1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * clock_am33xx.c
4 *
5 * clocks for AM33XX based boards
6 *
7 * Copyright (C) 2013, Texas Instruments, Incorporated - http://www.ti.com/
8 */
9
10 #include <common.h>
11 #include <asm/arch/cpu.h>
12 #include <asm/arch/sys_proto.h>
13 #include <asm/arch/clock.h>
14 #include <asm/arch/hardware.h>
15 #include <asm/io.h>
16
17 #define OSC (V_OSCK/1000000)
18
19 struct cm_perpll *const cmper = (struct cm_perpll *)CM_PER;
20 struct cm_wkuppll *const cmwkup = (struct cm_wkuppll *)CM_WKUP;
21 struct cm_dpll *const cmdpll = (struct cm_dpll *)CM_DPLL;
22 struct cm_rtc *const cmrtc = (struct cm_rtc *)CM_RTC;
23
24 const struct dpll_regs dpll_mpu_regs = {
25 .cm_clkmode_dpll = CM_WKUP + 0x88,
26 .cm_idlest_dpll = CM_WKUP + 0x20,
27 .cm_clksel_dpll = CM_WKUP + 0x2C,
28 .cm_div_m2_dpll = CM_WKUP + 0xA8,
29 };
30
31 const struct dpll_regs dpll_core_regs = {
32 .cm_clkmode_dpll = CM_WKUP + 0x90,
33 .cm_idlest_dpll = CM_WKUP + 0x5C,
34 .cm_clksel_dpll = CM_WKUP + 0x68,
35 .cm_div_m4_dpll = CM_WKUP + 0x80,
36 .cm_div_m5_dpll = CM_WKUP + 0x84,
37 .cm_div_m6_dpll = CM_WKUP + 0xD8,
38 };
39
40 const struct dpll_regs dpll_per_regs = {
41 .cm_clkmode_dpll = CM_WKUP + 0x8C,
42 .cm_idlest_dpll = CM_WKUP + 0x70,
43 .cm_clksel_dpll = CM_WKUP + 0x9C,
44 .cm_div_m2_dpll = CM_WKUP + 0xAC,
45 };
46
47 const struct dpll_regs dpll_ddr_regs = {
48 .cm_clkmode_dpll = CM_WKUP + 0x94,
49 .cm_idlest_dpll = CM_WKUP + 0x34,
50 .cm_clksel_dpll = CM_WKUP + 0x40,
51 .cm_div_m2_dpll = CM_WKUP + 0xA0,
52 };
53
54 const struct dpll_regs dpll_disp_regs = {
55 .cm_clkmode_dpll = CM_WKUP + 0x98,
56 .cm_idlest_dpll = CM_WKUP + 0x48,
57 .cm_clksel_dpll = CM_WKUP + 0x54,
58 .cm_div_m2_dpll = CM_WKUP + 0xA4,
59 };
60
61 struct dpll_params dpll_mpu_opp100 = {
62 CONFIG_SYS_MPUCLK, OSC-1, 1, -1, -1, -1, -1};
63 const struct dpll_params dpll_core_opp100 = {
64 1000, OSC-1, -1, -1, 10, 8, 4};
65
66 const struct dpll_params dpll_mpu_opp[NUM_CRYSTAL_FREQ][NUM_OPPS] = {
67 { /* 19.2 MHz */
68 {125, 3, 2, -1, -1, -1, -1}, /* OPP 50 */
69 {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */
70 {125, 3, 1, -1, -1, -1, -1}, /* OPP 100 */
71 {150, 3, 1, -1, -1, -1, -1}, /* OPP 120 */
72 {125, 2, 1, -1, -1, -1, -1}, /* OPP TB */
73 {625, 11, 1, -1, -1, -1, -1} /* OPP NT */
74 },
75 { /* 24 MHz */
76 {25, 0, 2, -1, -1, -1, -1}, /* OPP 50 */
77 {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */
78 {25, 0, 1, -1, -1, -1, -1}, /* OPP 100 */
79 {30, 0, 1, -1, -1, -1, -1}, /* OPP 120 */
80 {100, 2, 1, -1, -1, -1, -1}, /* OPP TB */
81 {125, 2, 1, -1, -1, -1, -1} /* OPP NT */
82 },
83 { /* 25 MHz */
