1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Re-map IO memory to kernel address space so that we can access it.
4 * This is needed for high PCI addresses that aren't mapped in the
5 * 640k-1MB IO memory area on PC's
6 *
7 * (C) Copyright 1995 1996 Linus Torvalds
8 */
9
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/ioport.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mmiotrace.h>
17 #include <linux/cc_platform.h>
18 #include <linux/efi.h>
19 #include <linux/pgtable.h>
20
21 #include <asm/set_memory.h>
22 #include <asm/e820/api.h>
23 #include <asm/efi.h>
24 #include <asm/fixmap.h>
25 #include <asm/tlbflush.h>
26 #include <asm/pgalloc.h>
27 #include <asm/memtype.h>
28 #include <asm/setup.h>
29
30 #include "physaddr.h"
31
32 /*
33 * Descriptor controlling ioremap() behavior.
34 */
35 struct ioremap_desc {
36 unsigned int flags;
37 };
38
39 /*
40 * Fix up the linear direct mapping of the kernel to avoid cache attribute
41 * conflicts.
42 */
ioremap_change_attr(unsigned long vaddr,unsigned long size,enum page_cache_mode pcm)43 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
44 enum page_cache_mode pcm)
45 {
46 unsigned long nrpages = size >> PAGE_SHIFT;
47 int err;
48
49 switch (pcm) {
50 case _PAGE_CACHE_MODE_UC:
51 default:
52 err = _set_memory_uc(vaddr, nrpages);
53 break;
54 case _PAGE_CACHE_MODE_WC:
55 err = _set_memory_wc(vaddr, nrpages);
56 break;
57 case _PAGE_CACHE_MODE_WT:
58 err = _set_memory_wt(vaddr, nrpages);
59 break;
60 case _PAGE_CACHE_MODE_WB:
61 err = _set_memory_wb(vaddr, nrpages);
62 break;
63 }
64
65 return err;
66 }
67
68 /* Does the range (or a subset of) contain normal RAM? */
__ioremap_check_ram(struct resource * res)69 static unsigned int __ioremap_check_ram(struct resource *res)
70 {
71 unsigned long start_pfn, stop_pfn;
72 unsigned long i;
73
74 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
75 return 0;
76
77 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
78 stop_pfn = (res->end + 1) >> PAGE_SHIFT;
79 if (stop_pfn > start_pfn) {
80 for (i = 0; i < (stop_pfn - start_pfn); ++i)
81 if (pfn_valid(start_pfn + i) &&
82 !PageReserved(pfn_to_page(start_pfn + i)))
83 return IORES_MAP_SYSTEM_RAM;
84 }
85
86 return 0;
87 }
88
89 /*
90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
91 * there the whole memory is already encrypted.
92 */
__ioremap_check_encrypted(struct resource * res)93 static unsigned int __ioremap_check_encrypted(struct resource *res)
94 {
95 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
96 return 0;
97
98 switch (res->desc) {
99 case IORES_DESC_NONE:
100 case IORES_DESC_RESERVED:
101 break;
102 default:
103 return IORES_MAP_ENCRYPTED;
104 }
105
106 return 0;
107 }
108
109 /*
110 * The EFI runtime services data area is not covered by walk_mem_res(), but must
111 * be mapped encrypted when SEV is active.
112 */
__ioremap_check_other(resource_size_t addr,struct ioremap_desc * desc)113 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
114 {
115 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
116 return;
117
118 if (!IS_ENABLED(CONFIG_EFI))
119 return;
120
121 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
122 (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
123 efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
124 desc->flags |= IORES_MAP_ENCRYPTED;
125 }
126
__ioremap_collect_map_flags(struct resource * res,void * arg)127 static int __ioremap_collect_map_flags(struct resource *res, void *arg)
128 {
129 struct ioremap_desc *desc = arg;
130
131 if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
132 desc->flags |= __ioremap_check_ram(res);
133
134 if (!(desc->flags & IORES_MAP_ENCRYPTED))
135 desc->flags |= __ioremap_check_encrypted(res);
136
137 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
138 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
139 }
140
141 /*
142 * To avoid multiple resource walks, this function walks resources marked as
143 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
144 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
145 *
146 * After that, deal with misc other ranges in __ioremap_check_other() which do
147 * not fall into the above category.
