1 /*
2 * Copyright © 2008-2018 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #ifndef I915_REQUEST_H
26 #define I915_REQUEST_H
27
28 #include <linux/dma-fence.h>
29 #include <linux/hrtimer.h>
30 #include <linux/irq_work.h>
31 #include <linux/llist.h>
32 #include <linux/lockdep.h>
33
34 #include "gem/i915_gem_context_types.h"
35 #include "gt/intel_context_types.h"
36 #include "gt/intel_engine_types.h"
37 #include "gt/intel_timeline_types.h"
38
39 #include "i915_gem.h"
40 #include "i915_scheduler.h"
41 #include "i915_selftest.h"
42 #include "i915_sw_fence.h"
43
44 #include <uapi/drm/i915_drm.h>
45
46 struct drm_file;
47 struct drm_i915_gem_object;
48 struct drm_printer;
49 struct i915_request;
50
51 struct i915_capture_list {
52 struct i915_capture_list *next;
53 struct i915_vma *vma;
54 };
55
56 #define RQ_TRACE(rq, fmt, ...) do { \
57 const struct i915_request *rq__ = (rq); \
58 ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt, \
59 rq__->fence.context, rq__->fence.seqno, \
60 hwsp_seqno(rq__), ##__VA_ARGS__); \
61 } while (0)
62
63 enum {
64 /*
65 * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW.
66 *
67 * Set by __i915_request_submit() on handing over to HW, and cleared
68 * by __i915_request_unsubmit() if we preempt this request.
69 *
70 * Finally cleared for consistency on retiring the request, when
71 * we know the HW is no longer running this request.
72 *
73 * See i915_request_is_active()
74 */
75 I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS,
76
77 /*
78 * I915_FENCE_FLAG_PQUEUE - this request is ready for execution
79 *
80 * Using the scheduler, when a request is ready for execution it is put
81 * into the priority queue, and removed from that queue when transferred
82 * to the HW runlists. We want to track its membership within the
83 * priority queue so that we can easily check before rescheduling.
84 *
85 * See i915_request_in_priority_queue()
86 */
87 I915_FENCE_FLAG_PQUEUE,
88
89 /*
90 * I915_FENCE_FLAG_HOLD - this request is currently on hold
91 *
92 * This request has been suspended, pending an ongoing investigation.
93 */
94 I915_FENCE_FLAG_HOLD,
95
96 /*
97 * I915_FENCE_FLAG_INITIAL_BREADCRUMB - this request has the initial
98 * breadcrumb that marks the end of semaphore waits and start of the
99 * user payload.
100 */
101 I915_FENCE_FLAG_INITIAL_BREADCRUMB,
102
103 /*
104 * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list
105 *
106 * Internal bookkeeping used by the breadcrumb code to track when
107 * a request is on the various signal_list.
108 */
109 I915_FENCE_FLAG_SIGNAL,
110
111 /*
112 * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted
113 *
114 * The execution of some requests should not be interrupted. This is
115 * a sensitive operation as it makes the request super important,
116 * blocking other higher priority work. Abuse of this flag will
117 * lead to quality of service issues.
118 */
119 I915_FENCE_FLAG_NOPREEMPT,
120
121 /*
122 * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue
123 *
124 * A high priority sentinel request may be submitted to clear the
125 * submission queue. As it will be the only request in-flight, upon
126 * execution all other active requests will have been preempted and
127 * unsubmitted. This preemptive pulse is used to re-evaluate the
128 * in-flight requests, particularly in cases where an active context
129 * is banned and those active requests need to be cancelled.
130 */
131 I915_FENCE_FLAG_SENTINEL,
132
133 /*
134 * I915_FENCE_FLAG_BOOST - upclock the gpu for this request
135 *
136 * Some requests are more important than others! In particular, a
137 * request that the user is waiting on is typically required for
138 * interactive latency, for which we want to minimise by upclocking
139 * the GPU. Here we track such boost requests on a per-request basis.
140 */
141 I915_FENCE_FLAG_BOOST,
142
143 /*
144 * I915_FENCE_FLAG_SUBMIT_PARALLEL - request with a context in a
145 * parent-child relationship (parallel submission, multi-lrc) should
146 * trigger a submission to the GuC rather than just moving the context
147 * tail.