84 {24, 0, 2, -1, -1, -1, -1}, /* OPP 50 */
85 {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */
86 {24, 0, 1, -1, -1, -1, -1}, /* OPP 100 */
87 {144, 4, 1, -1, -1, -1, -1}, /* OPP 120 */
88 {32, 0, 1, -1, -1, -1, -1}, /* OPP TB */
89 {40, 0, 1, -1, -1, -1, -1} /* OPP NT */
90 },
91 { /* 26 MHz */
92 {300, 12, 2, -1, -1, -1, -1}, /* OPP 50 */
93 {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */
94 {300, 12, 1, -1, -1, -1, -1}, /* OPP 100 */
95 {360, 12, 1, -1, -1, -1, -1}, /* OPP 120 */
96 {400, 12, 1, -1, -1, -1, -1}, /* OPP TB */
97 {500, 12, 1, -1, -1, -1, -1} /* OPP NT */
98 },
99 };
100
101 const struct dpll_params dpll_core_1000MHz[NUM_CRYSTAL_FREQ] = {
102 {625, 11, -1, -1, 10, 8, 4}, /* 19.2 MHz */
103 {125, 2, -1, -1, 10, 8, 4}, /* 24 MHz */
104 {40, 0, -1, -1, 10, 8, 4}, /* 25 MHz */
105 {500, 12, -1, -1, 10, 8, 4} /* 26 MHz */
106 };
107
108 const struct dpll_params dpll_per_192MHz[NUM_CRYSTAL_FREQ] = {
109 {400, 7, 5, -1, -1, -1, -1}, /* 19.2 MHz */
110 {400, 9, 5, -1, -1, -1, -1}, /* 24 MHz */
111 {384, 9, 5, -1, -1, -1, -1}, /* 25 MHz */
112 {480, 12, 5, -1, -1, -1, -1} /* 26 MHz */
113 };
114
115 const struct dpll_params dpll_ddr3_303MHz[NUM_CRYSTAL_FREQ] = {
116 {505, 15, 2, -1, -1, -1, -1}, /*19.2*/
117 {101, 3, 2, -1, -1, -1, -1}, /* 24 MHz */
118 {303, 24, 1, -1, -1, -1, -1}, /* 25 MHz */
119 {303, 12, 2, -1, -1, -1, -1} /* 26 MHz */
120 };
121
122 const struct dpll_params dpll_ddr3_400MHz[NUM_CRYSTAL_FREQ] = {
123 {125, 5, 1, -1, -1, -1, -1}, /*19.2*/
124 {50, 2, 1, -1, -1, -1, -1}, /* 24 MHz */
125 {16, 0, 1, -1, -1, -1, -1}, /* 25 MHz */
126 {200, 12, 1, -1, -1, -1, -1} /* 26 MHz */
127 };
128
129 const struct dpll_params dpll_ddr2_266MHz[NUM_CRYSTAL_FREQ] = {
130 {665, 47, 1, -1, -1, -1, -1}, /*19.2*/
131 {133, 11, 1, -1, -1, -1, -1}, /* 24 MHz */
132 {266, 24, 1, -1, -1, -1, -1}, /* 25 MHz */
133 {133, 12, 1, -1, -1, -1, -1} /* 26 MHz */
134 };
135
get_dpll_mpu_params(void)136 __weak const struct dpll_params *get_dpll_mpu_params(void)
137 {
138 return &dpll_mpu_opp100;
139 }
140
get_dpll_core_params(void)141 const struct dpll_params *get_dpll_core_params(void)
142 {
143 int ind = get_sys_clk_index();
144
145 return &dpll_core_1000MHz[ind];
146 }
147
get_dpll_per_params(void)148 const struct dpll_params *get_dpll_per_params(void)
149 {
150 int ind = get_sys_clk_index();
151
152 return &dpll_per_192MHz[ind];
153 }
154
setup_clocks_for_console(void)155 void setup_clocks_for_console(void)
156 {
157 clrsetbits_le32(&cmwkup->wkclkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
158 CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