148 */
__ioremap_check_mem(resource_size_t addr,unsigned long size,struct ioremap_desc * desc)149 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
150 struct ioremap_desc *desc)
151 {
152 u64 start, end;
153
154 start = (u64)addr;
155 end = start + size - 1;
156 memset(desc, 0, sizeof(struct ioremap_desc));
157
158 walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
159
160 __ioremap_check_other(addr, desc);
161 }
162
163 /*
164 * Remap an arbitrary physical address space into the kernel virtual
165 * address space. It transparently creates kernel huge I/O mapping when
166 * the physical address is aligned by a huge page size (1GB or 2MB) and
167 * the requested size is at least the huge page size.
168 *
169 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
170 * Therefore, the mapping code falls back to use a smaller page toward 4KB
171 * when a mapping range is covered by non-WB type of MTRRs.
172 *
173 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
174 * have to convert them into an offset in a page-aligned mapping, but the
175 * caller shouldn't need to know that small detail.
176 */
177 static void __iomem *
__ioremap_caller(resource_size_t phys_addr,unsigned long size,enum page_cache_mode pcm,void * caller,bool encrypted)178 __ioremap_caller(resource_size_t phys_addr, unsigned long size,
179 enum page_cache_mode pcm, void *caller, bool encrypted)
180 {
181 unsigned long offset, vaddr;
182 resource_size_t last_addr;
183 const resource_size_t unaligned_phys_addr = phys_addr;
184 const unsigned long unaligned_size = size;
185 struct ioremap_desc io_desc;
186 struct vm_struct *area;
187 enum page_cache_mode new_pcm;
188 pgprot_t prot;
189 int retval;
190 void __iomem *ret_addr;
191
192 /* Don't allow wraparound or zero size */
193 last_addr = phys_addr + size - 1;
194 if (!size || last_addr < phys_addr)
195 return NULL;
196
197 if (!phys_addr_valid(phys_addr)) {
198 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
199 (unsigned long long)phys_addr);
200 WARN_ON_ONCE(1);
201 return NULL;
202 }
203
204 __ioremap_check_mem(phys_addr, size, &io_desc);
205
206 /*
207 * Don't allow anybody to remap normal RAM that we're using..
208 */
209 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
210 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
211 &phys_addr, &last_addr);
212 return NULL;
213 }
214
215 /*
216 * Mappings have to be page-aligned
217 */
218 offset = phys_addr & ~PAGE_MASK;
219 phys_addr &= PHYSICAL_PAGE_MASK;
220 size = PAGE_ALIGN(last_addr+1) - phys_addr;
221
222 retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
223 pcm, &new_pcm);
224 if (retval) {
225 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
226 return NULL;
227 }
228
229 if (pcm != new_pcm) {
230 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
231 printk(KERN_ERR
232 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
233 (unsigned long long)phys_addr,
234 (unsigned long long)(phys_addr + size),
235 pcm, new_pcm);
236 goto err_free_memtype;
237 }
238 pcm = new_pcm;
239 }
240
241 /*
242 * If the page being mapped is in memory and SEV is active then
243 * make sure the memory encryption attribute is enabled in the
244 * resulting mapping.
245 */
246 prot = PAGE_KERNEL_IO;
247 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
248 prot = pgprot_encrypted(prot);
249
250 switch (pcm) {
251 case _PAGE_CACHE_MODE_UC:
252 default:
253 prot = __pgprot(pgprot_val(prot) |
254 cachemode2protval(_PAGE_CACHE_MODE_UC));
255 break;
256 case _PAGE_CACHE_MODE_UC_MINUS:
257 prot = __pgprot(pgprot_val(prot) |
258 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
259 break;
260 case _PAGE_CACHE_MODE_WC:
261 prot = __pgprot(pgprot_val(prot) |
262 cachemode2protval(_PAGE_CACHE_MODE_WC));
263 break;
264 case _PAGE_CACHE_MODE_WT:
265 prot = __pgprot(pgprot_val(prot) |
266 cachemode2protval(_PAGE_CACHE_MODE_WT));
267 break;
268 case _PAGE_CACHE_MODE_WB:
269 break;
270 }
271
272 /*
273 * Ok, go for it..
274 */
275 area = get_vm_area_caller(size, VM_IOREMAP, caller);
276 if (!area)
277 goto err_free_memtype;
278 area->phys_addr = phys_addr;
279 vaddr = (unsigned long) area->addr;
280
281 if (memtype_kernel_map_sync(phys_addr, size, pcm))
282 goto err_free_area;
283
284 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
285 goto err_free_area;
286
287 ret_addr = (void __iomem *) (vaddr + offset);
288 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
289
290 /*
291 * Check if the request spans more than any BAR in the iomem resource
292 * tree.