148 */
149 I915_FENCE_FLAG_SUBMIT_PARALLEL,
150
151 /*
152 * I915_FENCE_FLAG_SKIP_PARALLEL - request with a context in a
153 * parent-child relationship (parallel submission, multi-lrc) that
154 * hit an error while generating requests in the execbuf IOCTL.
155 * Indicates this request should be skipped as another request in
156 * submission / relationship encoutered an error.
157 */
158 I915_FENCE_FLAG_SKIP_PARALLEL,
159
160 /*
161 * I915_FENCE_FLAG_COMPOSITE - Indicates fence is part of a composite
162 * fence (dma_fence_array) and i915 generated for parallel submission.
163 */
164 I915_FENCE_FLAG_COMPOSITE,
165 };
166
167 /**
168 * Request queue structure.
169 *
170 * The request queue allows us to note sequence numbers that have been emitted
171 * and may be associated with active buffers to be retired.
172 *
173 * By keeping this list, we can avoid having to do questionable sequence
174 * number comparisons on buffer last_read|write_seqno. It also allows an
175 * emission time to be associated with the request for tracking how far ahead
176 * of the GPU the submission is.
177 *
178 * When modifying this structure be very aware that we perform a lockless
179 * RCU lookup of it that may race against reallocation of the struct
180 * from the slab freelist. We intentionally do not zero the structure on
181 * allocation so that the lookup can use the dangling pointers (and is
182 * cogniscent that those pointers may be wrong). Instead, everything that
183 * needs to be initialised must be done so explicitly.
184 *
185 * The requests are reference counted.
186 */
187 struct i915_request {
188 struct dma_fence fence;
189 spinlock_t lock;
190
191 /**
192 * Context and ring buffer related to this request
193 * Contexts are refcounted, so when this request is associated with a
194 * context, we must increment the context's refcount, to guarantee that
195 * it persists while any request is linked to it. Requests themselves
196 * are also refcounted, so the request will only be freed when the last
197 * reference to it is dismissed, and the code in
198 * i915_request_free() will then decrement the refcount on the
199 * context.
200 */
201 struct intel_engine_cs *engine;
202 struct intel_context *context;
203 struct intel_ring *ring;
204 struct intel_timeline __rcu *timeline;
205
206 struct list_head signal_link;
207 struct llist_node signal_node;
208
209 /*
210 * The rcu epoch of when this request was allocated. Used to judiciously
211 * apply backpressure on future allocations to ensure that under
212 * mempressure there is sufficient RCU ticks for us to reclaim our
213 * RCU protected slabs.
214 */
215 unsigned long rcustate;
216
217 /*
218 * We pin the timeline->mutex while constructing the request to
219 * ensure that no caller accidentally drops it during construction.
220 * The timeline->mutex must be held to ensure that only this caller
221 * can use the ring and manipulate the associated timeline during
222 * construction.
223 */
224 struct pin_cookie cookie;
225
226 /*
227 * Fences for the various phases in the request's lifetime.
228 *
229 * The submit fence is used to await upon all of the request's
230 * dependencies. When it is signaled, the request is ready to run.
231 * It is used by the driver to then queue the request for execution.
232 */
233 struct i915_sw_fence submit;
234 union {
235 wait_queue_entry_t submitq;
236 struct i915_sw_dma_fence_cb dmaq;
237 struct i915_request_duration_cb {
238 struct dma_fence_cb cb;
239 ktime_t emitted;
240 } duration;
241 };
242 struct llist_head execute_cb;
243 struct i915_sw_fence semaphore;
244 /**
245 * @submit_work: complete submit fence from an IRQ if needed for
246 * locking hierarchy reasons.
247 */
248 struct irq_work submit_work;
249
250 /*
251 * A list of everyone we wait upon, and everyone who waits upon us.
252 * Even though we will not be submitted to the hardware before the
253 * submit fence is signaled (it waits for all external events as well
254 * as our own requests), the scheduler still needs to know the
255 * dependency tree for the lifetime of the request (from execbuf
256 * to retirement), i.e. bidirectional dependency information for the
257 * request not tied to individual fences.