159 CD_CLKCTRL_CLKTRCTRL_SHIFT);
160
161 clrsetbits_le32(&cmper->l4hsclkstctrl, CD_CLKCTRL_CLKTRCTRL_MASK,
162 CD_CLKCTRL_CLKTRCTRL_SW_WKUP <<
163 CD_CLKCTRL_CLKTRCTRL_SHIFT);
164
165 clrsetbits_le32(&cmwkup->wkup_uart0ctrl,
166 MODULE_CLKCTRL_MODULEMODE_MASK,
167 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
168 MODULE_CLKCTRL_MODULEMODE_SHIFT);
169 clrsetbits_le32(&cmper->uart1clkctrl,
170 MODULE_CLKCTRL_MODULEMODE_MASK,
171 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
172 MODULE_CLKCTRL_MODULEMODE_SHIFT);
173 clrsetbits_le32(&cmper->uart2clkctrl,
174 MODULE_CLKCTRL_MODULEMODE_MASK,
175 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
176 MODULE_CLKCTRL_MODULEMODE_SHIFT);
177 clrsetbits_le32(&cmper->uart3clkctrl,
178 MODULE_CLKCTRL_MODULEMODE_MASK,
179 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
180 MODULE_CLKCTRL_MODULEMODE_SHIFT);
181 clrsetbits_le32(&cmper->uart4clkctrl,
182 MODULE_CLKCTRL_MODULEMODE_MASK,
183 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
184 MODULE_CLKCTRL_MODULEMODE_SHIFT);
185 clrsetbits_le32(&cmper->uart5clkctrl,
186 MODULE_CLKCTRL_MODULEMODE_MASK,
187 MODULE_CLKCTRL_MODULEMODE_SW_EXPLICIT_EN <<
188 MODULE_CLKCTRL_MODULEMODE_SHIFT);
189 }
190
enable_basic_clocks(void)191 void enable_basic_clocks(void)
192 {
193 u32 *const clk_domains[] = {
194 &cmper->l3clkstctrl,
195 &cmper->l4fwclkstctrl,
196 &cmper->l3sclkstctrl,
197 &cmper->l4lsclkstctrl,
198 &cmwkup->wkclkstctrl,
199 &cmper->emiffwclkctrl,
200 &cmrtc->clkstctrl,
201 0
202 };
203
204 u32 *const clk_modules_explicit_en[] = {
205 &cmper->l3clkctrl,
206 &cmper->l4lsclkctrl,
207 &cmper->l4fwclkctrl,
208 &cmwkup->wkl4wkclkctrl,
209 &cmper->l3instrclkctrl,
210 &cmper->l4hsclkctrl,
211 &cmwkup->wkgpio0clkctrl,
212 &cmwkup->wkctrlclkctrl,
213 &cmper->timer2clkctrl,
214 &cmper->gpmcclkctrl,
215 &cmper->elmclkctrl,
216 &cmper->mmc0clkctrl,
217 &cmper->mmc1clkctrl,
218 &cmwkup->wkup_i2c0ctrl,
219 &cmper->gpio1clkctrl,
220 &cmper->gpio2clkctrl,
221 &cmper->gpio3clkctrl,
222 &cmper->i2c1clkctrl,
223 &cmper->cpgmac0clkctrl,
224 &cmper->spi0clkctrl,
225 &cmrtc->rtcclkctrl,
226 &cmper->usb0clkctrl,
227 &cmper->emiffwclkctrl,
228 &cmper->emifclkctrl,
229 #if CONFIG_IS_ENABLED(AM335X_LCD) && !CONFIG_IS_ENABLED(DM_VIDEO)
230 &cmper->lcdclkctrl,
231 &cmper->lcdcclkstctrl,
232 #endif
233 0
234 };
235
236 do_enable_clocks(clk_domains, clk_modules_explicit_en, 1);
237
238 /* Select the Master osc 24 MHZ as Timer2 clock source */
239 writel(0x1, &cmdpll->clktimer2clk);
240 }
241
242 /*
243 * Enable Spread Spectrum for the MPU by calculating the required
244 * values and setting the registers accordingly.
