1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3 *
4 * Copyright (C) International Business Machines Corp., 2002,2008
5 * Author(s): Steve French (sfrench@us.ibm.com)
6 *
7 */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #endif
25 #include "fs_context.h"
26
27 extern mempool_t *cifs_sm_req_poolp;
28 extern mempool_t *cifs_req_poolp;
29
30 /* The xid serves as a useful identifier for each incoming vfs request,
31 in a similar way to the mid which is useful to track each sent smb,
32 and CurrentXid can also provide a running counter (although it
33 will eventually wrap past zero) of the total vfs operations handled
34 since the cifs fs was mounted */
35
36 unsigned int
_get_xid(void)37 _get_xid(void)
38 {
39 unsigned int xid;
40
41 spin_lock(&GlobalMid_Lock);
42 GlobalTotalActiveXid++;
43
44 /* keep high water mark for number of simultaneous ops in filesystem */
45 if (GlobalTotalActiveXid > GlobalMaxActiveXid)
46 GlobalMaxActiveXid = GlobalTotalActiveXid;
47 if (GlobalTotalActiveXid > 65000)
48 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
49 xid = GlobalCurrentXid++;
50 spin_unlock(&GlobalMid_Lock);
51 return xid;
52 }
53
54 void
_free_xid(unsigned int xid)55 _free_xid(unsigned int xid)
56 {
57 spin_lock(&GlobalMid_Lock);
58 /* if (GlobalTotalActiveXid == 0)
59 BUG(); */
60 GlobalTotalActiveXid--;
61 spin_unlock(&GlobalMid_Lock);
62 }
63
64 struct cifs_ses *
sesInfoAlloc(void)65 sesInfoAlloc(void)
66 {
67 struct cifs_ses *ret_buf;
68
69 ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
70 if (ret_buf) {
71 atomic_inc(&sesInfoAllocCount);
72 ret_buf->status = CifsNew;
73 ++ret_buf->ses_count;
74 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
75 INIT_LIST_HEAD(&ret_buf->tcon_list);
76 mutex_init(&ret_buf->session_mutex);
77 spin_lock_init(&ret_buf->iface_lock);
78 spin_lock_init(&ret_buf->chan_lock);
79 }
80 return ret_buf;
81 }
82
83 void
sesInfoFree(struct cifs_ses * buf_to_free)84 sesInfoFree(struct cifs_ses *buf_to_free)
85 {
86 if (buf_to_free == NULL) {
87 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
88 return;
89 }
90
91 atomic_dec(&sesInfoAllocCount);
92 kfree(buf_to_free->serverOS);
93 kfree(buf_to_free->serverDomain);
94 kfree(buf_to_free->serverNOS);
95 kfree_sensitive(buf_to_free->password);
96 kfree(buf_to_free->user_name);
97 kfree(buf_to_free->domainName);
98 kfree(buf_to_free->workstation_name);
99 kfree_sensitive(buf_to_free->auth_key.response);
100 kfree(buf_to_free->iface_list);
101 kfree_sensitive(buf_to_free);
102 }
103
104 struct cifs_tcon *
tconInfoAlloc(void)105 tconInfoAlloc(void)
106 {
107 struct cifs_tcon *ret_buf;
108
109 ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
110 if (!ret_buf)
111 return NULL;
112 ret_buf->crfid.fid = kzalloc(sizeof(*ret_buf->crfid.fid), GFP_KERNEL);
113 if (!ret_buf->crfid.fid) {
114 kfree(ret_buf);
115 return NULL;
116 }
117
118 atomic_inc(&tconInfoAllocCount);
119 ret_buf->tidStatus = CifsNew;
120 ++ret_buf->tc_count;
121 INIT_LIST_HEAD(&ret_buf->openFileList);
122 INIT_LIST_HEAD(&ret_buf->tcon_list);
123 spin_lock_init(&ret_buf->open_file_lock);
124 mutex_init(&ret_buf->crfid.fid_mutex);
125 spin_lock_init(&ret_buf->stat_lock);
126 atomic_set(&ret_buf->num_local_opens, 0);
127 atomic_set(&ret_buf->num_remote_opens, 0);
128
129 return ret_buf;
130 }
131
132 void
tconInfoFree(struct cifs_tcon * buf_to_free)133 tconInfoFree(struct cifs_tcon *buf_to_free)
134 {
135 if (buf_to_free == NULL) {
136 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
137 return;
138 }
139 atomic_dec(&tconInfoAllocCount);
140 kfree(buf_to_free->nativeFileSystem);
141 kfree_sensitive(buf_to_free->password);
142 kfree(buf_to_free->crfid.fid);
143 kfree(buf_to_free);
144 }
145
146 struct smb_hdr *
cifs_buf_get(void)147 cifs_buf_get(void)
148 {
149 struct smb_hdr *ret_buf = NULL;
150 /*
151 * SMB2 header is bigger than CIFS one - no problems to clean some
152 * more bytes for CIFS.
