1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (uweigand@de.ibm.com)
7 *
8 * Derived from "arch/i386/mm/fault.c"
9 * Copyright (C) 1995 Linus Torvalds
10 */
11
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/extable.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <linux/kfence.h>
35 #include <asm/asm-offsets.h>
36 #include <asm/diag.h>
37 #include <asm/gmap.h>
38 #include <asm/irq.h>
39 #include <asm/mmu_context.h>
40 #include <asm/facility.h>
41 #include <asm/uv.h>
42 #include "../kernel/entry.h"
43
44 #define __FAIL_ADDR_MASK -4096L
45 #define __SUBCODE_MASK 0x0600
46 #define __PF_RES_FIELD 0x8000000000000000ULL
47
48 #define VM_FAULT_BADCONTEXT ((__force vm_fault_t) 0x010000)
49 #define VM_FAULT_BADMAP ((__force vm_fault_t) 0x020000)
50 #define VM_FAULT_BADACCESS ((__force vm_fault_t) 0x040000)
51 #define VM_FAULT_SIGNAL ((__force vm_fault_t) 0x080000)
52 #define VM_FAULT_PFAULT ((__force vm_fault_t) 0x100000)
53
54 enum fault_type {
55 KERNEL_FAULT,
56 USER_FAULT,
57 GMAP_FAULT,
58 };
59
60 static unsigned long store_indication __read_mostly;
61
fault_init(void)62 static int __init fault_init(void)
63 {
64 if (test_facility(75))
65 store_indication = 0xc00;
66 return 0;
67 }
68 early_initcall(fault_init);
69
70 /*
71 * Find out which address space caused the exception.
72 */
get_fault_type(struct pt_regs * regs)73 static enum fault_type get_fault_type(struct pt_regs *regs)
74 {
75 unsigned long trans_exc_code;
76
77 trans_exc_code = regs->int_parm_long & 3;
78 if (likely(trans_exc_code == 0)) {
79 /* primary space exception */
80 if (user_mode(regs))
81 return USER_FAULT;
82 if (!IS_ENABLED(CONFIG_PGSTE))
83 return KERNEL_FAULT;
84 if (test_pt_regs_flag(regs, PIF_GUEST_FAULT))
85 return GMAP_FAULT;
86 return KERNEL_FAULT;
87 }
88 if (trans_exc_code == 2)
89 return USER_FAULT;
90 if (trans_exc_code == 1) {
91 /* access register mode, not used in the kernel */
92 return USER_FAULT;
93 }
94 /* home space exception -> access via kernel ASCE */
95 return KERNEL_FAULT;
96 }
97
bad_address(void * p)98 static int bad_address(void *p)
99 {
100 unsigned long dummy;
101
102 return get_kernel_nofault(dummy, (unsigned long *)p);
103 }
104
dump_pagetable(unsigned long asce,unsigned long address)105 static void dump_pagetable(unsigned long asce, unsigned long address)
106 {
107 unsigned long *table = __va(asce & _ASCE_ORIGIN);
108
109 pr_alert("AS:%016lx ", asce);
110 switch (asce & _ASCE_TYPE_MASK) {
111 case _ASCE_TYPE_REGION1:
112 table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
113 if (bad_address(table))
114 goto bad;
115 pr_cont("R1:%016lx ", *table);
116 if (*table & _REGION_ENTRY_INVALID)
117 goto out;
118 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
119 fallthrough;
120 case _ASCE_TYPE_REGION2:
121 table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
122 if (bad_address(table))
123 goto bad;
124 pr_cont("R2:%016lx ", *table);
125 if (*table & _REGION_ENTRY_INVALID)
126 goto out;
127 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
128 fallthrough;
129 case _ASCE_TYPE_REGION3:
130 table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
131 if (bad_address(table))
132 goto bad;
133 pr_cont("R3:%016lx ", *table);
134 if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
135 goto out;
136 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
137 fallthrough;
138 case _ASCE_TYPE_SEGMENT:
139 table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
140 if (bad_address(table))
141 goto bad;
142 pr_cont("S:%016lx ", *table);
143 if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
144 goto out;
145 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
146 }
147 table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
148 if (bad_address(table))
149 goto bad;
150 pr_cont("P:%016lx ", *table);
151 out:
152 pr_cont("\n");
