same rules:
72  *
73  * * Fences must complete in a reasonable time. Fences which represent kernels
74  *   and shaders submitted by userspace, which could run forever, must be backed
75  *   up by timeout and gpu hang recovery code. Minimally that code must prevent
76  *   further command submission and force complete all in-flight fences, e.g.
77  *   when the driver or hardware do not support gpu reset, or if the gpu reset
78  *   failed for some reason. Ideally the driver supports gpu recovery which only
79  *   affects the offending userspace context, and no other userspace
80  *   submissions.
81  *
82  * * Drivers may have different ideas of what completion within a reasonable
83  *   time means. Some hang recovery code uses a fixed timeout, others a mix
84  *   between observing forward progress and increasingly strict timeouts.
85  *   Drivers should not try to second guess timeout handling of fences from
86  *   other drivers.
87  *
88  * * To ensure there's no deadlocks of dma_fence_wait() against other locks
89  *   drivers should annotate all code required to reach dma_fence_signal(),
90  *   which completes the fences, with dma_fence_begin_signalling() and
91  *   dma_fence_end_signalling().
92  *
93  * * Drivers are allowed to call dma_fence_wait() while holding dma_resv_lock().
94  *   This means any code required for fence completion cannot acquire a
95  *   &dma_resv lock. Note that this also pulls in the entire established
96  *   locking hierarchy around dma_resv_lock() and dma_resv_unlock().
97  *
98  * * Drivers are allowed to call dma_fence_wait() from their &shrinker
99  *   callbacks. This means any code required for fence completion cannot
100  *   allocate memory with GFP_KERNEL.
101  *
102  * * Drivers are allowed to call dma_fence_wait() from their &mmu_notifier
103  *   respectively &mmu_interval_notifier callbacks. This means any code required
104  *   for fence completeion cannot allocate memory with GFP_NOFS or GFP_NOIO.
105  *   Only GFP_ATOMIC is permissible, which might fail.
106  *
107  * Note that only GPU drivers have a reasonable excuse for both requiring
108  * &mmu_interval_notifier and &shrinker callbacks at the same time as having to
109  * track asynchronous compute work using &dma_fence. No driver outside of
110  * drivers/gpu should ever call dma_fence_wait() in such contexts.
111  */
112 
dma_fence_stub_get_name(struct dma_fence * fence)113 static const char *dma_fence_stub_get_name(struct dma_fence *fence)
114 {
115         return "stub";
116 }
117 
118 static const struct dma_fence_ops dma_fence_stub_ops = {
119 	.get_driver_name = dma_fence_stub_get_name,
120 	.get_timeline_name = dma_fence_stub_get_name,
121 };
122 
123 /**
124  * dma_fence_get_stub - return a signaled fence
125  *
126  * Return a stub fence which is already signaled. The fence's
127  * timestamp corresponds to the first time after boot this
128  * function is called.
129  */
dma_fence_get_stub(void)130 struct dma_fence *dma_fence_get_stub(void)
131 {
132 	spin_lock(&dma_fence_stub_lock);
133 	if (!dma_fence_stub.ops) {
134 		dma_fence_init(&dma_fence_stub,
135 			       &dma_fence_stub_ops,
136 			       &dma_fence_stub_lock,
137 			       0, 0);
138 		dma_fence_signal_locked(&dma_fence_stub);
139 	}
140 	spin_unlock(&dma_fence_stub_lock);
141 
142 	return dma_fence_get(&dma_fence_stub);
143 }
144 EXPORT_SYMBOL(dma_fence_get_stub);
145 
146 /**
147  * dma_fence_allocate_private_stub - return a private, signaled fence
148  *
149  * Return a newly allocated and signaled stub fence.