293 */
294 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
295 pr_warn("caller %pS mapping multiple BARs\n", caller);
296
297 return ret_addr;
298 err_free_area:
299 free_vm_area(area);
300 err_free_memtype:
301 memtype_free(phys_addr, phys_addr + size);
302 return NULL;
303 }
304
305 /**
306 * ioremap - map bus memory into CPU space
307 * @phys_addr: bus address of the memory
308 * @size: size of the resource to map
309 *
310 * ioremap performs a platform specific sequence of operations to
311 * make bus memory CPU accessible via the readb/readw/readl/writeb/
312 * writew/writel functions and the other mmio helpers. The returned
313 * address is not guaranteed to be usable directly as a virtual
314 * address.
315 *
316 * This version of ioremap ensures that the memory is marked uncachable
317 * on the CPU as well as honouring existing caching rules from things like
318 * the PCI bus. Note that there are other caches and buffers on many
319 * busses. In particular driver authors should read up on PCI writes
320 *
321 * It's useful if some control registers are in such an area and
322 * write combining or read caching is not desirable:
323 *
324 * Must be freed with iounmap.
325 */
ioremap(resource_size_t phys_addr,unsigned long size)326 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
327 {
328 /*
329 * Ideally, this should be:
330 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
331 *
332 * Till we fix all X drivers to use ioremap_wc(), we will use
333 * UC MINUS. Drivers that are certain they need or can already
334 * be converted over to strong UC can use ioremap_uc().
335 */
336 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
337
338 return __ioremap_caller(phys_addr, size, pcm,
339 __builtin_return_address(0), false);
340 }
341 EXPORT_SYMBOL(ioremap);
342
343 /**
344 * ioremap_uc - map bus memory into CPU space as strongly uncachable
345 * @phys_addr: bus address of the memory
346 * @size: size of the resource to map
347 *
348 * ioremap_uc performs a platform specific sequence of operations to
349 * make bus memory CPU accessible via the readb/readw/readl/writeb/
350 * writew/writel functions and the other mmio helpers. The returned
351 * address is not guaranteed to be usable directly as a virtual
352 * address.
353 *
354 * This version of ioremap ensures that the memory is marked with a strong
355 * preference as completely uncachable on the CPU when possible. For non-PAT
356 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
357 * systems this will set the PAT entry for the pages as strong UC. This call
358 * will honor existing caching rules from things like the PCI bus. Note that
359 * there are other caches and buffers on many busses. In particular driver
360 * authors should read up on PCI writes.
361 *
362 * It's useful if some control registers are in such an area and
363 * write combining or read caching is not desirable:
364 *
365 * Must be freed with iounmap.
366 */
ioremap_uc(resource_size_t phys_addr,unsigned long size)367 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
368 {
369 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
370
371 return __ioremap_caller(phys_addr, size, pcm,
372 __builtin_return_address(0), false);
373 }
374 EXPORT_SYMBOL_GPL(ioremap_uc);
375
376 /**
377 * ioremap_wc - map memory into CPU space write combined
378 * @phys_addr: bus address of the memory
379 * @size: size of the resource to map
380 *
381 * This version of ioremap ensures that the memory is marked write combining.
382 * Write combining allows faster writes to some hardware devices.
383 *
384 * Must be freed with iounmap.
385 */
ioremap_wc(resource_size_t phys_addr,unsigned long size)386 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
387 {
388 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
389 __builtin_return_address(0), false);
390 }
391 EXPORT_SYMBOL(ioremap_wc);
392
393 /**
394 * ioremap_wt - map memory into CPU space write through
395 * @phys_addr: bus address of the memory
396 * @size: size of the resource to map
397 *
398 * This version of ioremap ensures that the memory is marked write through.
399 * Write through stores data into memory while keeping the cache up-to-date.
400 *
401 * Must be freed with iounmap.