153 return;
154 bad:
155 pr_cont("BAD\n");
156 }
157
dump_fault_info(struct pt_regs * regs)158 static void dump_fault_info(struct pt_regs *regs)
159 {
160 unsigned long asce;
161
162 pr_alert("Failing address: %016lx TEID: %016lx\n",
163 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
164 pr_alert("Fault in ");
165 switch (regs->int_parm_long & 3) {
166 case 3:
167 pr_cont("home space ");
168 break;
169 case 2:
170 pr_cont("secondary space ");
171 break;
172 case 1:
173 pr_cont("access register ");
174 break;
175 case 0:
176 pr_cont("primary space ");
177 break;
178 }
179 pr_cont("mode while using ");
180 switch (get_fault_type(regs)) {
181 case USER_FAULT:
182 asce = S390_lowcore.user_asce;
183 pr_cont("user ");
184 break;
185 case GMAP_FAULT:
186 asce = ((struct gmap *) S390_lowcore.gmap)->asce;
187 pr_cont("gmap ");
188 break;
189 case KERNEL_FAULT:
190 asce = S390_lowcore.kernel_asce;
191 pr_cont("kernel ");
192 break;
193 default:
194 unreachable();
195 }
196 pr_cont("ASCE.\n");
197 dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
198 }
199
200 int show_unhandled_signals = 1;
201
report_user_fault(struct pt_regs * regs,long signr,int is_mm_fault)202 void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
203 {
204 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
205 return;
206 if (!unhandled_signal(current, signr))
207 return;
208 if (!printk_ratelimit())
209 return;
210 printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
211 regs->int_code & 0xffff, regs->int_code >> 17);
212 print_vma_addr(KERN_CONT "in ", regs->psw.addr);
213 printk(KERN_CONT "\n");
214 if (is_mm_fault)
215 dump_fault_info(regs);
216 show_regs(regs);
217 }
218
219 /*
220 * Send SIGSEGV to task. This is an external routine
221 * to keep the stack usage of do_page_fault small.
222 */
do_sigsegv(struct pt_regs * regs,int si_code)223 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
224 {
225 report_user_fault(regs, SIGSEGV, 1);
226 force_sig_fault(SIGSEGV, si_code,
227 (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
228 }
229
s390_search_extables(unsigned long addr)230 const struct exception_table_entry *s390_search_extables(unsigned long addr)
231 {
232 const struct exception_table_entry *fixup;
233
234 fixup = search_extable(__start_amode31_ex_table,
235 __stop_amode31_ex_table - __start_amode31_ex_table,
236 addr);
237 if (!fixup)
238 fixup = search_exception_tables(addr);
239 return fixup;
240 }
241
do_no_context(struct pt_regs * regs)242 static noinline void do_no_context(struct pt_regs *regs)
243 {
244 const struct exception_table_entry *fixup;
245
246 /* Are we prepared to handle this kernel fault? */
247 fixup = s390_search_extables(regs->psw.addr);
248 if (fixup && ex_handle(fixup, regs))
249 return;
250
251 /*
252 * Oops. The kernel tried to access some bad page. We'll have to
253 * terminate things with extreme prejudice.
254 */
255 if (get_fault_type(regs) == KERNEL_FAULT)
256 printk(KERN_ALERT "Unable to handle kernel pointer dereference"
257 " in virtual kernel address space\n");
258 else
259 printk(KERN_ALERT "Unable to handle kernel paging request"
260 " in virtual user address space\n");
261 dump_fault_info(regs);
262 die(regs, "Oops");
263 }
264
do_low_address(struct pt_regs * regs)265 static noinline void do_low_address(struct pt_regs *regs)
266 {
267 /* Low-address protection hit in kernel mode means
268 NULL pointer write access in kernel mode. */
269 if (regs->psw.mask & PSW_MASK_PSTATE) {
270 /* Low-address protection hit in user mode 'cannot happen'. */
271 die (regs, "Low-address protection");
272 }
273
274 do_no_context(regs);
275 }
276
do_sigbus(struct pt_regs * regs)277 static noinline void do_sigbus(struct pt_regs *regs)
278 {
279 /*
280 * Send a sigbus, regardless of whether we were in kernel
281 * or user mode.