150  */
dma_fence_allocate_private_stub(void)151 struct dma_fence *dma_fence_allocate_private_stub(void)
152 {
153 	struct dma_fence *fence;
154 
155 	fence = kzalloc(sizeof(*fence), GFP_KERNEL);
156 	if (fence == NULL)
157 		return ERR_PTR(-ENOMEM);
158 
159 	dma_fence_init(fence,
160 		       &dma_fence_stub_ops,
161 		       &dma_fence_stub_lock,
162 		       0, 0);
163 	dma_fence_signal(fence);
164 
165 	return fence;
166 }
167 EXPORT_SYMBOL(dma_fence_allocate_private_stub);
168 
169 /**
170  * dma_fence_context_alloc - allocate an array of fence contexts
171  * @num: amount of contexts to allocate
172  *
173  * This function will return the first index of the number of fence contexts
174  * allocated.  The fence context is used for setting &dma_fence.context to a
175  * unique number by passing the context to dma_fence_init().
176  */
dma_fence_context_alloc(unsigned num)177 u64 dma_fence_context_alloc(unsigned num)
178 {
179 	WARN_ON(!num);
180 	return atomic64_fetch_add(num, &dma_fence_context_counter);
181 }
182 EXPORT_SYMBOL(dma_fence_context_alloc);
183 
184 /**
185  * DOC: fence signalling annotation
186  *
187  * Proving correctness of all the kernel code around &dma_fence through code
188  * review and testing is tricky for a few reasons:
189  *
190  * * It is a cross-driver contract, and therefore all drivers must follow the
191  *   same rules for lock nesting order, calling contexts for various functions
192  *   and anything else significant for in-kernel interfaces. But it is also
193  *   impossible to test all drivers in a single machine, hence brute-force N vs.
194  *   N testing of all combinations is impossible. Even just limiting to the
195  *   possible combinations is infeasible.
196  *
197  * * There is an enormous amount of driver code involved. For render drivers
198  *   there's the tail of command submission, after fences are published,
199  *   scheduler code, interrupt and workers to process job completion,
200  *   and timeout, gpu reset and gpu hang recovery code. Plus for integration
201  *   with core mm with have &mmu_notifier, respectively &mmu_interval_notifier,
202  *   and &shrinker. For modesetting drivers there's the commit tail functions
203  *   between when fences for an atomic modeset are published, and when the
204  *   corresponding vblank completes, including any interrupt processing and
205  *   related workers. Auditing all that code, across all drivers, is not
206  *   feasible.
207  *
208  * * Due to how many other subsystems are involved and the locking hierarchies
209  *   this pulls in there is extremely thin wiggle-room for driver-specific
210  *   differences. &dma_fence interacts with almost all of the core memory
211  *   handling through page fault handlers via &dma_resv, dma_resv_lock() and
212  *   dma_resv_unlock(). On the other side it also interacts through all
213  *   allocation sites through &mmu_notifier and &shrinker.
214  *
215  * Furthermore lockdep does not handle cross-release dependencies, which means
216  * any deadlocks between dma_fence_wait() and dma_fence_signal() can't be caught
217  * at runtime with some quick testing. The simplest example is one thread
218  * waiting on a &dma_fence while holding a lock::
219  *
220  *     lock(A);
221  *     dma_fence_wait(B);
222  *     unlock(A);
223  *
224  * while the other thread is stuck trying to acquire the same lock, which
225  * prevents it from signalling the fence the previous thread is stuck waiting
226  * on::
227  *
228  *     lock(A);
229  *     unlock(A);
230  *     dma_fence_signal(B);
231  *
232  * By manually annotating all code relevant to signalling a &dma_fence we can
233  * teach lockdep about these dependencies, which also helps with the validation
234  * headache since now lockdep can check all the rules for us::
235  *
236  *    cookie = dma_fence_begin_signalling();
237  *    lock(A);
238  *    unlock(A);
239  *    dma_fence_signal(B);
240  *    dma_fence_end_signalling(cookie);
241  *
242  * For using dma_fence_begin_signalling() and dma_fence_end_signalling() to
243  * annotate critical sections the following rules need to be observed:
244  *
245  * * All code necessary to complete a &dma_fence must be annotated, from the
246  *   point where a fence is accessible to other threads, to the point where
247  *   dma_fence_signal() is called. Un-annotated code can contain deadlock issues,
248  *   and due to the very strict rules and many corner cases it is infeasible to
249  *   catch these just with review or normal stress testing.
