1 /*
2  * Header file for reservations for dma-buf and ttm
3  *
4  * Copyright(C) 2011 Linaro Limited. All rights reserved.
5  * Copyright (C) 2012-2013 Canonical Ltd
6  * Copyright (C) 2012 Texas Instruments
7  *
8  * Authors:
9  * Rob Clark <robdclark@gmail.com>
10  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
11  * Thomas Hellstrom <thellstrom-at-vmware-dot-com>
12  *
13  * Based on bo.c which bears the following copyright notice,
14  * but is dual licensed:
15  *
16  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
17  * All Rights Reserved.
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a
20  * copy of this software and associated documentation files (the
21  * "Software"), to deal in the Software without restriction, including
22  * without limitation the rights to use, copy, modify, merge, publish,
23  * distribute, sub license, and/or sell copies of the Software, and to
24  * permit persons to whom the Software is furnished to do so, subject to
25  * the following conditions:
26  *
27  * The above copyright notice and this permission notice (including the
28  * next paragraph) shall be included in all copies or substantial portions
29  * of the Software.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
34  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
35  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
36  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
37  * USE OR OTHER DEALINGS IN THE SOFTWARE.
38  */
39 #ifndef _LINUX_RESERVATION_H
40 #define _LINUX_RESERVATION_H
41 
42 #include <linux/ww_mutex.h>
43 #include <linux/dma-fence.h>
44 #include <linux/slab.h>
45 #include <linux/seqlock.h>
46 #include <linux/rcupdate.h>
47 
48 extern struct ww_class reservation_ww_class;
49 
50 /**
51  * struct dma_resv_list - a list of shared fences
52  * @rcu: for internal use
53  * @shared_count: table of shared fences
54  * @shared_max: for growing shared fence table
55  * @shared: shared fence table
56  */
57 struct dma_resv_list {
58 	struct rcu_head rcu;
59 	u32 shared_count, shared_max;
60 	struct dma_fence __rcu *shared[];
61 };
62 
63 /**
64  * struct dma_resv - a reservation object manages fences for a buffer
65  *
66  * There are multiple uses for this, with sometimes slightly different rules in
67  * how the fence slots are used.
68  *
69  * One use is to synchronize cross-driver access to a struct dma_buf, either for
70  * dynamic buffer management or just to handle implicit synchronization between
71  * different users of the buffer in userspace. See &dma_buf.resv for a more
72  * in-depth discussion.
73  *
74  * The other major use is to manage access and locking within a driver in a
75  * buffer based memory manager. struct ttm_buffer_object is the canonical
76  * example here, since this is where reservation objects originated from. But
77  * use in drivers is spreading and some drivers also manage struct
78  * drm_gem_object with the same scheme.
79  */
80 struct dma_resv {
81 	/**
82 	 * @lock:
83 	 *
84 	 * Update side lock. Don't use directly, instead use the wrapper
85 	 * functions like dma_resv_lock() and dma_resv_unlock().
86 	 *
87 	 * Drivers which use the reservation object to manage memory dynamically
88 	 * also use this lock to protect buffer object state like placement,
89 	 * allocation policies or throughout command submission.
90 	 */
91 	struct ww_mutex lock;
92 
93 	/**
94 	 * @seq:
95 	 *
96 	 * Sequence count for managing RCU read-side synchronization, allows
97 	 * read-only access to @fence_excl and @fence while ensuring we take a
98 	 * consistent snapshot.
99 	 */
100 	seqcount_ww_mutex_t seq;
101 
102 	/**
103 	 * @fence_excl:
104 	 *
105 	 * The exclusive fence, if there is one currently.
106 	 *
107 	 * There are two ways to update this fence:
108 	 *
109 	 * - First by calling dma_resv_add_excl_fence(), which replaces all
110 	 *   fences attached to the reservation object. To guarantee that no
111 	 *   fences are lost, this new fence must signal only after all previous
112 	 *   fences, both shared and exclusive, have signalled. In some cases it
113 	 *   is convenient to achieve that by attaching a struct dma_fence_array
114 	 *   with all the new and old fences.