282 */
283 force_sig_fault(SIGBUS, BUS_ADRERR,
284 (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
285 }
286
do_fault_error(struct pt_regs * regs,int access,vm_fault_t fault)287 static noinline void do_fault_error(struct pt_regs *regs, int access,
288 vm_fault_t fault)
289 {
290 int si_code;
291
292 switch (fault) {
293 case VM_FAULT_BADACCESS:
294 case VM_FAULT_BADMAP:
295 /* Bad memory access. Check if it is kernel or user space. */
296 if (user_mode(regs)) {
297 /* User mode accesses just cause a SIGSEGV */
298 si_code = (fault == VM_FAULT_BADMAP) ?
299 SEGV_MAPERR : SEGV_ACCERR;
300 do_sigsegv(regs, si_code);
301 break;
302 }
303 fallthrough;
304 case VM_FAULT_BADCONTEXT:
305 case VM_FAULT_PFAULT:
306 do_no_context(regs);
307 break;
308 case VM_FAULT_SIGNAL:
309 if (!user_mode(regs))
310 do_no_context(regs);
311 break;
312 default: /* fault & VM_FAULT_ERROR */
313 if (fault & VM_FAULT_OOM) {
314 if (!user_mode(regs))
315 do_no_context(regs);
316 else
317 pagefault_out_of_memory();
318 } else if (fault & VM_FAULT_SIGSEGV) {
319 /* Kernel mode? Handle exceptions or die */
320 if (!user_mode(regs))
321 do_no_context(regs);
322 else
323 do_sigsegv(regs, SEGV_MAPERR);
324 } else if (fault & VM_FAULT_SIGBUS) {
325 /* Kernel mode? Handle exceptions or die */
326 if (!user_mode(regs))
327 do_no_context(regs);
328 else
329 do_sigbus(regs);
330 } else
331 BUG();
332 break;
333 }
334 }
335
336 /*
337 * This routine handles page faults. It determines the address,
338 * and the problem, and then passes it off to one of the appropriate
339 * routines.
340 *
341 * interruption code (int_code):
342 * 04 Protection -> Write-Protection (suppression)
343 * 10 Segment translation -> Not present (nullification)
344 * 11 Page translation -> Not present (nullification)
345 * 3b Region third trans. -> Not present (nullification)
346 */
do_exception(struct pt_regs * regs,int access)347 static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
348 {
349 struct gmap *gmap;
350 struct task_struct *tsk;
351 struct mm_struct *mm;
352 struct vm_area_struct *vma;
353 enum fault_type type;
354 unsigned long trans_exc_code;
355 unsigned long address;
356 unsigned int flags;
357 vm_fault_t fault;
358 bool is_write;
359
360 tsk = current;
361 /*
362 * The instruction that caused the program check has
363 * been nullified. Don't signal single step via SIGTRAP.
364 */
365 clear_thread_flag(TIF_PER_TRAP);
366
367 if (kprobe_page_fault(regs, 14))
368 return 0;
369
370 mm = tsk->mm;
371 trans_exc_code = regs->int_parm_long;
372 address = trans_exc_code & __FAIL_ADDR_MASK;
373 is_write = (trans_exc_code & store_indication) == 0x400;
374
375 /*
376 * Verify that the fault happened in user space, that
377 * we are not in an interrupt and that there is a
378 * user context.