153 */
154 size_t buf_size = sizeof(struct smb2_hdr);
155
156 /*
157 * We could use negotiated size instead of max_msgsize -
158 * but it may be more efficient to always alloc same size
159 * albeit slightly larger than necessary and maxbuffersize
160 * defaults to this and can not be bigger.
161 */
162 ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
163
164 /* clear the first few header bytes */
165 /* for most paths, more is cleared in header_assemble */
166 memset(ret_buf, 0, buf_size + 3);
167 atomic_inc(&bufAllocCount);
168 #ifdef CONFIG_CIFS_STATS2
169 atomic_inc(&totBufAllocCount);
170 #endif /* CONFIG_CIFS_STATS2 */
171
172 return ret_buf;
173 }
174
175 void
cifs_buf_release(void * buf_to_free)176 cifs_buf_release(void *buf_to_free)
177 {
178 if (buf_to_free == NULL) {
179 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
180 return;
181 }
182 mempool_free(buf_to_free, cifs_req_poolp);
183
184 atomic_dec(&bufAllocCount);
185 return;
186 }
187
188 struct smb_hdr *
cifs_small_buf_get(void)189 cifs_small_buf_get(void)
190 {
191 struct smb_hdr *ret_buf = NULL;
192
193 /* We could use negotiated size instead of max_msgsize -
194 but it may be more efficient to always alloc same size
195 albeit slightly larger than necessary and maxbuffersize
196 defaults to this and can not be bigger */
197 ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
198 /* No need to clear memory here, cleared in header assemble */
199 /* memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
200 atomic_inc(&smBufAllocCount);
201 #ifdef CONFIG_CIFS_STATS2
202 atomic_inc(&totSmBufAllocCount);
203 #endif /* CONFIG_CIFS_STATS2 */
204
205 return ret_buf;
206 }
207
208 void
cifs_small_buf_release(void * buf_to_free)209 cifs_small_buf_release(void *buf_to_free)
210 {
211
212 if (buf_to_free == NULL) {
213 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
214 return;
215 }
216 mempool_free(buf_to_free, cifs_sm_req_poolp);
217
218 atomic_dec(&smBufAllocCount);
219 return;
220 }
221
222 void
free_rsp_buf(int resp_buftype,void * rsp)223 free_rsp_buf(int resp_buftype, void *rsp)
224 {
225 if (resp_buftype == CIFS_SMALL_BUFFER)
226 cifs_small_buf_release(rsp);
227 else if (resp_buftype == CIFS_LARGE_BUFFER)
228 cifs_buf_release(rsp);
229 }
230
231 /* NB: MID can not be set if treeCon not passed in, in that
232 case it is responsbility of caller to set the mid */
233 void
header_assemble(struct smb_hdr * buffer,char smb_command,const struct cifs_tcon * treeCon,int word_count)234 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
235 const struct cifs_tcon *treeCon, int word_count
236 /* length of fixed section (word count) in two byte units */)
237 {
238 char *temp = (char *) buffer;
239
240 memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
241
242 buffer->smb_buf_length = cpu_to_be32(
243 (2 * word_count) + sizeof(struct smb_hdr) -
244 4 /* RFC 1001 length field does not count */ +
245 2 /* for bcc field itself */) ;
246
247 buffer->Protocol[0] = 0xFF;
248 buffer->Protocol[1] = 'S';
249 buffer->Protocol[2] = 'M';
250 buffer->Protocol[3] = 'B';
251 buffer->Command = smb_command;
252 buffer->Flags = 0x00; /* case sensitive */
253 buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
254 buffer->Pid = cpu_to_le16((__u16)current->tgid);
255 buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
256 if (treeCon) {
257 buffer->Tid = treeCon->tid;
258 if (treeCon->ses) {
259 if (treeCon->ses->capabilities & CAP_UNICODE)
260 buffer->Flags2 |= SMBFLG2_UNICODE;
261 if (treeCon->ses->capabilities & CAP_STATUS32)
262 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
263
264 /* Uid is not converted */
265 buffer->Uid = treeCon->ses->Suid;
266 if (treeCon->ses->server)
267 buffer->Mid = get_next_mid(treeCon->ses->server);