402 */
ioremap_wt(resource_size_t phys_addr,unsigned long size)403 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
404 {
405 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
406 __builtin_return_address(0), false);
407 }
408 EXPORT_SYMBOL(ioremap_wt);
409
ioremap_encrypted(resource_size_t phys_addr,unsigned long size)410 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
411 {
412 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
413 __builtin_return_address(0), true);
414 }
415 EXPORT_SYMBOL(ioremap_encrypted);
416
ioremap_cache(resource_size_t phys_addr,unsigned long size)417 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
418 {
419 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
420 __builtin_return_address(0), false);
421 }
422 EXPORT_SYMBOL(ioremap_cache);
423
ioremap_prot(resource_size_t phys_addr,unsigned long size,unsigned long prot_val)424 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
425 unsigned long prot_val)
426 {
427 return __ioremap_caller(phys_addr, size,
428 pgprot2cachemode(__pgprot(prot_val)),
429 __builtin_return_address(0), false);
430 }
431 EXPORT_SYMBOL(ioremap_prot);
432
433 /**
434 * iounmap - Free a IO remapping
435 * @addr: virtual address from ioremap_*
436 *
437 * Caller must ensure there is only one unmapping for the same pointer.
438 */
iounmap(volatile void __iomem * addr)439 void iounmap(volatile void __iomem *addr)
440 {
441 struct vm_struct *p, *o;
442
443 if ((void __force *)addr <= high_memory)
444 return;
445
446 /*
447 * The PCI/ISA range special-casing was removed from __ioremap()
448 * so this check, in theory, can be removed. However, there are
449 * cases where iounmap() is called for addresses not obtained via
450 * ioremap() (vga16fb for example). Add a warning so that these
451 * cases can be caught and fixed.
452 */
453 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
454 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
455 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
456 return;
457 }
458
459 mmiotrace_iounmap(addr);
460
461 addr = (volatile void __iomem *)
462 (PAGE_MASK & (unsigned long __force)addr);
463
464 /* Use the vm area unlocked, assuming the caller
465 ensures there isn't another iounmap for the same address
466 in parallel. Reuse of the virtual address is prevented by
467 leaving it in the global lists until we're done with it.
468 cpa takes care of the direct mappings. */
469 p = find_vm_area((void __force *)addr);
470
471 if (!p) {
472 printk(KERN_ERR "iounmap: bad address %p\n", addr);
473 dump_stack();
474 return;
475 }
476
477 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
478
479 /* Finally remove it */
480 o = remove_vm_area((void __force *)addr);
481 BUG_ON(p != o || o == NULL);
482 kfree(p);
483 }
484 EXPORT_SYMBOL(iounmap);
485
486 /*
487 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
488 * access
489 */
xlate_dev_mem_ptr(phys_addr_t phys)490 void *xlate_dev_mem_ptr(phys_addr_t phys)
491 {
492 unsigned long start = phys & PAGE_MASK;
493 unsigned long offset = phys & ~PAGE_MASK;
494 void *vaddr;
495
496 /* memremap() maps if RAM, otherwise falls back to ioremap() */
497 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
498
499 /* Only add the offset on success and return NULL if memremap() failed */
500 if (vaddr)
501 vaddr += offset;
502
503 return vaddr;
504 }
505
unxlate_dev_mem_ptr(phys_addr_t phys,void * addr)506 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
507 {
508 memunmap((void *)((unsigned long)addr & PAGE_MASK));
509 }
510
511 #ifdef CONFIG_AMD_MEM_ENCRYPT
512 /*
513 * Examine the physical address to determine if it is an area of memory
514 * that should be mapped decrypted. If the memory is not part of the
515 * kernel usable area it was accessed and created decrypted, so these
516 * areas should be mapped decrypted. And since the encryption key can
517 * change across reboots, persistent memory should also be mapped
518 * decrypted.
519 *
520 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
521 * only persistent memory should be mapped decrypted.
522 */
memremap_should_map_decrypted(resource_size_t phys_addr,unsigned long size)523 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
524 unsigned long size)
525 {
526 int is_pmem;
527
528 /*
529 * Check if the address is part of a persistent memory region.
530 * This check covers areas added by E820, EFI and ACPI.
531 */
532 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
533 IORES_DESC_PERSISTENT_MEMORY);
534 if (is_pmem != REGION_DISJOINT)
535 return true;
536
537 /*
538 * Check if the non-volatile attribute is set for an EFI
539 * reserved area.
540 */
541 if (efi_enabled(EFI_BOOT)) {
542 switch (efi_mem_type(phys_addr)) {
543 case EFI_RESERVED_TYPE:
544 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
545 return true;
546 break;
547 default:
548 break;
549 }
550 }
551
552 /* Check if the address is outside kernel usable area */
553 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
554 case E820_TYPE_RESERVED:
555 case E820_TYPE_ACPI:
556 case E820_TYPE_NVS:
557 case E820_TYPE_UNUSABLE:
558 /* For SEV, these areas are encrypted */
559 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
560 break;
561 fallthrough;
562
563 case E820_TYPE_PRAM:
564 return true;
565 default:
566 break;
567 }
568
569 return false;
570 }
571
572 /*
573 * Examine the physical address to determine if it is EFI data. Check
574 * it against the boot params structure and EFI tables and memory types.
