1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/api.h>
34 #include <asm/fpu/sched.h>
35 #include <asm/fpu/xstate.h>
36 #include <asm/debugreg.h>
37 #include <asm/nmi.h>
38 #include <asm/tlbflush.h>
39 #include <asm/mce.h>
40 #include <asm/vm86.h>
41 #include <asm/switch_to.h>
42 #include <asm/desc.h>
43 #include <asm/prctl.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/io_bitmap.h>
46 #include <asm/proto.h>
47 #include <asm/frame.h>
48 #include <asm/unwind.h>
49
50 #include "process.h"
51
52 /*
53 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
54 * no more per-task TSS's. The TSS size is kept cacheline-aligned
55 * so they are allowed to end up in the .data..cacheline_aligned
56 * section. Since TSS's are completely CPU-local, we want them
57 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
58 */
59 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
60 .x86_tss = {
61 /*
62 * .sp0 is only used when entering ring 0 from a lower
63 * privilege level. Since the init task never runs anything
64 * but ring 0 code, there is no need for a valid value here.
65 * Poison it.
66 */
67 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
68
69 #ifdef CONFIG_X86_32
70 .sp1 = TOP_OF_INIT_STACK,
71
72 .ss0 = __KERNEL_DS,
73 .ss1 = __KERNEL_CS,
74 #endif
75 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
76 },
77 };
78 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
79
80 DEFINE_PER_CPU(bool, __tss_limit_invalid);
81 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
82
83 /*
84 * this gets called so that we can store lazy state into memory and copy the
85 * current task into the new thread.
86 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)87 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
88 {
89 memcpy(dst, src, arch_task_struct_size);
90 #ifdef CONFIG_VM86
91 dst->thread.vm86 = NULL;
92 #endif
93 /* Drop the copied pointer to current's fpstate */
94 dst->thread.fpu.fpstate = NULL;
95
96 return 0;
97 }
98
99 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)100 void arch_release_task_struct(struct task_struct *tsk)
101 {
102 if (fpu_state_size_dynamic())
103 fpstate_free(&tsk->thread.fpu);
104 }
105 #endif
106
107 /*
108 * Free thread data structures etc..
109 */
exit_thread(struct task_struct * tsk)110 void exit_thread(struct task_struct *tsk)
111 {
112 struct thread_struct *t = &tsk->thread;
113 struct fpu *fpu = &t->fpu;
114
115 if (test_thread_flag(TIF_IO_BITMAP))
116 io_bitmap_exit(tsk);
117
118 free_vm86(t);
119
120 fpu__drop(fpu);
121 }
122
set_new_tls(struct task_struct * p,unsigned long tls)123 static int set_new_tls(struct task_struct *p, unsigned long tls)
124 {
125 struct user_desc __user *utls = (struct user_desc __user *)tls;
126
127 if (in_ia32_syscall())
128 return do_set_thread_area(p, -1, utls, 0);
129 else
130 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
131 }
132
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p,unsigned long tls)133 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
134 struct task_struct *p, unsigned long tls)
135 {
136 struct inactive_task_frame *frame;
137 struct fork_frame *fork_frame;
138 struct pt_regs *childregs;
139 int ret = 0;
140
141 childregs = task_pt_regs(p);
142 fork_frame = container_of(childregs, struct fork_frame, regs);
143 frame = &fork_frame->frame;
144
145 frame->bp = encode_frame_pointer(childregs);
146 frame->ret_addr = (unsigned long) ret_from_fork;
147 p->thread.sp = (unsigned long) fork_frame;
148 p->thread.io_bitmap = NULL;
149 p->thread.iopl_warn = 0;
150 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
151
152 #ifdef CONFIG_X86_64
153 current_save_fsgs();
154 p->thread.fsindex = current->thread.fsindex;
155 p->thread.fsbase = current->thread.fsbase;
156 p->thread.gsindex = current->thread.gsindex;
157 p->thread.gsbase = current->thread.gsbase;
158
159 savesegment(es, p->thread.es);
160 savesegment(ds, p->thread.ds);
161 #else
162 p->thread.sp0 = (unsigned long) (childregs + 1);
163 /*
164 * Clear all status flags including IF and set fixed bit. 64bit
165 * does not have this initialization as the frame does not contain
166 * flags. The flags consistency (especially vs. AC) is there
167 * ensured via objtool, which lacks 32bit support.