268 }
269 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
270 buffer->Flags2 |= SMBFLG2_DFS;
271 if (treeCon->nocase)
272 buffer->Flags |= SMBFLG_CASELESS;
273 if ((treeCon->ses) && (treeCon->ses->server))
274 if (treeCon->ses->server->sign)
275 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
276 }
277
278 /* endian conversion of flags is now done just before sending */
279 buffer->WordCount = (char) word_count;
280 return;
281 }
282
283 static int
check_smb_hdr(struct smb_hdr * smb)284 check_smb_hdr(struct smb_hdr *smb)
285 {
286 /* does it have the right SMB "signature" ? */
287 if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
288 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
289 *(unsigned int *)smb->Protocol);
290 return 1;
291 }
292
293 /* if it's a response then accept */
294 if (smb->Flags & SMBFLG_RESPONSE)
295 return 0;
296
297 /* only one valid case where server sends us request */
298 if (smb->Command == SMB_COM_LOCKING_ANDX)
299 return 0;
300
301 cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
302 get_mid(smb));
303 return 1;
304 }
305
306 int
checkSMB(char * buf,unsigned int total_read,struct TCP_Server_Info * server)307 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
308 {
309 struct smb_hdr *smb = (struct smb_hdr *)buf;
310 __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
311 __u32 clc_len; /* calculated length */
312 cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
313 total_read, rfclen);
314
315 /* is this frame too small to even get to a BCC? */
316 if (total_read < 2 + sizeof(struct smb_hdr)) {
317 if ((total_read >= sizeof(struct smb_hdr) - 1)
318 && (smb->Status.CifsError != 0)) {
319 /* it's an error return */
320 smb->WordCount = 0;
321 /* some error cases do not return wct and bcc */
322 return 0;
323 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
324 (smb->WordCount == 0)) {
325 char *tmp = (char *)smb;
326 /* Need to work around a bug in two servers here */
327 /* First, check if the part of bcc they sent was zero */
328 if (tmp[sizeof(struct smb_hdr)] == 0) {
329 /* some servers return only half of bcc
330 * on simple responses (wct, bcc both zero)
331 * in particular have seen this on
332 * ulogoffX and FindClose. This leaves
333 * one byte of bcc potentially unitialized
334 */
335 /* zero rest of bcc */
336 tmp[sizeof(struct smb_hdr)+1] = 0;
337 return 0;
338 }
339 cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
340 } else {
341 cifs_dbg(VFS, "Length less than smb header size\n");
342 }
343 return -EIO;
344 }
345
346 /* otherwise, there is enough to get to the BCC */
347 if (check_smb_hdr(smb))
348 return -EIO;
349 clc_len = smbCalcSize(smb, server);
350
351 if (4 + rfclen != total_read) {
352 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
353 rfclen);
354 return -EIO;
355 }
356
357 if (4 + rfclen != clc_len) {
358 __u16 mid = get_mid(smb);
359 /* check if bcc wrapped around for large read responses */
360 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
361 /* check if lengths match mod 64K */
362 if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
363 return 0; /* bcc wrapped */
364 }
365 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
366 clc_len, 4 + rfclen, mid);
367
368 if (4 + rfclen < clc_len) {
369 cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
370 rfclen, mid);
371 return -EIO;
372 } else if (rfclen > clc_len + 512) {
373 /*
374 * Some servers (Windows XP in particular) send more
375 * data than the lengths in the SMB packet would
376 * indicate on certain calls (byte range locks and
377 * trans2 find first calls in particular). While the
378 * client can handle such a frame by ignoring the
379 * trailing data, we choose limit the amount of extra
380 * data to 512 bytes.