258 */
259 struct i915_sched_node sched;
260 struct i915_dependency dep;
261 intel_engine_mask_t execution_mask;
262
263 /*
264 * A convenience pointer to the current breadcrumb value stored in
265 * the HW status page (or our timeline's local equivalent). The full
266 * path would be rq->hw_context->ring->timeline->hwsp_seqno.
267 */
268 const u32 *hwsp_seqno;
269
270 /** Position in the ring of the start of the request */
271 u32 head;
272
273 /** Position in the ring of the start of the user packets */
274 u32 infix;
275
276 /**
277 * Position in the ring of the start of the postfix.
278 * This is required to calculate the maximum available ring space
279 * without overwriting the postfix.
280 */
281 u32 postfix;
282
283 /** Position in the ring of the end of the whole request */
284 u32 tail;
285
286 /** Position in the ring of the end of any workarounds after the tail */
287 u32 wa_tail;
288
289 /** Preallocate space in the ring for the emitting the request */
290 u32 reserved_space;
291
292 /** Batch buffer related to this request if any (used for
293 * error state dump only).
294 */
295 struct i915_vma *batch;
296 /**
297 * Additional buffers requested by userspace to be captured upon
298 * a GPU hang. The vma/obj on this list are protected by their
299 * active reference - all objects on this list must also be
300 * on the active_list (of their final request).
301 */
302 struct i915_capture_list *capture_list;
303
304 /** Time at which this request was emitted, in jiffies. */
305 unsigned long emitted_jiffies;
306
307 /** timeline->request entry for this request */
308 struct list_head link;
309
310 /** Watchdog support fields. */
311 struct i915_request_watchdog {
312 struct llist_node link;
313 struct hrtimer timer;
314 } watchdog;
315
316 /**
317 * @guc_fence_link: Requests may need to be stalled when using GuC
318 * submission waiting for certain GuC operations to complete. If that is
319 * the case, stalled requests are added to a per context list of stalled
320 * requests. The below list_head is the link in that list. Protected by
321 * ce->guc_state.lock.
322 */
323 struct list_head guc_fence_link;
324
325 /**
326 * @guc_prio: Priority level while the request is in flight. Differs
327 * from i915 scheduler priority. See comment above
328 * I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP for details. Protected by
329 * ce->guc_active.lock. Two special values (GUC_PRIO_INIT and
330 * GUC_PRIO_FINI) outside the GuC priority range are used to indicate
331 * if the priority has not been initialized yet or if no more updates
332 * are possible because the request has completed.
333 */
334 #define GUC_PRIO_INIT 0xff
335 #define GUC_PRIO_FINI 0xfe
336 u8 guc_prio;
337
338 I915_SELFTEST_DECLARE(struct {
339 struct list_head link;
340 unsigned long delay;
341 } mock;)
342 };
343
344 #define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
345
346 extern const struct dma_fence_ops i915_fence_ops;
347
dma_fence_is_i915(const struct dma_fence * fence)348 static inline bool dma_fence_is_i915(const struct dma_fence *fence)
349 {
350 return fence->ops == &i915_fence_ops;
351 }
352
353 struct kmem_cache *i915_request_slab_cache(void);
354
355 struct i915_request * __must_check
356 __i915_request_create(struct intel_context *ce, gfp_t gfp);
357 struct i915_request * __must_check
358 i915_request_create(struct intel_context *ce);
359
360 void __i915_request_skip(struct i915_request *rq);
361 bool i915_request_set_error_once(struct i915_request *rq, int error);
362 struct i915_request *i915_request_mark_eio(struct i915_request *rq);
363
364 struct i915_request *__i915_request_commit(struct i915_request *request);
365 void __i915_request_queue(struct i915_request *rq,
366 const struct i915_sched_attr *attr);
367 void __i915_request_queue_bh(struct i915_request *rq);
368
369 bool i915_request_retire(struct i915_request *rq);
370 void i915_request_retire_upto(struct i915_request *rq);
371
372 static inline struct i915_request *
to_request(struct dma_fence * fence)373 to_request(struct dma_fence *fence)