575 */
memremap_is_efi_data(resource_size_t phys_addr,unsigned long size)576 static bool memremap_is_efi_data(resource_size_t phys_addr,
577 unsigned long size)
578 {
579 u64 paddr;
580
581 /* Check if the address is part of EFI boot/runtime data */
582 if (!efi_enabled(EFI_BOOT))
583 return false;
584
585 paddr = boot_params.efi_info.efi_memmap_hi;
586 paddr <<= 32;
587 paddr |= boot_params.efi_info.efi_memmap;
588 if (phys_addr == paddr)
589 return true;
590
591 paddr = boot_params.efi_info.efi_systab_hi;
592 paddr <<= 32;
593 paddr |= boot_params.efi_info.efi_systab;
594 if (phys_addr == paddr)
595 return true;
596
597 if (efi_is_table_address(phys_addr))
598 return true;
599
600 switch (efi_mem_type(phys_addr)) {
601 case EFI_BOOT_SERVICES_DATA:
602 case EFI_RUNTIME_SERVICES_DATA:
603 return true;
604 default:
605 break;
606 }
607
608 return false;
609 }
610
611 /*
612 * Examine the physical address to determine if it is boot data by checking
613 * it against the boot params setup_data chain.
614 */
memremap_is_setup_data(resource_size_t phys_addr,unsigned long size)615 static bool memremap_is_setup_data(resource_size_t phys_addr,
616 unsigned long size)
617 {
618 struct setup_data *data;
619 u64 paddr, paddr_next;
620
621 paddr = boot_params.hdr.setup_data;
622 while (paddr) {
623 unsigned int len;
624
625 if (phys_addr == paddr)
626 return true;
627
628 data = memremap(paddr, sizeof(*data),
629 MEMREMAP_WB | MEMREMAP_DEC);
630
631 paddr_next = data->next;
632 len = data->len;
633
634 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
635 memunmap(data);
636 return true;
637 }
638
639 if (data->type == SETUP_INDIRECT &&
640 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
641 paddr = ((struct setup_indirect *)data->data)->addr;
642 len = ((struct setup_indirect *)data->data)->len;
643 }
644
645 memunmap(data);
646
647 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
648 return true;
649
650 paddr = paddr_next;
651 }
652
653 return false;
654 }
655
656 /*
657 * Examine the physical address to determine if it is boot data by checking
658 * it against the boot params setup_data chain (early boot version).
659 */
early_memremap_is_setup_data(resource_size_t phys_addr,unsigned long size)660 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
661 unsigned long size)
662 {
663 struct setup_data *data;
664 u64 paddr, paddr_next;
665
666 paddr = boot_params.hdr.setup_data;
667 while (paddr) {
668 unsigned int len;
669
670 if (phys_addr == paddr)
671 return true;
672
673 data = early_memremap_decrypted(paddr, sizeof(*data));
674
675 paddr_next = data->next;
676 len = data->len;
677
678 early_memunmap(data, sizeof(*data));
679
680 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
681 return true;
682
683 paddr = paddr_next;
684 }
685
686 return false;
687 }
688
689 /*
690 * Architecture function to determine if RAM remap is allowed. By default, a
691 * RAM remap will map the data as encrypted. Determine if a RAM remap should
692 * not be done so that the data will be mapped decrypted.
693 */
arch_memremap_can_ram_remap(resource_size_t phys_addr,unsigned long size,unsigned long flags)694 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
695 unsigned long flags)
696 {
697 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
698 return true;
699
700 if (flags & MEMREMAP_ENC)
701 return true;
702
703 if (flags & MEMREMAP_DEC)
704 return false;
705
706 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
707 if (memremap_is_setup_data(phys_addr, size) ||
708 memremap_is_efi_data(phys_addr, size))
709 return false;
710 }
711
712 return !memremap_should_map_decrypted(phys_addr, size);
713 }
714
715 /*
716 * Architecture override of __weak function to adjust the protection attributes
717 * used when remapping memory. By default, early_memremap() will map the data
718 * as encrypted. Determine if an encrypted mapping should not be done and set
719 * the appropriate protection attributes.