115 	 *
116 	 * - Alternatively the fence can be set directly, which leaves the
117 	 *   shared fences unchanged. To guarantee that no fences are lost, this
118 	 *   new fence must signal only after the previous exclusive fence has
119 	 *   signalled. Since the shared fences are staying intact, it is not
120 	 *   necessary to maintain any ordering against those. If semantically
121 	 *   only a new access is added without actually treating the previous
122 	 *   one as a dependency the exclusive fences can be strung together
123 	 *   using struct dma_fence_chain.
124 	 *
125 	 * Note that actual semantics of what an exclusive or shared fence mean
126 	 * is defined by the user, for reservation objects shared across drivers
127 	 * see &dma_buf.resv.
128 	 */
129 	struct dma_fence __rcu *fence_excl;
130 
131 	/**
132 	 * @fence:
133 	 *
134 	 * List of current shared fences.
135 	 *
136 	 * There are no ordering constraints of shared fences against the
137 	 * exclusive fence slot. If a waiter needs to wait for all access, it
138 	 * has to wait for both sets of fences to signal.
139 	 *
140 	 * A new fence is added by calling dma_resv_add_shared_fence(). Since
141 	 * this often needs to be done past the point of no return in command
142 	 * submission it cannot fail, and therefore sufficient slots need to be
143 	 * reserved by calling dma_resv_reserve_shared().
144 	 *
145 	 * Note that actual semantics of what an exclusive or shared fence mean
146 	 * is defined by the user, for reservation objects shared across drivers
147 	 * see &dma_buf.resv.
148 	 */
149 	struct dma_resv_list __rcu *fence;
150 };
151 
152 /**
153  * struct dma_resv_iter - current position into the dma_resv fences
154  *
155  * Don't touch this directly in the driver, use the accessor function instead.
156  */
157 struct dma_resv_iter {
158 	/** @obj: The dma_resv object we iterate over */
159 	struct dma_resv *obj;
160 
161 	/** @all_fences: If all fences should be returned */
162 	bool all_fences;
163 
164 	/** @fence: the currently handled fence */
165 	struct dma_fence *fence;
166 
167 	/** @seq: sequence number to check for modifications */
168 	unsigned int seq;
169 
170 	/** @index: index into the shared fences */
171 	unsigned int index;
172 
173 	/** @fences: the shared fences; private, *MUST* not dereference  */
174 	struct dma_resv_list *fences;
175 
176 	/** @shared_count: number of shared fences */
177 	unsigned int shared_count;
178 
179 	/** @is_restarted: true if this is the first returned fence */
180 	bool is_restarted;
181 };
182 
183 struct dma_fence *dma_resv_iter_first_unlocked(struct dma_resv_iter *cursor);
184 struct dma_fence *dma_resv_iter_next_unlocked(struct dma_resv_iter *cursor);
185 struct dma_fence *dma_resv_iter_first(struct dma_resv_iter *cursor);
186 struct dma_fence *dma_resv_iter_next(struct dma_resv_iter *cursor);
187 
188 /**
189  * dma_resv_iter_begin - initialize a dma_resv_iter object
190  * @cursor: The dma_resv_iter object to initialize
191  * @obj: The dma_resv object which we want to iterate over
192  * @all_fences: If all fences should be returned or just the exclusive one
193  */
dma_resv_iter_begin(struct dma_resv_iter * cursor,struct dma_resv * obj,bool all_fences)194 static inline void dma_resv_iter_begin(struct dma_resv_iter *cursor,
195 				       struct dma_resv *obj,
196 				       bool all_fences)
197 {
198 	cursor->obj = obj;
199 	cursor->all_fences = all_fences;
200 	cursor->fence = NULL;
201 }
202 
203 /**
204  * dma_resv_iter_end - cleanup a dma_resv_iter object
205  * @cursor: the dma_resv_iter object which should be cleaned up
206  *
207  * Make sure that the reference to the fence in the cursor is properly
208  * dropped.
209  */
dma_resv_iter_end(struct dma_resv_iter * cursor)210 static inline void dma_resv_iter_end(struct dma_resv_iter *cursor)
211 {
212 	dma_fence_put(cursor->fence);
213 }
214 
215 /**
216  * dma_resv_iter_is_exclusive - test if the current fence is the exclusive one
217  * @cursor: the cursor of the current position
218  *
219  * Returns true if the currently returned fence is the exclusive one.