250  *
251  * * &struct dma_resv deserves a special note, since the readers are only
252  *   protected by rcu. This means the signalling critical section starts as soon
253  *   as the new fences are installed, even before dma_resv_unlock() is called.
254  *
255  * * The only exception are fast paths and opportunistic signalling code, which
256  *   calls dma_fence_signal() purely as an optimization, but is not required to
257  *   guarantee completion of a &dma_fence. The usual example is a wait IOCTL
258  *   which calls dma_fence_signal(), while the mandatory completion path goes
259  *   through a hardware interrupt and possible job completion worker.
260  *
261  * * To aid composability of code, the annotations can be freely nested, as long
262  *   as the overall locking hierarchy is consistent. The annotations also work
263  *   both in interrupt and process context. Due to implementation details this
264  *   requires that callers pass an opaque cookie from
265  *   dma_fence_begin_signalling() to dma_fence_end_signalling().
266  *
267  * * Validation against the cross driver contract is implemented by priming
268  *   lockdep with the relevant hierarchy at boot-up. This means even just
269  *   testing with a single device is enough to validate a driver, at least as
270  *   far as deadlocks with dma_fence_wait() against dma_fence_signal() are
271  *   concerned.
272  */
273 #ifdef CONFIG_LOCKDEP
274 static struct lockdep_map dma_fence_lockdep_map = {
275 	.name = "dma_fence_map"
276 };
277 
278 /**
279  * dma_fence_begin_signalling - begin a critical DMA fence signalling section
280  *
281  * Drivers should use this to annotate the beginning of any code section
282  * required to eventually complete &dma_fence by calling dma_fence_signal().
283  *
284  * The end of these critical sections are annotated with
285  * dma_fence_end_signalling().
286  *
287  * Returns:
288  *
289  * Opaque cookie needed by the implementation, which needs to be passed to
290  * dma_fence_end_signalling().
291  */
dma_fence_begin_signalling(void)292 bool dma_fence_begin_signalling(void)
293 {
294 	/* explicitly nesting ... */
295 	if (lock_is_held_type(&dma_fence_lockdep_map, 1))
296 		return true;
297 
298 	/* rely on might_sleep check for soft/hardirq locks */
299 	if (in_atomic())
300 		return true;
301 
302 	/* ... and non-recursive readlock */
303 	lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _RET_IP_);
304 
305 	return false;
306 }
307 EXPORT_SYMBOL(dma_fence_begin_signalling);
308 
309 /**
310  * dma_fence_end_signalling - end a critical DMA fence signalling section
311  * @cookie: opaque cookie from dma_fence_begin_signalling()
312  *
313  * Closes a critical section annotation opened by dma_fence_begin_signalling().
314  */
dma_fence_end_signalling(bool cookie)315 void dma_fence_end_signalling(bool cookie)
316 {
317 	if (cookie)
318 		return;
319 
320 	lock_release(&dma_fence_lockdep_map, _RET_IP_);
321 }
322 EXPORT_SYMBOL(dma_fence_end_signalling);
323 
__dma_fence_might_wait(void)324 void __dma_fence_might_wait(void)
325 {
326 	bool tmp;
327 
328 	tmp = lock_is_held_type(&dma_fence_lockdep_map, 1);
329 	if (tmp)
330 		lock_release(&dma_fence_lockdep_map, _THIS_IP_);
331 	lock_map_acquire(&dma_fence_lockdep_map);
332 	lock_map_release(&dma_fence_lockdep_map);
333 	if (tmp)
334 		lock_acquire(&dma_fence_lockdep_map, 0, 0, 1, 1, NULL, _THIS_IP_);
335 }
336 #endif
337 
338 
339 /**
340  * dma_fence_signal_timestamp_locked - signal completion of a fence
341  * @fence: the fence to signal
342  * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
343  *
344  * Signal completion for software callbacks on a fence, this will unblock
345  * dma_fence_wait() calls and run all the callbacks added with
346  * dma_fence_add_callback(). Can be called multiple times, but since a fence
347  * can only go from the unsignaled to the signaled state and not back, it will
348  * only be effective the first time. Set the timestamp provided as the fence
349  * signal timestamp.