168 */
169 frame->flags = X86_EFLAGS_FIXED;
170 #endif
171
172 fpu_clone(p, clone_flags);
173
174 /* Kernel thread ? */
175 if (unlikely(p->flags & PF_KTHREAD)) {
176 p->thread.pkru = pkru_get_init_value();
177 memset(childregs, 0, sizeof(struct pt_regs));
178 kthread_frame_init(frame, sp, arg);
179 return 0;
180 }
181
182 /*
183 * Clone current's PKRU value from hardware. tsk->thread.pkru
184 * is only valid when scheduled out.
185 */
186 p->thread.pkru = read_pkru();
187
188 frame->bx = 0;
189 *childregs = *current_pt_regs();
190 childregs->ax = 0;
191 if (sp)
192 childregs->sp = sp;
193
194 #ifdef CONFIG_X86_32
195 task_user_gs(p) = get_user_gs(current_pt_regs());
196 #endif
197
198 if (unlikely(p->flags & PF_IO_WORKER)) {
199 /*
200 * An IO thread is a user space thread, but it doesn't
201 * return to ret_after_fork().
202 *
203 * In order to indicate that to tools like gdb,
204 * we reset the stack and instruction pointers.
205 *
206 * It does the same kernel frame setup to return to a kernel
207 * function that a kernel thread does.
208 */
209 childregs->sp = 0;
210 childregs->ip = 0;
211 kthread_frame_init(frame, sp, arg);
212 return 0;
213 }
214
215 /* Set a new TLS for the child thread? */
216 if (clone_flags & CLONE_SETTLS)
217 ret = set_new_tls(p, tls);
218
219 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
220 io_bitmap_share(p);
221
222 return ret;
223 }
224
pkru_flush_thread(void)225 static void pkru_flush_thread(void)
226 {
227 /*
228 * If PKRU is enabled the default PKRU value has to be loaded into
229 * the hardware right here (similar to context switch).
230 */
231 pkru_write_default();
232 }
233
flush_thread(void)234 void flush_thread(void)
235 {
236 struct task_struct *tsk = current;
237
238 flush_ptrace_hw_breakpoint(tsk);
239 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
240
241 fpu_flush_thread();
242 pkru_flush_thread();
243 }
244
disable_TSC(void)245 void disable_TSC(void)
246 {
247 preempt_disable();
248 if (!test_and_set_thread_flag(TIF_NOTSC))
249 /*
250 * Must flip the CPU state synchronously with
251 * TIF_NOTSC in the current running context.
252 */
253 cr4_set_bits(X86_CR4_TSD);
254 preempt_enable();
255 }
256
enable_TSC(void)257 static void enable_TSC(void)
258 {
259 preempt_disable();
260 if (test_and_clear_thread_flag(TIF_NOTSC))
261 /*
262 * Must flip the CPU state synchronously with
263 * TIF_NOTSC in the current running context.
264 */
265 cr4_clear_bits(X86_CR4_TSD);
266 preempt_enable();
267 }
268
get_tsc_mode(unsigned long adr)269 int get_tsc_mode(unsigned long adr)
270 {
271 unsigned int val;
272
273 if (test_thread_flag(TIF_NOTSC))
274 val = PR_TSC_SIGSEGV;
275 else
276 val = PR_TSC_ENABLE;
277
278 return put_user(val, (unsigned int __user *)adr);
279 }
280
set_tsc_mode(unsigned int val)281 int set_tsc_mode(unsigned int val)
282 {
283 if (val == PR_TSC_SIGSEGV)
284 disable_TSC();
285 else if (val == PR_TSC_ENABLE)
286 enable_TSC();
287 else
288 return -EINVAL;
289
290 return 0;
291 }
292
293 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
294
set_cpuid_faulting(bool on)295 static void set_cpuid_faulting(bool on)
296 {
297 u64 msrval;
298
299 msrval = this_cpu_read(msr_misc_features_shadow);
300 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
301 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
302 this_cpu_write(msr_misc_features_shadow, msrval);
303 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
304 }
305
disable_cpuid(void)306 static void disable_cpuid(void)
307 {
308 preempt_disable();
309 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
310 /*
311 * Must flip the CPU state synchronously with
312 * TIF_NOCPUID in the current running context.