381 */
382 cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
383 rfclen, mid);
384 return -EIO;
385 }
386 }
387 return 0;
388 }
389
390 bool
is_valid_oplock_break(char * buffer,struct TCP_Server_Info * srv)391 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
392 {
393 struct smb_hdr *buf = (struct smb_hdr *)buffer;
394 struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
395 struct list_head *tmp, *tmp1, *tmp2;
396 struct cifs_ses *ses;
397 struct cifs_tcon *tcon;
398 struct cifsInodeInfo *pCifsInode;
399 struct cifsFileInfo *netfile;
400
401 cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
402 if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
403 (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
404 struct smb_com_transaction_change_notify_rsp *pSMBr =
405 (struct smb_com_transaction_change_notify_rsp *)buf;
406 struct file_notify_information *pnotify;
407 __u32 data_offset = 0;
408 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
409
410 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
411 data_offset = le32_to_cpu(pSMBr->DataOffset);
412
413 if (data_offset >
414 len - sizeof(struct file_notify_information)) {
415 cifs_dbg(FYI, "Invalid data_offset %u\n",
416 data_offset);
417 return true;
418 }
419 pnotify = (struct file_notify_information *)
420 ((char *)&pSMBr->hdr.Protocol + data_offset);
421 cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
422 pnotify->FileName, pnotify->Action);
423 /* cifs_dump_mem("Rcvd notify Data: ",buf,
424 sizeof(struct smb_hdr)+60); */
425 return true;
426 }
427 if (pSMBr->hdr.Status.CifsError) {
428 cifs_dbg(FYI, "notify err 0x%x\n",
429 pSMBr->hdr.Status.CifsError);
430 return true;
431 }
432 return false;
433 }
434 if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
435 return false;
436 if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
437 /* no sense logging error on invalid handle on oplock
438 break - harmless race between close request and oplock
439 break response is expected from time to time writing out
440 large dirty files cached on the client */
441 if ((NT_STATUS_INVALID_HANDLE) ==
442 le32_to_cpu(pSMB->hdr.Status.CifsError)) {
443 cifs_dbg(FYI, "Invalid handle on oplock break\n");
444 return true;
445 } else if (ERRbadfid ==
446 le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
447 return true;
448 } else {
449 return false; /* on valid oplock brk we get "request" */
450 }
451 }
452 if (pSMB->hdr.WordCount != 8)
453 return false;
454
455 cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
456 pSMB->LockType, pSMB->OplockLevel);
457 if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
458 return false;
459
460 /* look up tcon based on tid & uid */
461 spin_lock(&cifs_tcp_ses_lock);
462 list_for_each(tmp, &srv->smb_ses_list) {
463 ses = list_entry(tmp, struct cifs_ses, smb_ses_list);
464 list_for_each(tmp1, &ses->tcon_list) {
465 tcon = list_entry(tmp1, struct cifs_tcon, tcon_list);
466 if (tcon->tid != buf->Tid)
467 continue;
468
469 cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
470 spin_lock(&tcon->open_file_lock);
471 list_for_each(tmp2, &tcon->openFileList) {
472 netfile = list_entry(tmp2, struct cifsFileInfo,
473 tlist);
474 if (pSMB->Fid != netfile->fid.netfid)
475 continue;
476
477 cifs_dbg(FYI, "file id match, oplock break\n");
478 pCifsInode = CIFS_I(d_inode(netfile->dentry));
479
480 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
481 &pCifsInode->flags);
482
483 netfile->oplock_epoch = 0;
484 netfile->oplock_level = pSMB->OplockLevel;
485 netfile->oplock_break_cancelled = false;
486 cifs_queue_oplock_break(netfile);
487
488 spin_unlock(&tcon->open_file_lock);
489 spin_unlock(&cifs_tcp_ses_lock);
490 return true;
491 }
492 spin_unlock(&tcon->open_file_lock);
493 spin_unlock(&cifs_tcp_ses_lock);
494 cifs_dbg(FYI, "No matching file for oplock break\n");
495 return true;
496 }
497 }
498 spin_unlock(&cifs_tcp_ses_lock);
499 cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
500 return true;
501 }
502
503 void
dump_smb(void * buf,int smb_buf_length)504 dump_smb(void *buf, int smb_buf_length)
505 {
506 if (traceSMB == 0)
507 return;
508
509 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
510 smb_buf_length, true);
511 }
512
513 void
cifs_autodisable_serverino(struct cifs_sb_info * cifs_sb)514 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
515 {
516 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
517 struct cifs_tcon *tcon = NULL;
518
519 if (cifs_sb->master_tlink)
520 tcon = cifs_sb_master_tcon(cifs_sb);
521
522 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
523 cifs_sb->mnt_cifs_serverino_autodisabled = true;
524 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
525 tcon ? tcon->treeName : "new server");
526 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
527 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
528
529 }
530 }
531
cifs_set_oplock_level(struct cifsInodeInfo * cinode,__u32 oplock)532 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
533 {
534 oplock &= 0xF;
535
536 if (oplock == OPLOCK_EXCLUSIVE) {
537 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
538 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
539 &cinode->vfs_inode);
540 } else if (oplock == OPLOCK_READ) {
541 cinode->oplock = CIFS_CACHE_READ_FLG;
542 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
543 &cinode->vfs_inode);
544 } else
545 cinode->oplock = 0;
546 }
547
548 /*
549 * We wait for oplock breaks to be processed before we attempt to perform
550 * writes.