350  *
351  * Unlike dma_fence_signal_timestamp(), this function must be called with
352  * &dma_fence.lock held.
353  *
354  * Returns 0 on success and a negative error value when @fence has been
355  * signalled already.
356  */
dma_fence_signal_timestamp_locked(struct dma_fence * fence,ktime_t timestamp)357 int dma_fence_signal_timestamp_locked(struct dma_fence *fence,
358 				      ktime_t timestamp)
359 {
360 	struct dma_fence_cb *cur, *tmp;
361 	struct list_head cb_list;
362 
363 	lockdep_assert_held(fence->lock);
364 
365 	if (unlikely(test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
366 				      &fence->flags)))
367 		return -EINVAL;
368 
369 	/* Stash the cb_list before replacing it with the timestamp */
370 	list_replace(&fence->cb_list, &cb_list);
371 
372 	fence->timestamp = timestamp;
373 	set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
374 	trace_dma_fence_signaled(fence);
375 
376 	list_for_each_entry_safe(cur, tmp, &cb_list, node) {
377 		INIT_LIST_HEAD(&cur->node);
378 		cur->func(fence, cur);
379 	}
380 
381 	return 0;
382 }
383 EXPORT_SYMBOL(dma_fence_signal_timestamp_locked);
384 
385 /**
386  * dma_fence_signal_timestamp - signal completion of a fence
387  * @fence: the fence to signal
388  * @timestamp: fence signal timestamp in kernel's CLOCK_MONOTONIC time domain
389  *
390  * Signal completion for software callbacks on a fence, this will unblock
391  * dma_fence_wait() calls and run all the callbacks added with
392  * dma_fence_add_callback(). Can be called multiple times, but since a fence
393  * can only go from the unsignaled to the signaled state and not back, it will
394  * only be effective the first time. Set the timestamp provided as the fence
395  * signal timestamp.
396  *
397  * Returns 0 on success and a negative error value when @fence has been
398  * signalled already.
399  */
dma_fence_signal_timestamp(struct dma_fence * fence,ktime_t timestamp)400 int dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp)
401 {
402 	unsigned long flags;
403 	int ret;
404 
405 	if (!fence)
406 		return -EINVAL;
407 
408 	spin_lock_irqsave(fence->lock, flags);
409 	ret = dma_fence_signal_timestamp_locked(fence, timestamp);
410 	spin_unlock_irqrestore(fence->lock, flags);
411 
412 	return ret;
413 }
414 EXPORT_SYMBOL(dma_fence_signal_timestamp);
415 
416 /**
417  * dma_fence_signal_locked - signal completion of a fence
418  * @fence: the fence to signal
419  *
420  * Signal completion for software callbacks on a fence, this will unblock
421  * dma_fence_wait() calls and run all the callbacks added with
422  * dma_fence_add_callback(). Can be called multiple times, but since a fence
423  * can only go from the unsignaled to the signaled state and not back, it will
424  * only be effective the first time.
425  *
426  * Unlike dma_fence_signal(), this function must be called with &dma_fence.lock
427  * held.
428  *
429  * Returns 0 on success and a negative error value when @fence has been
430  * signalled already.
431  */
dma_fence_signal_locked(struct dma_fence * fence)432 int dma_fence_signal_locked(struct dma_fence *fence)
433 {
434 	return dma_fence_signal_timestamp_locked(fence, ktime_get());
435 }
436 EXPORT_SYMBOL(dma_fence_signal_locked);
437 
438 /**
439  * dma_fence_signal - signal completion of a fence
440  * @fence: the fence to signal
441  *
442  * Signal completion for software callbacks on a fence, this will unblock
443  * dma_fence_wait() calls and run all the callbacks added with
444  * dma_fence_add_callback(). Can be called multiple times, but since a fence
445  * can only go from the unsignaled to the signaled state and not back, it will
446  * only be effective the first time.
447  *
448  * Returns 0 on success and a negative error value when @fence has been
449  * signalled already.