379 */
380 fault = VM_FAULT_BADCONTEXT;
381 type = get_fault_type(regs);
382 switch (type) {
383 case KERNEL_FAULT:
384 if (kfence_handle_page_fault(address, is_write, regs))
385 return 0;
386 goto out;
387 case USER_FAULT:
388 case GMAP_FAULT:
389 if (faulthandler_disabled() || !mm)
390 goto out;
391 break;
392 }
393
394 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
395 flags = FAULT_FLAG_DEFAULT;
396 if (user_mode(regs))
397 flags |= FAULT_FLAG_USER;
398 if (access == VM_WRITE || is_write)
399 flags |= FAULT_FLAG_WRITE;
400 mmap_read_lock(mm);
401
402 gmap = NULL;
403 if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
404 gmap = (struct gmap *) S390_lowcore.gmap;
405 current->thread.gmap_addr = address;
406 current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
407 current->thread.gmap_int_code = regs->int_code & 0xffff;
408 address = __gmap_translate(gmap, address);
409 if (address == -EFAULT) {
410 fault = VM_FAULT_BADMAP;
411 goto out_up;
412 }
413 if (gmap->pfault_enabled)
414 flags |= FAULT_FLAG_RETRY_NOWAIT;
415 }
416
417 retry:
418 fault = VM_FAULT_BADMAP;
419 vma = find_vma(mm, address);
420 if (!vma)
421 goto out_up;
422
423 if (unlikely(vma->vm_start > address)) {
424 if (!(vma->vm_flags & VM_GROWSDOWN))
425 goto out_up;
426 if (expand_stack(vma, address))
427 goto out_up;
428 }
429
430 /*
431 * Ok, we have a good vm_area for this memory access, so
432 * we can handle it..
433 */
434 fault = VM_FAULT_BADACCESS;
435 if (unlikely(!(vma->vm_flags & access)))
436 goto out_up;
437
438 if (is_vm_hugetlb_page(vma))
439 address &= HPAGE_MASK;
440 /*
441 * If for any reason at all we couldn't handle the fault,
442 * make sure we exit gracefully rather than endlessly redo
443 * the fault.
444 */
445 fault = handle_mm_fault(vma, address, flags, regs);
446 if (fault_signal_pending(fault, regs)) {
447 fault = VM_FAULT_SIGNAL;
448 if (flags & FAULT_FLAG_RETRY_NOWAIT)
449 goto out_up;
450 goto out;
451 }
452 if (unlikely(fault & VM_FAULT_ERROR))
453 goto out_up;
454
455 if (flags & FAULT_FLAG_ALLOW_RETRY) {
456 if (fault & VM_FAULT_RETRY) {
457 if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
458 (flags & FAULT_FLAG_RETRY_NOWAIT)) {
459 /* FAULT_FLAG_RETRY_NOWAIT has been set,
460 * mmap_lock has not been released */
461 current->thread.gmap_pfault = 1;
462 fault = VM_FAULT_PFAULT;
463 goto out_up;
464 }
465 flags &= ~FAULT_FLAG_RETRY_NOWAIT;
466 flags |= FAULT_FLAG_TRIED;
467 mmap_read_lock(mm);
468 goto retry;
469 }
470 }
471 if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
472 address = __gmap_link(gmap, current->thread.gmap_addr,
473 address);
474 if (address == -EFAULT) {
475 fault = VM_FAULT_BADMAP;
476 goto out_up;
477 }
478 if (address == -ENOMEM) {
479 fault = VM_FAULT_OOM;
480 goto out_up;
481 }
482 }
483 fault = 0;
484 out_up:
485 mmap_read_unlock(mm);
486 out:
487 return fault;
488 }
489
do_protection_exception(struct pt_regs * regs)490 void do_protection_exception(struct pt_regs *regs)
491 {
492 unsigned long trans_exc_code;
493 int access;
494 vm_fault_t fault;
495
496 trans_exc_code = regs->int_parm_long;
497 /*
498 * Protection exceptions are suppressing, decrement psw address.
499 * The exception to this rule are aborted transactions, for these
500 * the PSW already points to the correct location.
501 */
502 if (!(regs->int_code & 0x200))
503 regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
504 /*
505 * Check for low-address protection. This needs to be treated
506 * as a special case because the translation exception code
507 * field is not guaranteed to contain valid data in this case.
