1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/init.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-map-ops.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
31 #include <linux/hugetlb.h>
32 #include <linux/acpi_iort.h>
33 #include <linux/kmemleak.h>
34
35 #include <asm/boot.h>
36 #include <asm/fixmap.h>
37 #include <asm/kasan.h>
38 #include <asm/kernel-pgtable.h>
39 #include <asm/kvm_host.h>
40 #include <asm/memory.h>
41 #include <asm/numa.h>
42 #include <asm/sections.h>
43 #include <asm/setup.h>
44 #include <linux/sizes.h>
45 #include <asm/tlb.h>
46 #include <asm/alternative.h>
47 #include <asm/xen/swiotlb-xen.h>
48
49 /*
50 * We need to be able to catch inadvertent references to memstart_addr
51 * that occur (potentially in generic code) before arm64_memblock_init()
52 * executes, which assigns it its actual value. So use a default value
53 * that cannot be mistaken for a real physical address.
54 */
55 s64 memstart_addr __ro_after_init = -1;
56 EXPORT_SYMBOL(memstart_addr);
57
58 /*
59 * If the corresponding config options are enabled, we create both ZONE_DMA
60 * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
61 * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
62 * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
63 * otherwise it is empty.
64 */
65 phys_addr_t arm64_dma_phys_limit __ro_after_init;
66
67 #ifdef CONFIG_KEXEC_CORE
68 /*
69 * reserve_crashkernel() - reserves memory for crash kernel
70 *
71 * This function reserves memory area given in "crashkernel=" kernel command
72 * line parameter. The memory reserved is used by dump capture kernel when
73 * primary kernel is crashing.
74 */
reserve_crashkernel(void)75 static void __init reserve_crashkernel(void)
76 {
77 unsigned long long crash_base, crash_size;
78 unsigned long long crash_max = arm64_dma_phys_limit;
79 int ret;
80
81 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
82 &crash_size, &crash_base);
83 /* no crashkernel= or invalid value specified */
84 if (ret || !crash_size)
85 return;
86
87 crash_size = PAGE_ALIGN(crash_size);
88
89 /* User specifies base address explicitly. */
90 if (crash_base)
91 crash_max = crash_base + crash_size;
92
93 /* Current arm64 boot protocol requires 2MB alignment */
94 crash_base = memblock_phys_alloc_range(crash_size, SZ_2M,
95 crash_base, crash_max);
96 if (!crash_base) {
97 pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
98 crash_size);
99 return;
100 }
101
102 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
103 crash_base, crash_base + crash_size, crash_size >> 20);
104
105 /*
106 * The crashkernel memory will be removed from the kernel linear
107 * map. Inform kmemleak so that it won't try to access it.
108 */
109 kmemleak_ignore_phys(crash_base);
110 crashk_res.start = crash_base;
111 crashk_res.end = crash_base + crash_size - 1;
112 }
113 #else
reserve_crashkernel(void)114 static void __init reserve_crashkernel(void)
115 {
116 }
117 #endif /* CONFIG_KEXEC_CORE */
118
119 /*
120 * Return the maximum physical address for a zone accessible by the given bits
121 * limit. If DRAM starts above 32-bit, expand the zone to the maximum
122 * available memory, otherwise cap it at 32-bit.
123 */
max_zone_phys(unsigned int zone_bits)124 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
125 {
126 phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
127 phys_addr_t phys_start = memblock_start_of_DRAM();
128
129 if (phys_start > U32_MAX)
130 zone_mask = PHYS_ADDR_MAX;
131 else if (phys_start > zone_mask)
132 zone_mask = U32_MAX;
133
134 return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
135 }
136
zone_sizes_init(unsigned long min,unsigned long max)137 static void __init zone_sizes_init(unsigned long min, unsigned long max)
138 {
139 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
140 unsigned int __maybe_unused acpi_zone_dma_bits;
141 unsigned int __maybe_unused dt_zone_dma_bits;
142 phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
143
144 #ifdef CONFIG_ZONE_DMA
145 acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
146 dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
147 zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
148 arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
149 max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
150 #endif
151 #ifdef CONFIG_ZONE_DMA32
152 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
153 if (!arm64_dma_phys_limit)
154 arm64_dma_phys_limit = dma32_phys_limit;
155 #endif
156 if (!arm64_dma_phys_limit)
157 arm64_dma_phys_limit = PHYS_MASK + 1;
158 max_zone_pfns[ZONE_NORMAL] = max;
159
160 free_area_init(max_zone_pfns);
161 }
162
pfn_is_map_memory(unsigned long pfn)163 int pfn_is_map_memory(unsigned long pfn)
164 {
165 phys_addr_t addr = PFN_PHYS(pfn);
166
167 /* avoid false positives for bogus PFNs, see comment in pfn_valid() */
168 if (PHYS_PFN(addr) != pfn)
169 return 0;
170
171 return memblock_is_map_memory(addr);
172 }
173 EXPORT_SYMBOL(pfn_is_map_memory);
174
175 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
176
177 /*
178 * Limit the memory size that was specified via FDT.