450  */
dma_fence_signal(struct dma_fence * fence)451 int dma_fence_signal(struct dma_fence *fence)
452 {
453 	unsigned long flags;
454 	int ret;
455 	bool tmp;
456 
457 	if (!fence)
458 		return -EINVAL;
459 
460 	tmp = dma_fence_begin_signalling();
461 
462 	spin_lock_irqsave(fence->lock, flags);
463 	ret = dma_fence_signal_timestamp_locked(fence, ktime_get());
464 	spin_unlock_irqrestore(fence->lock, flags);
465 
466 	dma_fence_end_signalling(tmp);
467 
468 	return ret;
469 }
470 EXPORT_SYMBOL(dma_fence_signal);
471 
472 /**
473  * dma_fence_wait_timeout - sleep until the fence gets signaled
474  * or until timeout elapses
475  * @fence: the fence to wait on
476  * @intr: if true, do an interruptible wait
477  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
478  *
479  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
480  * remaining timeout in jiffies on success. Other error values may be
481  * returned on custom implementations.
482  *
483  * Performs a synchronous wait on this fence. It is assumed the caller
484  * directly or indirectly (buf-mgr between reservation and committing)
485  * holds a reference to the fence, otherwise the fence might be
486  * freed before return, resulting in undefined behavior.
487  *
488  * See also dma_fence_wait() and dma_fence_wait_any_timeout().
489  */
490 signed long
dma_fence_wait_timeout(struct dma_fence * fence,bool intr,signed long timeout)491 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
492 {
493 	signed long ret;
494 
495 	if (WARN_ON(timeout < 0))
496 		return -EINVAL;
497 
498 	might_sleep();
499 
500 	__dma_fence_might_wait();
501 
502 	trace_dma_fence_wait_start(fence);
503 	if (fence->ops->wait)
504 		ret = fence->ops->wait(fence, intr, timeout);
505 	else
506 		ret = dma_fence_default_wait(fence, intr, timeout);
507 	trace_dma_fence_wait_end(fence);
508 	return ret;
509 }
510 EXPORT_SYMBOL(dma_fence_wait_timeout);
511 
512 /**
513  * dma_fence_release - default relese function for fences
514  * @kref: &dma_fence.recfount
515  *
516  * This is the default release functions for &dma_fence. Drivers shouldn't call
517  * this directly, but instead call dma_fence_put().
518  */
dma_fence_release(struct kref * kref)519 void dma_fence_release(struct kref *kref)
520 {
521 	struct dma_fence *fence =
522 		container_of(kref, struct dma_fence, refcount);
523 
524 	trace_dma_fence_destroy(fence);
525 
526 	if (WARN(!list_empty(&fence->cb_list) &&
527 		 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags),
528 		 "Fence %s:%s:%llx:%llx released with pending signals!\n",
529 		 fence->ops->get_driver_name(fence),
530 		 fence->ops->get_timeline_name(fence),
531 		 fence->context, fence->seqno)) {
532 		unsigned long flags;
533 
534 		/*
535 		 * Failed to signal before release, likely a refcounting issue.
536 		 *
537 		 * This should never happen, but if it does make sure that we
538 		 * don't leave chains dangling. We set the error flag first
539 		 * so that the callbacks know this signal is due to an error.
540 		 */
541 		spin_lock_irqsave(fence->lock, flags);
542 		fence->error = -EDEADLK;
543 		dma_fence_signal_locked(fence);
544 		spin_unlock_irqrestore(fence->lock, flags);
545 	}
546 
547 	if (fence->ops->release)
548 		fence->ops->release(fence);
549 	else
550 		dma_fence_free(fence);
551 }
552 EXPORT_SYMBOL(dma_fence_release);
553 
554 /**
555  * dma_fence_free - default release function for &dma_fence.
556  * @fence: fence to release
557  *
558  * This is the default implementation for &dma_fence_ops.release. It calls
559  * kfree_rcu() on @fence.