508 */
509 if (unlikely(!(trans_exc_code & 4))) {
510 do_low_address(regs);
511 return;
512 }
513 if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
514 regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
515 (regs->psw.addr & PAGE_MASK);
516 access = VM_EXEC;
517 fault = VM_FAULT_BADACCESS;
518 } else {
519 access = VM_WRITE;
520 fault = do_exception(regs, access);
521 }
522 if (unlikely(fault))
523 do_fault_error(regs, access, fault);
524 }
525 NOKPROBE_SYMBOL(do_protection_exception);
526
do_dat_exception(struct pt_regs * regs)527 void do_dat_exception(struct pt_regs *regs)
528 {
529 int access;
530 vm_fault_t fault;
531
532 access = VM_ACCESS_FLAGS;
533 fault = do_exception(regs, access);
534 if (unlikely(fault))
535 do_fault_error(regs, access, fault);
536 }
537 NOKPROBE_SYMBOL(do_dat_exception);
538
539 #ifdef CONFIG_PFAULT
540 /*
541 * 'pfault' pseudo page faults routines.
542 */
543 static int pfault_disable;
544
nopfault(char * str)545 static int __init nopfault(char *str)
546 {
547 pfault_disable = 1;
548 return 1;
549 }
550
551 __setup("nopfault", nopfault);
552
553 struct pfault_refbk {
554 u16 refdiagc;
555 u16 reffcode;
556 u16 refdwlen;
557 u16 refversn;
558 u64 refgaddr;
559 u64 refselmk;
560 u64 refcmpmk;
561 u64 reserved;
562 } __attribute__ ((packed, aligned(8)));
563
564 static struct pfault_refbk pfault_init_refbk = {
565 .refdiagc = 0x258,
566 .reffcode = 0,
567 .refdwlen = 5,
568 .refversn = 2,
569 .refgaddr = __LC_LPP,
570 .refselmk = 1ULL << 48,
571 .refcmpmk = 1ULL << 48,
572 .reserved = __PF_RES_FIELD
573 };
574
pfault_init(void)575 int pfault_init(void)
576 {
577 int rc;
578
579 if (pfault_disable)
580 return -1;
581 diag_stat_inc(DIAG_STAT_X258);
582 asm volatile(
583 " diag %1,%0,0x258\n"
584 "0: j 2f\n"
585 "1: la %0,8\n"
586 "2:\n"
587 EX_TABLE(0b,1b)
588 : "=d" (rc)
589 : "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
590 return rc;
591 }
592
593 static struct pfault_refbk pfault_fini_refbk = {
594 .refdiagc = 0x258,
595 .reffcode = 1,
596 .refdwlen = 5,
597 .refversn = 2,
598 };
599
pfault_fini(void)600 void pfault_fini(void)
601 {
602
603 if (pfault_disable)
604 return;
605 diag_stat_inc(DIAG_STAT_X258);
606 asm volatile(
607 " diag %0,0,0x258\n"
608 "0: nopr %%r7\n"
609 EX_TABLE(0b,0b)
610 : : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
611 }
612
613 static DEFINE_SPINLOCK(pfault_lock);
614 static LIST_HEAD(pfault_list);
615
616 #define PF_COMPLETE 0x0080
617
618 /*
619 * The mechanism of our pfault code: if Linux is running as guest, runs a user
620 * space process and the user space process accesses a page that the host has
621 * paged out we get a pfault interrupt.
622 *
623 * This allows us, within the guest, to schedule a different process. Without
624 * this mechanism the host would have to suspend the whole virtual cpu until
625 * the page has been paged in.
626 *
627 * So when we get such an interrupt then we set the state of the current task
628 * to uninterruptible and also set the need_resched flag. Both happens within
629 * interrupt context(!). If we later on want to return to user space we
630 * recognize the need_resched flag and then call schedule(). It's not very
631 * obvious how this works...
632 *
633 * Of course we have a lot of additional fun with the completion interrupt (->
634 * host signals that a page of a process has been paged in and the process can
635 * continue to run). This interrupt can arrive on any cpu and, since we have
636 * virtual cpus, actually appear before the interrupt that signals that a page
637 * is missing.