374 {
375 /* We assume that NULL fence/request are interoperable */
376 BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0);
377 GEM_BUG_ON(fence && !dma_fence_is_i915(fence));
378 return container_of(fence, struct i915_request, fence);
379 }
380
381 static inline struct i915_request *
i915_request_get(struct i915_request * rq)382 i915_request_get(struct i915_request *rq)
383 {
384 return to_request(dma_fence_get(&rq->fence));
385 }
386
387 static inline struct i915_request *
i915_request_get_rcu(struct i915_request * rq)388 i915_request_get_rcu(struct i915_request *rq)
389 {
390 return to_request(dma_fence_get_rcu(&rq->fence));
391 }
392
393 static inline void
i915_request_put(struct i915_request * rq)394 i915_request_put(struct i915_request *rq)
395 {
396 dma_fence_put(&rq->fence);
397 }
398
399 int i915_request_await_object(struct i915_request *to,
400 struct drm_i915_gem_object *obj,
401 bool write);
402 int i915_request_await_dma_fence(struct i915_request *rq,
403 struct dma_fence *fence);
404 int i915_request_await_execution(struct i915_request *rq,
405 struct dma_fence *fence);
406
407 void i915_request_add(struct i915_request *rq);
408
409 bool __i915_request_submit(struct i915_request *request);
410 void i915_request_submit(struct i915_request *request);
411
412 void __i915_request_unsubmit(struct i915_request *request);
413 void i915_request_unsubmit(struct i915_request *request);
414
415 void i915_request_cancel(struct i915_request *rq, int error);
416
417 long i915_request_wait(struct i915_request *rq,
418 unsigned int flags,
419 long timeout)
420 __attribute__((nonnull(1)));
421 #define I915_WAIT_INTERRUPTIBLE BIT(0)
422 #define I915_WAIT_PRIORITY BIT(1) /* small priority bump for the request */
423 #define I915_WAIT_ALL BIT(2) /* used by i915_gem_object_wait() */
424
425 void i915_request_show(struct drm_printer *m,
426 const struct i915_request *rq,
427 const char *prefix,
428 int indent);
429
i915_request_signaled(const struct i915_request * rq)430 static inline bool i915_request_signaled(const struct i915_request *rq)
431 {
432 /* The request may live longer than its HWSP, so check flags first! */
433 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags);
434 }
435
i915_request_is_active(const struct i915_request * rq)436 static inline bool i915_request_is_active(const struct i915_request *rq)
437 {
438 return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
439 }
440
i915_request_in_priority_queue(const struct i915_request * rq)441 static inline bool i915_request_in_priority_queue(const struct i915_request *rq)
442 {
443 return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
444 }
445
446 static inline bool
i915_request_has_initial_breadcrumb(const struct i915_request * rq)447 i915_request_has_initial_breadcrumb(const struct i915_request *rq)
448 {
449 return test_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
450 }
451
452 /**
453 * Returns true if seq1 is later than seq2.
454 */
i915_seqno_passed(u32 seq1,u32 seq2)455 static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
456 {
457 return (s32)(seq1 - seq2) >= 0;
458 }
459
__hwsp_seqno(const struct i915_request * rq)460 static inline u32 __hwsp_seqno(const struct i915_request *rq)
461 {
462 const u32 *hwsp = READ_ONCE(rq->hwsp_seqno);
463
464 return READ_ONCE(*hwsp);
465 }
466
467 /**
468 * hwsp_seqno - the current breadcrumb value in the HW status page
469 * @rq: the request, to chase the relevant HW status page
470 *
471 * The emphasis in naming here is that hwsp_seqno() is not a property of the
472 * request, but an indication of the current HW state (associated with this
473 * request). Its value will change as the GPU executes more requests.
474 *
475 * Returns the current breadcrumb value in the associated HW status page (or
476 * the local timeline's equivalent) for this request. The request itself
477 * has the associated breadcrumb value of rq->fence.seqno, when the HW
478 * status page has that breadcrumb or later, this request is complete.