560  */
dma_fence_free(struct dma_fence * fence)561 void dma_fence_free(struct dma_fence *fence)
562 {
563 	kfree_rcu(fence, rcu);
564 }
565 EXPORT_SYMBOL(dma_fence_free);
566 
__dma_fence_enable_signaling(struct dma_fence * fence)567 static bool __dma_fence_enable_signaling(struct dma_fence *fence)
568 {
569 	bool was_set;
570 
571 	lockdep_assert_held(fence->lock);
572 
573 	was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
574 				   &fence->flags);
575 
576 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
577 		return false;
578 
579 	if (!was_set && fence->ops->enable_signaling) {
580 		trace_dma_fence_enable_signal(fence);
581 
582 		if (!fence->ops->enable_signaling(fence)) {
583 			dma_fence_signal_locked(fence);
584 			return false;
585 		}
586 	}
587 
588 	return true;
589 }
590 
591 /**
592  * dma_fence_enable_sw_signaling - enable signaling on fence
593  * @fence: the fence to enable
594  *
595  * This will request for sw signaling to be enabled, to make the fence
596  * complete as soon as possible. This calls &dma_fence_ops.enable_signaling
597  * internally.
598  */
dma_fence_enable_sw_signaling(struct dma_fence * fence)599 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
600 {
601 	unsigned long flags;
602 
603 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
604 		return;
605 
606 	spin_lock_irqsave(fence->lock, flags);
607 	__dma_fence_enable_signaling(fence);
608 	spin_unlock_irqrestore(fence->lock, flags);
609 }
610 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
611 
612 /**
613  * dma_fence_add_callback - add a callback to be called when the fence
614  * is signaled
615  * @fence: the fence to wait on
616  * @cb: the callback to register
617  * @func: the function to call
618  *
619  * Add a software callback to the fence. The caller should keep a reference to
620  * the fence.
621  *
622  * @cb will be initialized by dma_fence_add_callback(), no initialization
623  * by the caller is required. Any number of callbacks can be registered
624  * to a fence, but a callback can only be registered to one fence at a time.
625  *
626  * If fence is already signaled, this function will return -ENOENT (and
627  * *not* call the callback).
628  *
629  * Note that the callback can be called from an atomic context or irq context.
630  *
631  * Returns 0 in case of success, -ENOENT if the fence is already signaled
632  * and -EINVAL in case of error.
633  */
dma_fence_add_callback(struct dma_fence * fence,struct dma_fence_cb * cb,dma_fence_func_t func)634 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
635 			   dma_fence_func_t func)
636 {
637 	unsigned long flags;
638 	int ret = 0;
639 
640 	if (WARN_ON(!fence || !func))
641 		return -EINVAL;
642 
643 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
644 		INIT_LIST_HEAD(&cb->node);
645 		return -ENOENT;
646 	}
647 
648 	spin_lock_irqsave(fence->lock, flags);
649 
650 	if (__dma_fence_enable_signaling(fence)) {
651 		cb->func = func;
652 		list_add_tail(&cb->node, &fence->cb_list);
653 	} else {
654 		INIT_LIST_HEAD(&cb->node);
655 		ret = -ENOENT;
656 	}
657 
658 	spin_unlock_irqrestore(fence->lock, flags);
659 
660 	return ret;
661 }
662 EXPORT_SYMBOL(dma_fence_add_callback);
663 
664 /**
665  * dma_fence_get_status - returns the status upon completion
666  * @fence: the dma_fence to query
667  *
668  * This wraps dma_fence_get_status_locked() to return the error status
669  * condition on a signaled fence. See dma_fence_get_status_locked() for more
670  * details.
671  *
672  * Returns 0 if the fence has not yet been signaled, 1 if the fence has
673  * been signaled without an error condition, or a negative error code
674  * if the fence has been completed in err.
675  */
dma_fence_get_status(struct dma_fence * fence)676 int dma_fence_get_status(struct dma_fence *fence)
677 {
678 	unsigned long flags;
679 	int status;
680 
681 	spin_lock_irqsave(fence->lock, flags);
682 	status = dma_fence_get_status_locked(fence);
683 	spin_unlock_irqrestore(fence->lock, flags);
684 
685 	return status;
686 }
687 EXPORT_SYMBOL(dma_fence_get_status);
688 
689 /**
690  * dma_fence_remove_callback - remove a callback from the signaling list
691  * @fence: the fence to wait on
692  * @cb: the callback to remove
693  *
694  * Remove a previously queued callback from the fence. This function returns
695  * true if the callback is successfully removed, or false if the fence has
696  * already been signaled.