220  */
dma_resv_iter_is_exclusive(struct dma_resv_iter * cursor)221 static inline bool dma_resv_iter_is_exclusive(struct dma_resv_iter *cursor)
222 {
223 	return cursor->index == 0;
224 }
225 
226 /**
227  * dma_resv_iter_is_restarted - test if this is the first fence after a restart
228  * @cursor: the cursor with the current position
229  *
230  * Return true if this is the first fence in an iteration after a restart.
231  */
dma_resv_iter_is_restarted(struct dma_resv_iter * cursor)232 static inline bool dma_resv_iter_is_restarted(struct dma_resv_iter *cursor)
233 {
234 	return cursor->is_restarted;
235 }
236 
237 /**
238  * dma_resv_for_each_fence_unlocked - unlocked fence iterator
239  * @cursor: a struct dma_resv_iter pointer
240  * @fence: the current fence
241  *
242  * Iterate over the fences in a struct dma_resv object without holding the
243  * &dma_resv.lock and using RCU instead. The cursor needs to be initialized
244  * with dma_resv_iter_begin() and cleaned up with dma_resv_iter_end(). Inside
245  * the iterator a reference to the dma_fence is held and the RCU lock dropped.
246  * When the dma_resv is modified the iteration starts over again.
247  */
248 #define dma_resv_for_each_fence_unlocked(cursor, fence)			\
249 	for (fence = dma_resv_iter_first_unlocked(cursor);		\
250 	     fence; fence = dma_resv_iter_next_unlocked(cursor))
251 
252 /**
253  * dma_resv_for_each_fence - fence iterator
254  * @cursor: a struct dma_resv_iter pointer
255  * @obj: a dma_resv object pointer
256  * @all_fences: true if all fences should be returned
257  * @fence: the current fence
258  *
259  * Iterate over the fences in a struct dma_resv object while holding the
260  * &dma_resv.lock. @all_fences controls if the shared fences are returned as
261  * well. The cursor initialisation is part of the iterator and the fence stays
262  * valid as long as the lock is held and so no extra reference to the fence is
263  * taken.
264  */
265 #define dma_resv_for_each_fence(cursor, obj, all_fences, fence)	\
266 	for (dma_resv_iter_begin(cursor, obj, all_fences),	\
267 	     fence = dma_resv_iter_first(cursor); fence;	\
268 	     fence = dma_resv_iter_next(cursor))
269 
270 #define dma_resv_held(obj) lockdep_is_held(&(obj)->lock.base)
271 #define dma_resv_assert_held(obj) lockdep_assert_held(&(obj)->lock.base)
272 
273 #ifdef CONFIG_DEBUG_MUTEXES
274 void dma_resv_reset_shared_max(struct dma_resv *obj);
275 #else
dma_resv_reset_shared_max(struct dma_resv * obj)276 static inline void dma_resv_reset_shared_max(struct dma_resv *obj) {}
277 #endif
278 
279 /**
280  * dma_resv_lock - lock the reservation object
281  * @obj: the reservation object
282  * @ctx: the locking context
283  *
284  * Locks the reservation object for exclusive access and modification. Note,
285  * that the lock is only against other writers, readers will run concurrently
286  * with a writer under RCU. The seqlock is used to notify readers if they
287  * overlap with a writer.
288  *
289  * As the reservation object may be locked by multiple parties in an
290  * undefined order, a #ww_acquire_ctx is passed to unwind if a cycle
291  * is detected. See ww_mutex_lock() and ww_acquire_init(). A reservation
292  * object may be locked by itself by passing NULL as @ctx.
293  *
294  * When a die situation is indicated by returning -EDEADLK all locks held by
295  * @ctx must be unlocked and then dma_resv_lock_slow() called on @obj.
296  *
297  * Unlocked by calling dma_resv_unlock().
298  *
299  * See also dma_resv_lock_interruptible() for the interruptible variant.