720 */
early_memremap_pgprot_adjust(resource_size_t phys_addr,unsigned long size,pgprot_t prot)721 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
722 unsigned long size,
723 pgprot_t prot)
724 {
725 bool encrypted_prot;
726
727 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
728 return prot;
729
730 encrypted_prot = true;
731
732 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
733 if (early_memremap_is_setup_data(phys_addr, size) ||
734 memremap_is_efi_data(phys_addr, size))
735 encrypted_prot = false;
736 }
737
738 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
739 encrypted_prot = false;
740
741 return encrypted_prot ? pgprot_encrypted(prot)
742 : pgprot_decrypted(prot);
743 }
744
phys_mem_access_encrypted(unsigned long phys_addr,unsigned long size)745 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
746 {
747 return arch_memremap_can_ram_remap(phys_addr, size, 0);
748 }
749
750 /* Remap memory with encryption */
early_memremap_encrypted(resource_size_t phys_addr,unsigned long size)751 void __init *early_memremap_encrypted(resource_size_t phys_addr,
752 unsigned long size)
753 {
754 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
755 }
756
757 /*
758 * Remap memory with encryption and write-protected - cannot be called
759 * before pat_init() is called
760 */
early_memremap_encrypted_wp(resource_size_t phys_addr,unsigned long size)761 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
762 unsigned long size)
763 {
764 if (!x86_has_pat_wp())
765 return NULL;
766 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
767 }
768
769 /* Remap memory without encryption */
early_memremap_decrypted(resource_size_t phys_addr,unsigned long size)770 void __init *early_memremap_decrypted(resource_size_t phys_addr,
771 unsigned long size)
772 {
773 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
774 }
775
776 /*
777 * Remap memory without encryption and write-protected - cannot be called
778 * before pat_init() is called
779 */
early_memremap_decrypted_wp(resource_size_t phys_addr,unsigned long size)780 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
781 unsigned long size)
782 {
783 if (!x86_has_pat_wp())
784 return NULL;
785 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
786 }
787 #endif /* CONFIG_AMD_MEM_ENCRYPT */
788
789 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
790
early_ioremap_pmd(unsigned long addr)791 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
792 {
793 /* Don't assume we're using swapper_pg_dir at this point */
794 pgd_t *base = __va(read_cr3_pa());
795 pgd_t *pgd = &base[pgd_index(addr)];
796 p4d_t *p4d = p4d_offset(pgd, addr);
797 pud_t *pud = pud_offset(p4d, addr);
798 pmd_t *pmd = pmd_offset(pud, addr);
799
800 return pmd;
801 }
802
early_ioremap_pte(unsigned long addr)803 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
804 {
805 return &bm_pte[pte_index(addr)];
806 }
807
is_early_ioremap_ptep(pte_t * ptep)808 bool __init is_early_ioremap_ptep(pte_t *ptep)
809 {
810 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
811 }
812
early_ioremap_init(void)813 void __init early_ioremap_init(void)
814 {
815 pmd_t *pmd;
816
817 #ifdef CONFIG_X86_64
818 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
819 #else
820 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
821 #endif
822
823 early_ioremap_setup();
824
825 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
826 memset(bm_pte, 0, sizeof(bm_pte));
827 pmd_populate_kernel(&init_mm, pmd, bm_pte);
828
829 /*
830 * The boot-ioremap range spans multiple pmds, for which
831 * we are not prepared:
832 */
833 #define __FIXADDR_TOP (-PAGE_SIZE)
834 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
835 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
836 #undef __FIXADDR_TOP
837 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
838 WARN_ON(1);
839 printk(KERN_WARNING "pmd %p != %p\n",
840 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
841 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
842 fix_to_virt(FIX_BTMAP_BEGIN));
843 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
844 fix_to_virt(FIX_BTMAP_END));
845
846 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
847 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
848 FIX_BTMAP_BEGIN);
849 }
850 }
851
__early_set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t flags)852 void __init __early_set_fixmap(enum fixed_addresses idx,
853 phys_addr_t phys, pgprot_t flags)
854 {
855 unsigned long addr = __fix_to_virt(idx);
856 pte_t *pte;
857
858 if (idx >= __end_of_fixed_addresses) {
859 BUG();
860 return;
861 }
862 pte = early_ioremap_pte(addr);
863
864 /* Sanitize 'prot' against any unsupported bits: */
865 pgprot_val(flags) &= __supported_pte_mask;
866
867 if (pgprot_val(flags))
868 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
869 else
870 pte_clear(&init_mm, addr, pte);
871 flush_tlb_one_kernel(addr);
872 }
873