638 */
pfault_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)639 static void pfault_interrupt(struct ext_code ext_code,
640 unsigned int param32, unsigned long param64)
641 {
642 struct task_struct *tsk;
643 __u16 subcode;
644 pid_t pid;
645
646 /*
647 * Get the external interruption subcode & pfault initial/completion
648 * signal bit. VM stores this in the 'cpu address' field associated
649 * with the external interrupt.
650 */
651 subcode = ext_code.subcode;
652 if ((subcode & 0xff00) != __SUBCODE_MASK)
653 return;
654 inc_irq_stat(IRQEXT_PFL);
655 /* Get the token (= pid of the affected task). */
656 pid = param64 & LPP_PID_MASK;
657 rcu_read_lock();
658 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
659 if (tsk)
660 get_task_struct(tsk);
661 rcu_read_unlock();
662 if (!tsk)
663 return;
664 spin_lock(&pfault_lock);
665 if (subcode & PF_COMPLETE) {
666 /* signal bit is set -> a page has been swapped in by VM */
667 if (tsk->thread.pfault_wait == 1) {
668 /* Initial interrupt was faster than the completion
669 * interrupt. pfault_wait is valid. Set pfault_wait
670 * back to zero and wake up the process. This can
671 * safely be done because the task is still sleeping
672 * and can't produce new pfaults. */
673 tsk->thread.pfault_wait = 0;
674 list_del(&tsk->thread.list);
675 wake_up_process(tsk);
676 put_task_struct(tsk);
677 } else {
678 /* Completion interrupt was faster than initial
679 * interrupt. Set pfault_wait to -1 so the initial
680 * interrupt doesn't put the task to sleep.
681 * If the task is not running, ignore the completion
682 * interrupt since it must be a leftover of a PFAULT
683 * CANCEL operation which didn't remove all pending
684 * completion interrupts. */
685 if (task_is_running(tsk))
686 tsk->thread.pfault_wait = -1;
687 }
688 } else {
689 /* signal bit not set -> a real page is missing. */
690 if (WARN_ON_ONCE(tsk != current))
691 goto out;
692 if (tsk->thread.pfault_wait == 1) {
693 /* Already on the list with a reference: put to sleep */
694 goto block;
695 } else if (tsk->thread.pfault_wait == -1) {
696 /* Completion interrupt was faster than the initial
697 * interrupt (pfault_wait == -1). Set pfault_wait
698 * back to zero and exit. */
699 tsk->thread.pfault_wait = 0;
700 } else {
701 /* Initial interrupt arrived before completion
702 * interrupt. Let the task sleep.
703 * An extra task reference is needed since a different
704 * cpu may set the task state to TASK_RUNNING again
705 * before the scheduler is reached. */
706 get_task_struct(tsk);
707 tsk->thread.pfault_wait = 1;
708 list_add(&tsk->thread.list, &pfault_list);
709 block:
710 /* Since this must be a userspace fault, there
711 * is no kernel task state to trample. Rely on the
712 * return to userspace schedule() to block. */
713 __set_current_state(TASK_UNINTERRUPTIBLE);
714 set_tsk_need_resched(tsk);
715 set_preempt_need_resched();
716 }
717 }
718 out:
719 spin_unlock(&pfault_lock);
720 put_task_struct(tsk);
721 }
722
pfault_cpu_dead(unsigned int cpu)723 static int pfault_cpu_dead(unsigned int cpu)
724 {
725 struct thread_struct *thread, *next;
726 struct task_struct *tsk;
727
728 spin_lock_irq(&pfault_lock);
729 list_for_each_entry_safe(thread, next, &pfault_list, list) {
730 thread->pfault_wait = 0;
731 list_del(&thread->list);
732 tsk = container_of(thread, struct task_struct, thread);
733 wake_up_process(tsk);
734 put_task_struct(tsk);
735 }
736 spin_unlock_irq(&pfault_lock);
737 return 0;
738 }
739
pfault_irq_init(void)740 static int __init pfault_irq_init(void)
741 {
742 int rc;
743
744 rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
745 if (rc)
746 goto out_extint;
747 rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
748 if (rc)
749 goto out_pfault;
750 irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
751 cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
752 NULL, pfault_cpu_dead);
753 return 0;
754
755 out_pfault:
756 unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
757 out_extint:
758 pfault_disable = 1;
759 return rc;
760 }
761 early_initcall(pfault_irq_init);
762
763 #endif /* CONFIG_PFAULT */
764
765 #if IS_ENABLED(CONFIG_PGSTE)
766
do_secure_storage_access(struct pt_regs * regs)767 void do_secure_storage_access(struct pt_regs *regs)
768 {
769 unsigned long addr = regs->int_parm_long & __FAIL_ADDR_MASK;
770 struct vm_area_struct *vma;
771 struct mm_struct *mm;
772 struct page *page;
773 int rc;
774
775 /*
776 * bit 61 tells us if the address is valid, if it's not we
777 * have a major problem and should stop the kernel or send a
778 * SIGSEGV to the process. Unfortunately bit 61 is not
779 * reliable without the misc UV feature so we need to check
780 * for that as well.