313 */
314 set_cpuid_faulting(true);
315 }
316 preempt_enable();
317 }
318
enable_cpuid(void)319 static void enable_cpuid(void)
320 {
321 preempt_disable();
322 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
323 /*
324 * Must flip the CPU state synchronously with
325 * TIF_NOCPUID in the current running context.
326 */
327 set_cpuid_faulting(false);
328 }
329 preempt_enable();
330 }
331
get_cpuid_mode(void)332 static int get_cpuid_mode(void)
333 {
334 return !test_thread_flag(TIF_NOCPUID);
335 }
336
set_cpuid_mode(struct task_struct * task,unsigned long cpuid_enabled)337 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
338 {
339 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
340 return -ENODEV;
341
342 if (cpuid_enabled)
343 enable_cpuid();
344 else
345 disable_cpuid();
346
347 return 0;
348 }
349
350 /*
351 * Called immediately after a successful exec.
352 */
arch_setup_new_exec(void)353 void arch_setup_new_exec(void)
354 {
355 /* If cpuid was previously disabled for this task, re-enable it. */
356 if (test_thread_flag(TIF_NOCPUID))
357 enable_cpuid();
358
359 /*
360 * Don't inherit TIF_SSBD across exec boundary when
361 * PR_SPEC_DISABLE_NOEXEC is used.
362 */
363 if (test_thread_flag(TIF_SSBD) &&
364 task_spec_ssb_noexec(current)) {
365 clear_thread_flag(TIF_SSBD);
366 task_clear_spec_ssb_disable(current);
367 task_clear_spec_ssb_noexec(current);
368 speculation_ctrl_update(task_thread_info(current)->flags);
369 }
370 }
371
372 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)373 static inline void switch_to_bitmap(unsigned long tifp)
374 {
375 /*
376 * Invalidate I/O bitmap if the previous task used it. This prevents
377 * any possible leakage of an active I/O bitmap.
378 *
379 * If the next task has an I/O bitmap it will handle it on exit to
380 * user mode.
381 */
382 if (tifp & _TIF_IO_BITMAP)
383 tss_invalidate_io_bitmap();
384 }
385
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)386 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
387 {
388 /*
389 * Copy at least the byte range of the incoming tasks bitmap which
390 * covers the permitted I/O ports.
391 *
392 * If the previous task which used an I/O bitmap had more bits
393 * permitted, then the copy needs to cover those as well so they
394 * get turned off.
395 */
396 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
397 max(tss->io_bitmap.prev_max, iobm->max));
398
399 /*
400 * Store the new max and the sequence number of this bitmap
401 * and a pointer to the bitmap itself.
402 */
403 tss->io_bitmap.prev_max = iobm->max;
404 tss->io_bitmap.prev_sequence = iobm->sequence;
405 }
406
407 /**
408 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
409 */
native_tss_update_io_bitmap(void)410 void native_tss_update_io_bitmap(void)
411 {
412 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
413 struct thread_struct *t = ¤t->thread;
414 u16 *base = &tss->x86_tss.io_bitmap_base;
415
416 if (!test_thread_flag(TIF_IO_BITMAP)) {
417 native_tss_invalidate_io_bitmap();
418 return;
419 }
420
421 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
422 *base = IO_BITMAP_OFFSET_VALID_ALL;
423 } else {
424 struct io_bitmap *iobm = t->io_bitmap;
425
426 /*
427 * Only copy bitmap data when the sequence number differs. The
428 * update time is accounted to the incoming task.