245 * @param permille The spreading in permille (10th of a percent)
246 */
set_mpu_spreadspectrum(int permille)247 void set_mpu_spreadspectrum(int permille)
248 {
249 u32 multiplier_m;
250 u32 predivider_n;
251 u32 cm_clksel_dpll_mpu;
252 u32 cm_clkmode_dpll_mpu;
253 u32 ref_clock;
254 u32 pll_bandwidth;
255 u32 mod_freq_divider;
256 u32 exponent;
257 u32 mantissa;
258 u32 delta_m_step;
259
260 printf("Enabling Spread Spectrum of %d permille for MPU\n",
261 permille);
262
263 /* Read PLL parameter m and n */
264 cm_clksel_dpll_mpu = readl(&cmwkup->clkseldpllmpu);
265 multiplier_m = (cm_clksel_dpll_mpu >> 8) & 0x3FF;
266 predivider_n = cm_clksel_dpll_mpu & 0x7F;
267
268 /*
269 * Calculate reference clock (clock after pre-divider),
270 * its max. PLL bandwidth,
271 * and resulting mod_freq_divider
272 */
273 ref_clock = V_OSCK / (predivider_n + 1);
274 pll_bandwidth = ref_clock / 70;
275 mod_freq_divider = ref_clock / (4 * pll_bandwidth);
276
277 /* Calculate Mantissa/Exponent */
278 exponent = 0;
279 mantissa = mod_freq_divider;
280 while ((mantissa > 127) && (exponent < 7)) {
281 exponent++;
282 mantissa /= 2;
283 }
284 if (mantissa > 127)
285 mantissa = 127;
286
287 mod_freq_divider = mantissa << exponent;
288
289 /*
290 * Calculate Modulation steps
291 * As we use Downspread only, the spread is twice the value of
292 * permille, so Div2!
293 * As it takes the value in percent, divide by ten!
294 */
295 delta_m_step = ((u32)((multiplier_m * permille) / 10 / 2)) << 18;
296 delta_m_step /= 100;
297 delta_m_step /= mod_freq_divider;
298 if (delta_m_step > 0xFFFFF)
299 delta_m_step = 0xFFFFF;
300
301 /* Setup Spread Spectrum */
302 writel(delta_m_step, &cmwkup->sscdeltamstepdllmpu);
303 writel((exponent << 8) | mantissa, &cmwkup->sscmodfreqdivdpllmpu);
304 cm_clkmode_dpll_mpu = readl(&cmwkup->clkmoddpllmpu);
305 /* clear all SSC flags */
306 cm_clkmode_dpll_mpu &= ~(0xF << CM_CLKMODE_DPLL_SSC_EN_SHIFT);
307 /* enable SSC with Downspread only */
308 cm_clkmode_dpll_mpu |= CM_CLKMODE_DPLL_SSC_EN_MASK |
309 CM_CLKMODE_DPLL_SSC_DOWNSPREAD_MASK;
310 writel(cm_clkmode_dpll_mpu, &cmwkup->clkmoddpllmpu);
311 while (!(readl(&cmwkup->clkmoddpllmpu) & 0x2000))
312 ;
313 }
314