697  *
698  * *WARNING*:
699  * Cancelling a callback should only be done if you really know what you're
700  * doing, since deadlocks and race conditions could occur all too easily. For
701  * this reason, it should only ever be done on hardware lockup recovery,
702  * with a reference held to the fence.
703  *
704  * Behaviour is undefined if @cb has not been added to @fence using
705  * dma_fence_add_callback() beforehand.
706  */
707 bool
dma_fence_remove_callback(struct dma_fence * fence,struct dma_fence_cb * cb)708 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
709 {
710 	unsigned long flags;
711 	bool ret;
712 
713 	spin_lock_irqsave(fence->lock, flags);
714 
715 	ret = !list_empty(&cb->node);
716 	if (ret)
717 		list_del_init(&cb->node);
718 
719 	spin_unlock_irqrestore(fence->lock, flags);
720 
721 	return ret;
722 }
723 EXPORT_SYMBOL(dma_fence_remove_callback);
724 
725 struct default_wait_cb {
726 	struct dma_fence_cb base;
727 	struct task_struct *task;
728 };
729 
730 static void
dma_fence_default_wait_cb(struct dma_fence * fence,struct dma_fence_cb * cb)731 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
732 {
733 	struct default_wait_cb *wait =
734 		container_of(cb, struct default_wait_cb, base);
735 
736 	wake_up_state(wait->task, TASK_NORMAL);
737 }
738 
739 /**
740  * dma_fence_default_wait - default sleep until the fence gets signaled
741  * or until timeout elapses
742  * @fence: the fence to wait on
743  * @intr: if true, do an interruptible wait
744  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
745  *
746  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
747  * remaining timeout in jiffies on success. If timeout is zero the value one is
748  * returned if the fence is already signaled for consistency with other
749  * functions taking a jiffies timeout.
750  */
751 signed long
dma_fence_default_wait(struct dma_fence * fence,bool intr,signed long timeout)752 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
753 {
754 	struct default_wait_cb cb;
755 	unsigned long flags;
756 	signed long ret = timeout ? timeout : 1;
757 
758 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
759 		return ret;
760 
761 	spin_lock_irqsave(fence->lock, flags);
762 
763 	if (intr && signal_pending(current)) {
764 		ret = -ERESTARTSYS;
765 		goto out;
766 	}
767 
768 	if (!__dma_fence_enable_signaling(fence))
769 		goto out;
770 
771 	if (!timeout) {
772 		ret = 0;
773 		goto out;
774 	}
775 
776 	cb.base.func = dma_fence_default_wait_cb;
777 	cb.task = current;
778 	list_add(&cb.base.node, &fence->cb_list);
779 
780 	while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
781 		if (intr)
782 			__set_current_state(TASK_INTERRUPTIBLE);
783 		else
784 			__set_current_state(TASK_UNINTERRUPTIBLE);
785 		spin_unlock_irqrestore(fence->lock, flags);
786 
787 		ret = schedule_timeout(ret);
788 
789 		spin_lock_irqsave(fence->lock, flags);
790 		if (ret > 0 && intr && signal_pending(current))
791 			ret = -ERESTARTSYS;
792 	}
793 
794 	if (!list_empty(&cb.base.node))
795 		list_del(&cb.base.node);
796 	__set_current_state(TASK_RUNNING);
797 
798 out:
799 	spin_unlock_irqrestore(fence->lock, flags);
800 	return ret;
801 }
802 EXPORT_SYMBOL(dma_fence_default_wait);
803 
804 static bool
dma_fence_test_signaled_any(struct dma_fence ** fences,uint32_t count,uint32_t * idx)805 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
806 			    uint32_t *idx)
807 {
808 	int i;
809 
810 	for (i = 0; i < count; ++i) {
811 		struct dma_fence *fence = fences[i];
812 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
813 			if (idx)
814 				*idx = i;
815 			return true;
816 		}
817 	}
818 	return false;
819 }
820 
821 /**
822  * dma_fence_wait_any_timeout - sleep until any fence gets signaled
823  * or until timeout elapses
824  * @fences: array of fences to wait on
825  * @count: number of fences to wait on
826  * @intr: if true, do an interruptible wait
827  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
828  * @idx: used to store the first signaled fence index, meaningful only on
829  *	positive return
830  *
831  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
832  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
833  * on success.