429 */
430 if (tss->io_bitmap.prev_sequence != iobm->sequence)
431 tss_copy_io_bitmap(tss, iobm);
432
433 /* Enable the bitmap */
434 *base = IO_BITMAP_OFFSET_VALID_MAP;
435 }
436
437 /*
438 * Make sure that the TSS limit is covering the IO bitmap. It might have
439 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
440 * access from user space to trigger a #GP because tbe bitmap is outside
441 * the TSS limit.
442 */
443 refresh_tss_limit();
444 }
445 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)446 static inline void switch_to_bitmap(unsigned long tifp) { }
447 #endif
448
449 #ifdef CONFIG_SMP
450
451 struct ssb_state {
452 struct ssb_state *shared_state;
453 raw_spinlock_t lock;
454 unsigned int disable_state;
455 unsigned long local_state;
456 };
457
458 #define LSTATE_SSB 0
459
460 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
461
speculative_store_bypass_ht_init(void)462 void speculative_store_bypass_ht_init(void)
463 {
464 struct ssb_state *st = this_cpu_ptr(&ssb_state);
465 unsigned int this_cpu = smp_processor_id();
466 unsigned int cpu;
467
468 st->local_state = 0;
469
470 /*
471 * Shared state setup happens once on the first bringup
472 * of the CPU. It's not destroyed on CPU hotunplug.
473 */
474 if (st->shared_state)
475 return;
476
477 raw_spin_lock_init(&st->lock);
478
479 /*
480 * Go over HT siblings and check whether one of them has set up the
481 * shared state pointer already.
482 */
483 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
484 if (cpu == this_cpu)
485 continue;
486
487 if (!per_cpu(ssb_state, cpu).shared_state)
488 continue;
489
490 /* Link it to the state of the sibling: */
491 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
492 return;
493 }
494
495 /*
496 * First HT sibling to come up on the core. Link shared state of
497 * the first HT sibling to itself. The siblings on the same core
498 * which come up later will see the shared state pointer and link
499 * themselves to the state of this CPU.
500 */
501 st->shared_state = st;
502 }
503
504 /*
505 * Logic is: First HT sibling enables SSBD for both siblings in the core
506 * and last sibling to disable it, disables it for the whole core. This how
507 * MSR_SPEC_CTRL works in "hardware":
508 *
509 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
510 */
amd_set_core_ssb_state(unsigned long tifn)511 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
512 {
513 struct ssb_state *st = this_cpu_ptr(&ssb_state);
514 u64 msr = x86_amd_ls_cfg_base;
515
516 if (!static_cpu_has(X86_FEATURE_ZEN)) {
517 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
518 wrmsrl(MSR_AMD64_LS_CFG, msr);
519 return;
520 }
521
522 if (tifn & _TIF_SSBD) {
523 /*
524 * Since this can race with prctl(), block reentry on the
525 * same CPU.
526 */
527 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
528 return;
529
530 msr |= x86_amd_ls_cfg_ssbd_mask;
531
532 raw_spin_lock(&st->shared_state->lock);
533 /* First sibling enables SSBD: */
534 if (!st->shared_state->disable_state)
535 wrmsrl(MSR_AMD64_LS_CFG, msr);
536 st->shared_state->disable_state++;
537 raw_spin_unlock(&st->shared_state->lock);
538 } else {
539 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
540 return;
541
542 raw_spin_lock(&st->shared_state->lock);
543 st->shared_state->disable_state--;
544 if (!st->shared_state->disable_state)
545 wrmsrl(MSR_AMD64_LS_CFG, msr);
546 raw_spin_unlock(&st->shared_state->lock);
547 }
548 }
549 #else
amd_set_core_ssb_state(unsigned long tifn)550 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
551 {
552 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
553
554 wrmsrl(MSR_AMD64_LS_CFG, msr);
555 }
556 #endif
557
amd_set_ssb_virt_state(unsigned long tifn)558 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
559 {
560 /*
561 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
562 * so ssbd_tif_to_spec_ctrl() just works.
563 */
564 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
565 }
566
567 /*
568 * Update the MSRs managing speculation control, during context switch.