479 */
hwsp_seqno(const struct i915_request * rq)480 static inline u32 hwsp_seqno(const struct i915_request *rq)
481 {
482 u32 seqno;
483
484 rcu_read_lock(); /* the HWSP may be freed at runtime */
485 seqno = __hwsp_seqno(rq);
486 rcu_read_unlock();
487
488 return seqno;
489 }
490
__i915_request_has_started(const struct i915_request * rq)491 static inline bool __i915_request_has_started(const struct i915_request *rq)
492 {
493 return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno - 1);
494 }
495
496 /**
497 * i915_request_started - check if the request has begun being executed
498 * @rq: the request
499 *
500 * If the timeline is not using initial breadcrumbs, a request is
501 * considered started if the previous request on its timeline (i.e.
502 * context) has been signaled.
503 *
504 * If the timeline is using semaphores, it will also be emitting an
505 * "initial breadcrumb" after the semaphores are complete and just before
506 * it began executing the user payload. A request can therefore be active
507 * on the HW and not yet started as it is still busywaiting on its
508 * dependencies (via HW semaphores).
509 *
510 * If the request has started, its dependencies will have been signaled
511 * (either by fences or by semaphores) and it will have begun processing
512 * the user payload.
513 *
514 * However, even if a request has started, it may have been preempted and
515 * so no longer active, or it may have already completed.
516 *
517 * See also i915_request_is_active().
518 *
519 * Returns true if the request has begun executing the user payload, or
520 * has completed:
521 */
i915_request_started(const struct i915_request * rq)522 static inline bool i915_request_started(const struct i915_request *rq)
523 {
524 bool result;
525
526 if (i915_request_signaled(rq))
527 return true;
528
529 result = true;
530 rcu_read_lock(); /* the HWSP may be freed at runtime */
531 if (likely(!i915_request_signaled(rq)))
532 /* Remember: started but may have since been preempted! */
533 result = __i915_request_has_started(rq);
534 rcu_read_unlock();
535
536 return result;
537 }
538
539 /**
540 * i915_request_is_running - check if the request may actually be executing
541 * @rq: the request
542 *
543 * Returns true if the request is currently submitted to hardware, has passed
544 * its start point (i.e. the context is setup and not busywaiting). Note that
545 * it may no longer be running by the time the function returns!
546 */
i915_request_is_running(const struct i915_request * rq)547 static inline bool i915_request_is_running(const struct i915_request *rq)
548 {
549 bool result;
550
551 if (!i915_request_is_active(rq))
552 return false;
553
554 rcu_read_lock();
555 result = __i915_request_has_started(rq) && i915_request_is_active(rq);
556 rcu_read_unlock();
557
558 return result;
559 }
560
561 /**
562 * i915_request_is_ready - check if the request is ready for execution
563 * @rq: the request
564 *
565 * Upon construction, the request is instructed to wait upon various
566 * signals before it is ready to be executed by the HW. That is, we do
567 * not want to start execution and read data before it is written. In practice,
568 * this is controlled with a mixture of interrupts and semaphores. Once
569 * the submit fence is completed, the backend scheduler will place the
570 * request into its queue and from there submit it for execution. So we
571 * can detect when a request is eligible for execution (and is under control
572 * of the scheduler) by querying where it is in any of the scheduler's lists.
573 *
574 * Returns true if the request is ready for execution (it may be inflight),
575 * false otherwise.