781 */
782 if (test_bit_inv(BIT_UV_FEAT_MISC, &uv_info.uv_feature_indications) &&
783 !test_bit_inv(61, ®s->int_parm_long)) {
784 /*
785 * When this happens, userspace did something that it
786 * was not supposed to do, e.g. branching into secure
787 * memory. Trigger a segmentation fault.
788 */
789 if (user_mode(regs)) {
790 send_sig(SIGSEGV, current, 0);
791 return;
792 }
793
794 /*
795 * The kernel should never run into this case and we
796 * have no way out of this situation.
797 */
798 panic("Unexpected PGM 0x3d with TEID bit 61=0");
799 }
800
801 switch (get_fault_type(regs)) {
802 case USER_FAULT:
803 mm = current->mm;
804 mmap_read_lock(mm);
805 vma = find_vma(mm, addr);
806 if (!vma) {
807 mmap_read_unlock(mm);
808 do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
809 break;
810 }
811 page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
812 if (IS_ERR_OR_NULL(page)) {
813 mmap_read_unlock(mm);
814 break;
815 }
816 if (arch_make_page_accessible(page))
817 send_sig(SIGSEGV, current, 0);
818 put_page(page);
819 mmap_read_unlock(mm);
820 break;
821 case KERNEL_FAULT:
822 page = phys_to_page(addr);
823 if (unlikely(!try_get_page(page)))
824 break;
825 rc = arch_make_page_accessible(page);
826 put_page(page);
827 if (rc)
828 BUG();
829 break;
830 case GMAP_FAULT:
831 default:
832 do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
833 WARN_ON_ONCE(1);
834 }
835 }
836 NOKPROBE_SYMBOL(do_secure_storage_access);
837
do_non_secure_storage_access(struct pt_regs * regs)838 void do_non_secure_storage_access(struct pt_regs *regs)
839 {
840 unsigned long gaddr = regs->int_parm_long & __FAIL_ADDR_MASK;
841 struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
842
843 if (get_fault_type(regs) != GMAP_FAULT) {
844 do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
845 WARN_ON_ONCE(1);
846 return;
847 }
848
849 if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
850 send_sig(SIGSEGV, current, 0);
851 }
852 NOKPROBE_SYMBOL(do_non_secure_storage_access);
853
do_secure_storage_violation(struct pt_regs * regs)854 void do_secure_storage_violation(struct pt_regs *regs)
855 {
856 /*
857 * Either KVM messed up the secure guest mapping or the same
858 * page is mapped into multiple secure guests.
859 *
860 * This exception is only triggered when a guest 2 is running
861 * and can therefore never occur in kernel context.
862 */
863 printk_ratelimited(KERN_WARNING
864 "Secure storage violation in task: %s, pid %d\n",
865 current->comm, current->pid);
866 send_sig(SIGSEGV, current, 0);
867 }
868
869 #endif /* CONFIG_PGSTE */
870