551 */
cifs_get_writer(struct cifsInodeInfo * cinode)552 int cifs_get_writer(struct cifsInodeInfo *cinode)
553 {
554 int rc;
555
556 start:
557 rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
558 TASK_KILLABLE);
559 if (rc)
560 return rc;
561
562 spin_lock(&cinode->writers_lock);
563 if (!cinode->writers)
564 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
565 cinode->writers++;
566 /* Check to see if we have started servicing an oplock break */
567 if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
568 cinode->writers--;
569 if (cinode->writers == 0) {
570 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
571 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
572 }
573 spin_unlock(&cinode->writers_lock);
574 goto start;
575 }
576 spin_unlock(&cinode->writers_lock);
577 return 0;
578 }
579
cifs_put_writer(struct cifsInodeInfo * cinode)580 void cifs_put_writer(struct cifsInodeInfo *cinode)
581 {
582 spin_lock(&cinode->writers_lock);
583 cinode->writers--;
584 if (cinode->writers == 0) {
585 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
586 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
587 }
588 spin_unlock(&cinode->writers_lock);
589 }
590
591 /**
592 * cifs_queue_oplock_break - queue the oplock break handler for cfile
593 * @cfile: The file to break the oplock on
594 *
595 * This function is called from the demultiplex thread when it
596 * receives an oplock break for @cfile.
597 *
598 * Assumes the tcon->open_file_lock is held.
599 * Assumes cfile->file_info_lock is NOT held.
600 */
cifs_queue_oplock_break(struct cifsFileInfo * cfile)601 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
602 {
603 /*
604 * Bump the handle refcount now while we hold the
605 * open_file_lock to enforce the validity of it for the oplock
606 * break handler. The matching put is done at the end of the
607 * handler.
608 */
609 cifsFileInfo_get(cfile);
610
611 queue_work(cifsoplockd_wq, &cfile->oplock_break);
612 }
613
cifs_done_oplock_break(struct cifsInodeInfo * cinode)614 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
615 {
616 clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
617 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
618 }
619
620 bool
backup_cred(struct cifs_sb_info * cifs_sb)621 backup_cred(struct cifs_sb_info *cifs_sb)
622 {
623 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
624 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
625 return true;
626 }
627 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
628 if (in_group_p(cifs_sb->ctx->backupgid))
629 return true;
630 }
631
632 return false;
633 }
634
635 void
cifs_del_pending_open(struct cifs_pending_open * open)636 cifs_del_pending_open(struct cifs_pending_open *open)
637 {
638 spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
639 list_del(&open->olist);
640 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
641 }
642
643 void
cifs_add_pending_open_locked(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)644 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
645 struct cifs_pending_open *open)
646 {
647 memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
648 open->oplock = CIFS_OPLOCK_NO_CHANGE;
649 open->tlink = tlink;
650 fid->pending_open = open;
651 list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
652 }
653
654 void
cifs_add_pending_open(struct cifs_fid * fid,struct tcon_link * tlink,struct cifs_pending_open * open)655 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
656 struct cifs_pending_open *open)
657 {
658 spin_lock(&tlink_tcon(tlink)->open_file_lock);
659 cifs_add_pending_open_locked(fid, tlink, open);
660 spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
661 }
662
663 /*
664 * Critical section which runs after acquiring deferred_lock.
665 * As there is no reference count on cifs_deferred_close, pdclose
666 * should not be used outside deferred_lock.
667 */
668 bool
cifs_is_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close ** pdclose)669 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
670 {
671 struct cifs_deferred_close *dclose;
672
673 list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
674 if ((dclose->netfid == cfile->fid.netfid) &&
675 (dclose->persistent_fid == cfile->fid.persistent_fid) &&
676 (dclose->volatile_fid == cfile->fid.volatile_fid)) {
677 *pdclose = dclose;
678 return true;
679 }
680 }
681 return false;
682 }
683
684 /*
685 * Critical section which runs after acquiring deferred_lock.