569 *
570 * tifp: Previous task's thread flags
571 * tifn: Next task's thread flags
572 */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)573 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
574 unsigned long tifn)
575 {
576 unsigned long tif_diff = tifp ^ tifn;
577 u64 msr = x86_spec_ctrl_base;
578 bool updmsr = false;
579
580 lockdep_assert_irqs_disabled();
581
582 /* Handle change of TIF_SSBD depending on the mitigation method. */
583 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
584 if (tif_diff & _TIF_SSBD)
585 amd_set_ssb_virt_state(tifn);
586 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
587 if (tif_diff & _TIF_SSBD)
588 amd_set_core_ssb_state(tifn);
589 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
590 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
591 updmsr |= !!(tif_diff & _TIF_SSBD);
592 msr |= ssbd_tif_to_spec_ctrl(tifn);
593 }
594
595 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
596 if (IS_ENABLED(CONFIG_SMP) &&
597 static_branch_unlikely(&switch_to_cond_stibp)) {
598 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
599 msr |= stibp_tif_to_spec_ctrl(tifn);
600 }
601
602 if (updmsr)
603 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
604 }
605
speculation_ctrl_update_tif(struct task_struct * tsk)606 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
607 {
608 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
609 if (task_spec_ssb_disable(tsk))
610 set_tsk_thread_flag(tsk, TIF_SSBD);
611 else
612 clear_tsk_thread_flag(tsk, TIF_SSBD);
613
614 if (task_spec_ib_disable(tsk))
615 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
616 else
617 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
618 }
619 /* Return the updated threadinfo flags*/
620 return task_thread_info(tsk)->flags;
621 }
622
speculation_ctrl_update(unsigned long tif)623 void speculation_ctrl_update(unsigned long tif)
624 {
625 unsigned long flags;
626
627 /* Forced update. Make sure all relevant TIF flags are different */
628 local_irq_save(flags);
629 __speculation_ctrl_update(~tif, tif);
630 local_irq_restore(flags);
631 }
632
633 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)634 void speculation_ctrl_update_current(void)
635 {
636 preempt_disable();
637 speculation_ctrl_update(speculation_ctrl_update_tif(current));
638 preempt_enable();
639 }
640
cr4_toggle_bits_irqsoff(unsigned long mask)641 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
642 {
643 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
644
645 newval = cr4 ^ mask;
646 if (newval != cr4) {
647 this_cpu_write(cpu_tlbstate.cr4, newval);
648 __write_cr4(newval);
649 }
650 }
651
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)652 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
653 {
654 unsigned long tifp, tifn;
655
656 tifn = READ_ONCE(task_thread_info(next_p)->flags);
657 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
658
659 switch_to_bitmap(tifp);
660
661 propagate_user_return_notify(prev_p, next_p);
662
663 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
664 arch_has_block_step()) {
665 unsigned long debugctl, msk;
666
667 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
668 debugctl &= ~DEBUGCTLMSR_BTF;
669 msk = tifn & _TIF_BLOCKSTEP;
670 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
671 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
672 }
673
674 if ((tifp ^ tifn) & _TIF_NOTSC)
675 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
676
677 if ((tifp ^ tifn) & _TIF_NOCPUID)
678 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
679
680 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
681 __speculation_ctrl_update(tifp, tifn);
682 } else {
683 speculation_ctrl_update_tif(prev_p);
684 tifn = speculation_ctrl_update_tif(next_p);
685
686 /* Enforce MSR update to ensure consistent state */
687 __speculation_ctrl_update(~tifn, tifn);
688 }
689
690 if ((tifp ^ tifn) & _TIF_SLD)
691 switch_to_sld(tifn);
692 }
693
694 /*
695 * Idle related variables and functions
696 */
697 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
698 EXPORT_SYMBOL(boot_option_idle_override);
699
700 static void (*x86_idle)(void);
701
702 #ifndef CONFIG_SMP
play_dead(void)703 static inline void play_dead(void)
704 {
705 BUG();
706 }
707 #endif
708
arch_cpu_idle_enter(void)709 void arch_cpu_idle_enter(void)
710 {
711 tsc_verify_tsc_adjust(false);
712 local_touch_nmi();
713 }
714
arch_cpu_idle_dead(void)715 void arch_cpu_idle_dead(void)
716 {
717 play_dead();
718 }
719
720 /*
721 * Called from the generic idle code.