179 */
early_mem(char * p)180 static int __init early_mem(char *p)
181 {
182 if (!p)
183 return 1;
184
185 memory_limit = memparse(p, &p) & PAGE_MASK;
186 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
187
188 return 0;
189 }
190 early_param("mem", early_mem);
191
arm64_memblock_init(void)192 void __init arm64_memblock_init(void)
193 {
194 s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
195
196 /*
197 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
198 * be limited in their ability to support a linear map that exceeds 51
199 * bits of VA space, depending on the placement of the ID map. Given
200 * that the placement of the ID map may be randomized, let's simply
201 * limit the kernel's linear map to 51 bits as well if we detect this
202 * configuration.
203 */
204 if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
205 is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
206 pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
207 linear_region_size = min_t(u64, linear_region_size, BIT(51));
208 }
209
210 /* Remove memory above our supported physical address size */
211 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
212
213 /*
214 * Select a suitable value for the base of physical memory.
215 */
216 memstart_addr = round_down(memblock_start_of_DRAM(),
217 ARM64_MEMSTART_ALIGN);
218
219 if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
220 pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
221
222 /*
223 * Remove the memory that we will not be able to cover with the
224 * linear mapping. Take care not to clip the kernel which may be
225 * high in memory.
226 */
227 memblock_remove(max_t(u64, memstart_addr + linear_region_size,
228 __pa_symbol(_end)), ULLONG_MAX);
229 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
230 /* ensure that memstart_addr remains sufficiently aligned */
231 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
232 ARM64_MEMSTART_ALIGN);
233 memblock_remove(0, memstart_addr);
234 }
235
236 /*
237 * If we are running with a 52-bit kernel VA config on a system that
238 * does not support it, we have to place the available physical
239 * memory in the 48-bit addressable part of the linear region, i.e.,
240 * we have to move it upward. Since memstart_addr represents the
241 * physical address of PAGE_OFFSET, we have to *subtract* from it.
242 */
243 if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
244 memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
245
246 /*
247 * Apply the memory limit if it was set. Since the kernel may be loaded
248 * high up in memory, add back the kernel region that must be accessible
249 * via the linear mapping.
250 */
251 if (memory_limit != PHYS_ADDR_MAX) {
252 memblock_mem_limit_remove_map(memory_limit);
253 memblock_add(__pa_symbol(_text), (u64)(_end - _text));
254 }
255
256 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
257 /*
258 * Add back the memory we just removed if it results in the
259 * initrd to become inaccessible via the linear mapping.
260 * Otherwise, this is a no-op
261 */
262 u64 base = phys_initrd_start & PAGE_MASK;
263 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
264
265 /*
266 * We can only add back the initrd memory if we don't end up
267 * with more memory than we can address via the linear mapping.
268 * It is up to the bootloader to position the kernel and the
269 * initrd reasonably close to each other (i.e., within 32 GB of
270 * each other) so that all granule/#levels combinations can
271 * always access both.
272 */
273 if (WARN(base < memblock_start_of_DRAM() ||
274 base + size > memblock_start_of_DRAM() +
275 linear_region_size,
276 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
277 phys_initrd_size = 0;
278 } else {
279 memblock_remove(base, size); /* clear MEMBLOCK_ flags */
280 memblock_add(base, size);
281 memblock_reserve(base, size);
282 }
283 }
284
285 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
286 extern u16 memstart_offset_seed;
287 u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
288 int parange = cpuid_feature_extract_unsigned_field(
289 mmfr0, ID_AA64MMFR0_PARANGE_SHIFT);
290 s64 range = linear_region_size -
291 BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
292
293 /*
294 * If the size of the linear region exceeds, by a sufficient
295 * margin, the size of the region that the physical memory can
296 * span, randomize the linear region as well.