576 */
i915_request_is_ready(const struct i915_request * rq)577 static inline bool i915_request_is_ready(const struct i915_request *rq)
578 {
579 return !list_empty(&rq->sched.link);
580 }
581
__i915_request_is_complete(const struct i915_request * rq)582 static inline bool __i915_request_is_complete(const struct i915_request *rq)
583 {
584 return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno);
585 }
586
i915_request_completed(const struct i915_request * rq)587 static inline bool i915_request_completed(const struct i915_request *rq)
588 {
589 bool result;
590
591 if (i915_request_signaled(rq))
592 return true;
593
594 result = true;
595 rcu_read_lock(); /* the HWSP may be freed at runtime */
596 if (likely(!i915_request_signaled(rq)))
597 result = __i915_request_is_complete(rq);
598 rcu_read_unlock();
599
600 return result;
601 }
602
i915_request_mark_complete(struct i915_request * rq)603 static inline void i915_request_mark_complete(struct i915_request *rq)
604 {
605 WRITE_ONCE(rq->hwsp_seqno, /* decouple from HWSP */
606 (u32 *)&rq->fence.seqno);
607 }
608
i915_request_has_waitboost(const struct i915_request * rq)609 static inline bool i915_request_has_waitboost(const struct i915_request *rq)
610 {
611 return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
612 }
613
i915_request_has_nopreempt(const struct i915_request * rq)614 static inline bool i915_request_has_nopreempt(const struct i915_request *rq)
615 {
616 /* Preemption should only be disabled very rarely */
617 return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags));
618 }
619
i915_request_has_sentinel(const struct i915_request * rq)620 static inline bool i915_request_has_sentinel(const struct i915_request *rq)
621 {
622 return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags));
623 }
624
i915_request_on_hold(const struct i915_request * rq)625 static inline bool i915_request_on_hold(const struct i915_request *rq)
626 {
627 return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags));
628 }
629
i915_request_set_hold(struct i915_request * rq)630 static inline void i915_request_set_hold(struct i915_request *rq)
631 {
632 set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
633 }
634
i915_request_clear_hold(struct i915_request * rq)635 static inline void i915_request_clear_hold(struct i915_request *rq)
636 {
637 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
638 }
639
640 static inline struct intel_timeline *
i915_request_timeline(const struct i915_request * rq)641 i915_request_timeline(const struct i915_request *rq)
642 {
643 /* Valid only while the request is being constructed (or retired). */
644 return rcu_dereference_protected(rq->timeline,
645 lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex));
646 }
647
648 static inline struct i915_gem_context *
i915_request_gem_context(const struct i915_request * rq)649 i915_request_gem_context(const struct i915_request *rq)
650 {
651 /* Valid only while the request is being constructed (or retired). */
652 return rcu_dereference_protected(rq->context->gem_context, true);
653 }
654
655 static inline struct intel_timeline *
i915_request_active_timeline(const struct i915_request * rq)656 i915_request_active_timeline(const struct i915_request *rq)
657 {
658 /*
659 * When in use during submission, we are protected by a guarantee that
660 * the context/timeline is pinned and must remain pinned until after
661 * this submission.
662 */
663 return rcu_dereference_protected(rq->timeline,
664 lockdep_is_held(&rq->engine->sched_engine->lock));
665 }
666
667 static inline u32
i915_request_active_seqno(const struct i915_request * rq)668 i915_request_active_seqno(const struct i915_request *rq)
669 {
670 u32 hwsp_phys_base =
671 page_mask_bits(i915_request_active_timeline(rq)->hwsp_offset);
672 u32 hwsp_relative_offset = offset_in_page(rq->hwsp_seqno);
673
674 /*
675 * Because of wraparound, we cannot simply take tl->hwsp_offset,
676 * but instead use the fact that the relative for vaddr is the
677 * offset as for hwsp_offset. Take the top bits from tl->hwsp_offset
678 * and combine them with the relative offset in rq->hwsp_seqno.
679 *
680 * As rw->hwsp_seqno is rewritten when signaled, this only works
681 * when the request isn't signaled yet, but at that point you
682 * no longer need the offset.
683 */
684
685 return hwsp_phys_base + hwsp_relative_offset;
686 }
687
688 bool
689 i915_request_active_engine(struct i915_request *rq,
690 struct intel_engine_cs **active);
691
692 void i915_request_notify_execute_cb_imm(struct i915_request *rq);
693
694 enum i915_request_state {
695 I915_REQUEST_UNKNOWN = 0,
696 I915_REQUEST_COMPLETE,
697 I915_REQUEST_PENDING,
698 I915_REQUEST_QUEUED,
699 I915_REQUEST_ACTIVE,
700 };
701
702 enum i915_request_state i915_test_request_state(struct i915_request *rq);
703
704 void i915_request_module_exit(void);
705 int i915_request_module_init(void);
706
707 #endif /* I915_REQUEST_H */
708