834  *
835  * Synchronous waits for the first fence in the array to be signaled. The
836  * caller needs to hold a reference to all fences in the array, otherwise a
837  * fence might be freed before return, resulting in undefined behavior.
838  *
839  * See also dma_fence_wait() and dma_fence_wait_timeout().
840  */
841 signed long
dma_fence_wait_any_timeout(struct dma_fence ** fences,uint32_t count,bool intr,signed long timeout,uint32_t * idx)842 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
843 			   bool intr, signed long timeout, uint32_t *idx)
844 {
845 	struct default_wait_cb *cb;
846 	signed long ret = timeout;
847 	unsigned i;
848 
849 	if (WARN_ON(!fences || !count || timeout < 0))
850 		return -EINVAL;
851 
852 	if (timeout == 0) {
853 		for (i = 0; i < count; ++i)
854 			if (dma_fence_is_signaled(fences[i])) {
855 				if (idx)
856 					*idx = i;
857 				return 1;
858 			}
859 
860 		return 0;
861 	}
862 
863 	cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
864 	if (cb == NULL) {
865 		ret = -ENOMEM;
866 		goto err_free_cb;
867 	}
868 
869 	for (i = 0; i < count; ++i) {
870 		struct dma_fence *fence = fences[i];
871 
872 		cb[i].task = current;
873 		if (dma_fence_add_callback(fence, &cb[i].base,
874 					   dma_fence_default_wait_cb)) {
875 			/* This fence is already signaled */
876 			if (idx)
877 				*idx = i;
878 			goto fence_rm_cb;
879 		}
880 	}
881 
882 	while (ret > 0) {
883 		if (intr)
884 			set_current_state(TASK_INTERRUPTIBLE);
885 		else
886 			set_current_state(TASK_UNINTERRUPTIBLE);
887 
888 		if (dma_fence_test_signaled_any(fences, count, idx))
889 			break;
890 
891 		ret = schedule_timeout(ret);
892 
893 		if (ret > 0 && intr && signal_pending(current))
894 			ret = -ERESTARTSYS;
895 	}
896 
897 	__set_current_state(TASK_RUNNING);
898 
899 fence_rm_cb:
900 	while (i-- > 0)
901 		dma_fence_remove_callback(fences[i], &cb[i].base);
902 
903 err_free_cb:
904 	kfree(cb);
905 
906 	return ret;
907 }
908 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
909 
910 /**
911  * dma_fence_init - Initialize a custom fence.
912  * @fence: the fence to initialize
913  * @ops: the dma_fence_ops for operations on this fence
914  * @lock: the irqsafe spinlock to use for locking this fence
915  * @context: the execution context this fence is run on
916  * @seqno: a linear increasing sequence number for this context
917  *
918  * Initializes an allocated fence, the caller doesn't have to keep its
919  * refcount after committing with this fence, but it will need to hold a
920  * refcount again if &dma_fence_ops.enable_signaling gets called.
921  *
922  * context and seqno are used for easy comparison between fences, allowing
923  * to check which fence is later by simply using dma_fence_later().
924  */
925 void
dma_fence_init(struct dma_fence * fence,const struct dma_fence_ops * ops,spinlock_t * lock,u64 context,u64 seqno)926 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
927 	       spinlock_t *lock, u64 context, u64 seqno)
928 {
929 	BUG_ON(!lock);
930 	BUG_ON(!ops || !ops->get_driver_name || !ops->get_timeline_name);
931 
932 	kref_init(&fence->refcount);
933 	fence->ops = ops;
934 	INIT_LIST_HEAD(&fence->cb_list);
935 	fence->lock = lock;
936 	fence->context = context;
937 	fence->seqno = seqno;
938 	fence->flags = 0UL;
939 	fence->error = 0;
940 
941 	trace_dma_fence_init(fence);
942 }
943 EXPORT_SYMBOL(dma_fence_init);
944