300  */
dma_resv_lock(struct dma_resv * obj,struct ww_acquire_ctx * ctx)301 static inline int dma_resv_lock(struct dma_resv *obj,
302 				struct ww_acquire_ctx *ctx)
303 {
304 	return ww_mutex_lock(&obj->lock, ctx);
305 }
306 
307 /**
308  * dma_resv_lock_interruptible - lock the reservation object
309  * @obj: the reservation object
310  * @ctx: the locking context
311  *
312  * Locks the reservation object interruptible for exclusive access and
313  * modification. Note, that the lock is only against other writers, readers
314  * will run concurrently with a writer under RCU. The seqlock is used to
315  * notify readers if they overlap with a writer.
316  *
317  * As the reservation object may be locked by multiple parties in an
318  * undefined order, a #ww_acquire_ctx is passed to unwind if a cycle
319  * is detected. See ww_mutex_lock() and ww_acquire_init(). A reservation
320  * object may be locked by itself by passing NULL as @ctx.
321  *
322  * When a die situation is indicated by returning -EDEADLK all locks held by
323  * @ctx must be unlocked and then dma_resv_lock_slow_interruptible() called on
324  * @obj.
325  *
326  * Unlocked by calling dma_resv_unlock().
327  */
dma_resv_lock_interruptible(struct dma_resv * obj,struct ww_acquire_ctx * ctx)328 static inline int dma_resv_lock_interruptible(struct dma_resv *obj,
329 					      struct ww_acquire_ctx *ctx)
330 {
331 	return ww_mutex_lock_interruptible(&obj->lock, ctx);
332 }
333 
334 /**
335  * dma_resv_lock_slow - slowpath lock the reservation object
336  * @obj: the reservation object
337  * @ctx: the locking context
338  *
339  * Acquires the reservation object after a die case. This function
340  * will sleep until the lock becomes available. See dma_resv_lock() as
341  * well.
342  *
343  * See also dma_resv_lock_slow_interruptible() for the interruptible variant.
344  */
dma_resv_lock_slow(struct dma_resv * obj,struct ww_acquire_ctx * ctx)345 static inline void dma_resv_lock_slow(struct dma_resv *obj,
346 				      struct ww_acquire_ctx *ctx)
347 {
348 	ww_mutex_lock_slow(&obj->lock, ctx);
349 }
350 
351 /**
352  * dma_resv_lock_slow_interruptible - slowpath lock the reservation
353  * object, interruptible
354  * @obj: the reservation object
355  * @ctx: the locking context
356  *
357  * Acquires the reservation object interruptible after a die case. This function
358  * will sleep until the lock becomes available. See
359  * dma_resv_lock_interruptible() as well.
360  */
dma_resv_lock_slow_interruptible(struct dma_resv * obj,struct ww_acquire_ctx * ctx)361 static inline int dma_resv_lock_slow_interruptible(struct dma_resv *obj,
362 						   struct ww_acquire_ctx *ctx)
363 {
364 	return ww_mutex_lock_slow_interruptible(&obj->lock, ctx);
365 }
366 
367 /**
368  * dma_resv_trylock - trylock the reservation object
369  * @obj: the reservation object
370  *
371  * Tries to lock the reservation object for exclusive access and modification.
372  * Note, that the lock is only against other writers, readers will run
373  * concurrently with a writer under RCU. The seqlock is used to notify readers
374  * if they overlap with a writer.
375  *
376  * Also note that since no context is provided, no deadlock protection is
377  * possible, which is also not needed for a trylock.
378  *
379  * Returns true if the lock was acquired, false otherwise.
380  */
dma_resv_trylock(struct dma_resv * obj)381 static inline bool __must_check dma_resv_trylock(struct dma_resv *obj)
382 {
383 	return ww_mutex_trylock(&obj->lock, NULL);
384 }
385 
386 /**
387  * dma_resv_is_locked - is the reservation object locked
388  * @obj: the reservation object
389  *
390  * Returns true if the mutex is locked, false if unlocked.
391  */
dma_resv_is_locked(struct dma_resv * obj)392 static inline bool dma_resv_is_locked(struct dma_resv *obj)
393 {
394 	return ww_mutex_is_locked(&obj->lock);
395 }
396 
397 /**
398  * dma_resv_locking_ctx - returns the context used to lock the object
399  * @obj: the reservation object
400  *
401  * Returns the context used to lock a reservation object or NULL if no context
402  * was used or the object is not locked at all.