722 */
arch_cpu_idle(void)723 void arch_cpu_idle(void)
724 {
725 x86_idle();
726 }
727
728 /*
729 * We use this if we don't have any better idle routine..
730 */
default_idle(void)731 void __cpuidle default_idle(void)
732 {
733 raw_safe_halt();
734 }
735 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
736 EXPORT_SYMBOL(default_idle);
737 #endif
738
739 #ifdef CONFIG_XEN
xen_set_default_idle(void)740 bool xen_set_default_idle(void)
741 {
742 bool ret = !!x86_idle;
743
744 x86_idle = default_idle;
745
746 return ret;
747 }
748 #endif
749
stop_this_cpu(void * dummy)750 void stop_this_cpu(void *dummy)
751 {
752 local_irq_disable();
753 /*
754 * Remove this CPU:
755 */
756 set_cpu_online(smp_processor_id(), false);
757 disable_local_APIC();
758 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
759
760 /*
761 * Use wbinvd on processors that support SME. This provides support
762 * for performing a successful kexec when going from SME inactive
763 * to SME active (or vice-versa). The cache must be cleared so that
764 * if there are entries with the same physical address, both with and
765 * without the encryption bit, they don't race each other when flushed
766 * and potentially end up with the wrong entry being committed to
767 * memory.
768 */
769 if (boot_cpu_has(X86_FEATURE_SME))
770 native_wbinvd();
771 for (;;) {
772 /*
773 * Use native_halt() so that memory contents don't change
774 * (stack usage and variables) after possibly issuing the
775 * native_wbinvd() above.
776 */
777 native_halt();
778 }
779 }
780
781 /*
782 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
783 * states (local apic timer and TSC stop).
784 *
785 * XXX this function is completely buggered vs RCU and tracing.
786 */
amd_e400_idle(void)787 static void amd_e400_idle(void)
788 {
789 /*
790 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
791 * gets set after static_cpu_has() places have been converted via
792 * alternatives.
793 */
794 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
795 default_idle();
796 return;
797 }
798
799 tick_broadcast_enter();
800
801 default_idle();
802
803 /*
804 * The switch back from broadcast mode needs to be called with
805 * interrupts disabled.
806 */
807 raw_local_irq_disable();
808 tick_broadcast_exit();
809 raw_local_irq_enable();
810 }
811
812 /*
813 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
814 * We can't rely on cpuidle installing MWAIT, because it will not load
815 * on systems that support only C1 -- so the boot default must be MWAIT.
816 *
817 * Some AMD machines are the opposite, they depend on using HALT.
818 *
819 * So for default C1, which is used during boot until cpuidle loads,
820 * use MWAIT-C1 on Intel HW that has it, else use HALT.
821 */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)822 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
823 {
824 if (c->x86_vendor != X86_VENDOR_INTEL)
825 return 0;
826
827 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
828 return 0;
829
830 return 1;
831 }
832
833 /*
834 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
835 * with interrupts enabled and no flags, which is backwards compatible with the
836 * original MWAIT implementation.
837 */
mwait_idle(void)838 static __cpuidle void mwait_idle(void)
839 {
840 if (!current_set_polling_and_test()) {
841 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
842 mb(); /* quirk */
843 clflush((void *)¤t_thread_info()->flags);
844 mb(); /* quirk */
845 }
846
847 __monitor((void *)¤t_thread_info()->flags, 0, 0);
848 if (!need_resched())
849 __sti_mwait(0, 0);
850 else
851 raw_local_irq_enable();
852 } else {
853 raw_local_irq_enable();
854 }
855 __current_clr_polling();
856 }
857
select_idle_routine(const struct cpuinfo_x86 * c)858 void select_idle_routine(const struct cpuinfo_x86 *c)
859 {
860 #ifdef CONFIG_SMP
861 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
862 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
863 #endif
864 if (x86_idle || boot_option_idle_override == IDLE_POLL)
865 return;
866
867 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
868 pr_info("using AMD E400 aware idle routine\n");
869 x86_idle = amd_e400_idle;
870 } else if (prefer_mwait_c1_over_halt(c)) {
871 pr_info("using mwait in idle threads\n");
872 x86_idle = mwait_idle;
873 } else
874 x86_idle = default_idle;
875 }
876
amd_e400_c1e_apic_setup(void)877 void amd_e400_c1e_apic_setup(void)
878 {
879 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
880 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
881 local_irq_disable();
882 tick_broadcast_force();
883 local_irq_enable();
884 }
885 }
886
arch_post_acpi_subsys_init(void)887 void __init arch_post_acpi_subsys_init(void)
888 {
889 u32 lo, hi;
890
891 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
892 return;
893
894 /*
895 * AMD E400 detection needs to happen after ACPI has been enabled. If
896 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
897 * MSR_K8_INT_PENDING_MSG.