297 */
298 if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
299 range /= ARM64_MEMSTART_ALIGN;
300 memstart_addr -= ARM64_MEMSTART_ALIGN *
301 ((range * memstart_offset_seed) >> 16);
302 }
303 }
304
305 /*
306 * Register the kernel text, kernel data, initrd, and initial
307 * pagetables with memblock.
308 */
309 memblock_reserve(__pa_symbol(_stext), _end - _stext);
310 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
311 /* the generic initrd code expects virtual addresses */
312 initrd_start = __phys_to_virt(phys_initrd_start);
313 initrd_end = initrd_start + phys_initrd_size;
314 }
315
316 early_init_fdt_scan_reserved_mem();
317
318 high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
319 }
320
bootmem_init(void)321 void __init bootmem_init(void)
322 {
323 unsigned long min, max;
324
325 min = PFN_UP(memblock_start_of_DRAM());
326 max = PFN_DOWN(memblock_end_of_DRAM());
327
328 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
329
330 max_pfn = max_low_pfn = max;
331 min_low_pfn = min;
332
333 arch_numa_init();
334
335 /*
336 * must be done after arch_numa_init() which calls numa_init() to
337 * initialize node_online_map that gets used in hugetlb_cma_reserve()
338 * while allocating required CMA size across online nodes.
339 */
340 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
341 arm64_hugetlb_cma_reserve();
342 #endif
343
344 dma_pernuma_cma_reserve();
345
346 kvm_hyp_reserve();
347
348 /*
349 * sparse_init() tries to allocate memory from memblock, so must be
350 * done after the fixed reservations
351 */
352 sparse_init();
353 zone_sizes_init(min, max);
354
355 /*
356 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
357 */
358 dma_contiguous_reserve(arm64_dma_phys_limit);
359
360 /*
361 * request_standard_resources() depends on crashkernel's memory being
362 * reserved, so do it here.
363 */
364 reserve_crashkernel();
365
366 memblock_dump_all();
367 }
368
369 /*
370 * mem_init() marks the free areas in the mem_map and tells us how much memory
371 * is free. This is done after various parts of the system have claimed their
372 * memory after the kernel image.
373 */
mem_init(void)374 void __init mem_init(void)
375 {
376 if (swiotlb_force == SWIOTLB_FORCE ||
377 max_pfn > PFN_DOWN(arm64_dma_phys_limit))
378 swiotlb_init(1);
379 else if (!xen_swiotlb_detect())
380 swiotlb_force = SWIOTLB_NO_FORCE;
381
382 /* this will put all unused low memory onto the freelists */
383 memblock_free_all();
384
385 /*
386 * Check boundaries twice: Some fundamental inconsistencies can be
387 * detected at build time already.
388 */
389 #ifdef CONFIG_COMPAT
390 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
391 #endif
392
393 /*
394 * Selected page table levels should match when derived from
395 * scratch using the virtual address range and page size.
396 */
397 BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
398 CONFIG_PGTABLE_LEVELS);
399
400 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
401 extern int sysctl_overcommit_memory;
402 /*
403 * On a machine this small we won't get anywhere without
404 * overcommit, so turn it on by default.
405 */
406 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
407 }
408 }
409
free_initmem(void)410 void free_initmem(void)
411 {
412 free_reserved_area(lm_alias(__init_begin),
413 lm_alias(__init_end),
414 POISON_FREE_INITMEM, "unused kernel");
415 /*
416 * Unmap the __init region but leave the VM area in place. This
417 * prevents the region from being reused for kernel modules, which
418 * is not supported by kallsyms.
419 */
420 vunmap_range((u64)__init_begin, (u64)__init_end);
421 }
422
dump_mem_limit(void)423 void dump_mem_limit(void)
424 {
425 if (memory_limit != PHYS_ADDR_MAX) {
426 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
427 } else {
428 pr_emerg("Memory Limit: none\n");
429 }
430 }
431