403  *
404  * WARNING: This interface is pretty horrible, but TTM needs it because it
405  * doesn't pass the struct ww_acquire_ctx around in some very long callchains.
406  * Everyone else just uses it to check whether they're holding a reservation or
407  * not.
408  */
dma_resv_locking_ctx(struct dma_resv * obj)409 static inline struct ww_acquire_ctx *dma_resv_locking_ctx(struct dma_resv *obj)
410 {
411 	return READ_ONCE(obj->lock.ctx);
412 }
413 
414 /**
415  * dma_resv_unlock - unlock the reservation object
416  * @obj: the reservation object
417  *
418  * Unlocks the reservation object following exclusive access.
419  */
dma_resv_unlock(struct dma_resv * obj)420 static inline void dma_resv_unlock(struct dma_resv *obj)
421 {
422 	dma_resv_reset_shared_max(obj);
423 	ww_mutex_unlock(&obj->lock);
424 }
425 
426 /**
427  * dma_resv_excl_fence - return the object's exclusive fence
428  * @obj: the reservation object
429  *
430  * Returns the exclusive fence (if any). Caller must either hold the objects
431  * through dma_resv_lock() or the RCU read side lock through rcu_read_lock(),
432  * or one of the variants of each
433  *
434  * RETURNS
435  * The exclusive fence or NULL
436  */
437 static inline struct dma_fence *
dma_resv_excl_fence(struct dma_resv * obj)438 dma_resv_excl_fence(struct dma_resv *obj)
439 {
440 	return rcu_dereference_check(obj->fence_excl, dma_resv_held(obj));
441 }
442 
443 /**
444  * dma_resv_get_excl_unlocked - get the reservation object's
445  * exclusive fence, without lock held.
446  * @obj: the reservation object
447  *
448  * If there is an exclusive fence, this atomically increments it's
449  * reference count and returns it.
450  *
451  * RETURNS
452  * The exclusive fence or NULL if none
453  */
454 static inline struct dma_fence *
dma_resv_get_excl_unlocked(struct dma_resv * obj)455 dma_resv_get_excl_unlocked(struct dma_resv *obj)
456 {
457 	struct dma_fence *fence;
458 
459 	if (!rcu_access_pointer(obj->fence_excl))
460 		return NULL;
461 
462 	rcu_read_lock();
463 	fence = dma_fence_get_rcu_safe(&obj->fence_excl);
464 	rcu_read_unlock();
465 
466 	return fence;
467 }
468 
469 /**
470  * dma_resv_shared_list - get the reservation object's shared fence list
471  * @obj: the reservation object
472  *
473  * Returns the shared fence list. Caller must either hold the objects
474  * through dma_resv_lock() or the RCU read side lock through rcu_read_lock(),
475  * or one of the variants of each
476  */
dma_resv_shared_list(struct dma_resv * obj)477 static inline struct dma_resv_list *dma_resv_shared_list(struct dma_resv *obj)
478 {
479 	return rcu_dereference_check(obj->fence, dma_resv_held(obj));
480 }
481 
482 void dma_resv_init(struct dma_resv *obj);
483 void dma_resv_fini(struct dma_resv *obj);
484 int dma_resv_reserve_shared(struct dma_resv *obj, unsigned int num_fences);
485 void dma_resv_add_shared_fence(struct dma_resv *obj, struct dma_fence *fence);
486 void dma_resv_add_excl_fence(struct dma_resv *obj, struct dma_fence *fence);
487 int dma_resv_get_fences(struct dma_resv *obj, struct dma_fence **pfence_excl,
488 			unsigned *pshared_count, struct dma_fence ***pshared);
489 int dma_resv_copy_fences(struct dma_resv *dst, struct dma_resv *src);
490 long dma_resv_wait_timeout(struct dma_resv *obj, bool wait_all, bool intr,
491 			   unsigned long timeout);
492 bool dma_resv_test_signaled(struct dma_resv *obj, bool test_all);
493 
494 #endif /* _LINUX_RESERVATION_H */
495