898 */
899 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
900 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
901 return;
902
903 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
904
905 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
906 mark_tsc_unstable("TSC halt in AMD C1E");
907 pr_info("System has AMD C1E enabled\n");
908 }
909
idle_setup(char * str)910 static int __init idle_setup(char *str)
911 {
912 if (!str)
913 return -EINVAL;
914
915 if (!strcmp(str, "poll")) {
916 pr_info("using polling idle threads\n");
917 boot_option_idle_override = IDLE_POLL;
918 cpu_idle_poll_ctrl(true);
919 } else if (!strcmp(str, "halt")) {
920 /*
921 * When the boot option of idle=halt is added, halt is
922 * forced to be used for CPU idle. In such case CPU C2/C3
923 * won't be used again.
924 * To continue to load the CPU idle driver, don't touch
925 * the boot_option_idle_override.
926 */
927 x86_idle = default_idle;
928 boot_option_idle_override = IDLE_HALT;
929 } else if (!strcmp(str, "nomwait")) {
930 /*
931 * If the boot option of "idle=nomwait" is added,
932 * it means that mwait will be disabled for CPU C2/C3
933 * states. In such case it won't touch the variable
934 * of boot_option_idle_override.
935 */
936 boot_option_idle_override = IDLE_NOMWAIT;
937 } else
938 return -1;
939
940 return 0;
941 }
942 early_param("idle", idle_setup);
943
arch_align_stack(unsigned long sp)944 unsigned long arch_align_stack(unsigned long sp)
945 {
946 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
947 sp -= get_random_int() % 8192;
948 return sp & ~0xf;
949 }
950
arch_randomize_brk(struct mm_struct * mm)951 unsigned long arch_randomize_brk(struct mm_struct *mm)
952 {
953 return randomize_page(mm->brk, 0x02000000);
954 }
955
956 /*
957 * Called from fs/proc with a reference on @p to find the function
958 * which called into schedule(). This needs to be done carefully
959 * because the task might wake up and we might look at a stack
960 * changing under us.
961 */
__get_wchan(struct task_struct * p)962 unsigned long __get_wchan(struct task_struct *p)
963 {
964 struct unwind_state state;
965 unsigned long addr = 0;
966
967 if (!try_get_task_stack(p))
968 return 0;
969
970 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
971 unwind_next_frame(&state)) {
972 addr = unwind_get_return_address(&state);
973 if (!addr)
974 break;
975 if (in_sched_functions(addr))
976 continue;
977 break;
978 }
979
980 put_task_stack(p);
981
982 return addr;
983 }
984
do_arch_prctl_common(struct task_struct * task,int option,unsigned long arg2)985 long do_arch_prctl_common(struct task_struct *task, int option,
986 unsigned long arg2)
987 {
988 switch (option) {
989 case ARCH_GET_CPUID:
990 return get_cpuid_mode();
991 case ARCH_SET_CPUID:
992 return set_cpuid_mode(task, arg2);
993 case ARCH_GET_XCOMP_SUPP:
994 case ARCH_GET_XCOMP_PERM:
995 case ARCH_REQ_XCOMP_PERM:
996 return fpu_xstate_prctl(task, option, arg2);
997 }
998
999 return -EINVAL;
1000 }
1001