686 */
687 void
cifs_add_deferred_close(struct cifsFileInfo * cfile,struct cifs_deferred_close * dclose)688 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
689 {
690 bool is_deferred = false;
691 struct cifs_deferred_close *pdclose;
692
693 is_deferred = cifs_is_deferred_close(cfile, &pdclose);
694 if (is_deferred) {
695 kfree(dclose);
696 return;
697 }
698
699 dclose->tlink = cfile->tlink;
700 dclose->netfid = cfile->fid.netfid;
701 dclose->persistent_fid = cfile->fid.persistent_fid;
702 dclose->volatile_fid = cfile->fid.volatile_fid;
703 list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
704 }
705
706 /*
707 * Critical section which runs after acquiring deferred_lock.
708 */
709 void
cifs_del_deferred_close(struct cifsFileInfo * cfile)710 cifs_del_deferred_close(struct cifsFileInfo *cfile)
711 {
712 bool is_deferred = false;
713 struct cifs_deferred_close *dclose;
714
715 is_deferred = cifs_is_deferred_close(cfile, &dclose);
716 if (!is_deferred)
717 return;
718 list_del(&dclose->dlist);
719 kfree(dclose);
720 }
721
722 void
cifs_close_deferred_file(struct cifsInodeInfo * cifs_inode)723 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
724 {
725 struct cifsFileInfo *cfile = NULL;
726 struct file_list *tmp_list, *tmp_next_list;
727 struct list_head file_head;
728
729 if (cifs_inode == NULL)
730 return;
731
732 INIT_LIST_HEAD(&file_head);
733 spin_lock(&cifs_inode->open_file_lock);
734 list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
735 if (delayed_work_pending(&cfile->deferred)) {
736 if (cancel_delayed_work(&cfile->deferred)) {
737 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
738 if (tmp_list == NULL)
739 break;
740 tmp_list->cfile = cfile;
741 list_add_tail(&tmp_list->list, &file_head);
742 }
743 }
744 }
745 spin_unlock(&cifs_inode->open_file_lock);
746
747 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
748 _cifsFileInfo_put(tmp_list->cfile, true, false);
749 list_del(&tmp_list->list);
750 kfree(tmp_list);
751 }
752 }
753
754 void
cifs_close_all_deferred_files(struct cifs_tcon * tcon)755 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
756 {
757 struct cifsFileInfo *cfile;
758 struct list_head *tmp;
759 struct file_list *tmp_list, *tmp_next_list;
760 struct list_head file_head;
761
762 INIT_LIST_HEAD(&file_head);
763 spin_lock(&tcon->open_file_lock);
764 list_for_each(tmp, &tcon->openFileList) {
765 cfile = list_entry(tmp, struct cifsFileInfo, tlist);
766 if (delayed_work_pending(&cfile->deferred)) {
767 if (cancel_delayed_work(&cfile->deferred)) {
768 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
769 if (tmp_list == NULL)
770 break;
771 tmp_list->cfile = cfile;
772 list_add_tail(&tmp_list->list, &file_head);
773 }
774 }
775 }
776 spin_unlock(&tcon->open_file_lock);
777
778 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
779 _cifsFileInfo_put(tmp_list->cfile, true, false);
780 list_del(&tmp_list->list);
781 kfree(tmp_list);
782 }
783 }
784 void
cifs_close_deferred_file_under_dentry(struct cifs_tcon * tcon,const char * path)785 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
786 {
787 struct cifsFileInfo *cfile;
788 struct list_head *tmp;
789 struct file_list *tmp_list, *tmp_next_list;
790 struct list_head file_head;
791 void *page;
792 const char *full_path;
793
794 INIT_LIST_HEAD(&file_head);
795 page = alloc_dentry_path();
796 spin_lock(&tcon->open_file_lock);
797 list_for_each(tmp, &tcon->openFileList) {
798 cfile = list_entry(tmp, struct cifsFileInfo, tlist);
799 full_path = build_path_from_dentry(cfile->dentry, page);
800 if (strstr(full_path, path)) {
801 if (delayed_work_pending(&cfile->deferred)) {
802 if (cancel_delayed_work(&cfile->deferred)) {
803 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
804 if (tmp_list == NULL)
805 break;
806 tmp_list->cfile = cfile;
807 list_add_tail(&tmp_list->list, &file_head);
808 }
809 }
810 }
811 }
812 spin_unlock(&tcon->open_file_lock);
813
814 list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
815 _cifsFileInfo_put(tmp_list->cfile, true, false);
816 list_del(&tmp_list->list);
817 kfree(tmp_list);
818 }
819 free_dentry_path(page);
820 }
821
822 /* parses DFS refferal V3 structure
823 * caller is responsible for freeing target_nodes
824 * returns:
825 * - on success - 0
826 * - on failure - errno
827 */
828 int
parse_dfs_referrals(struct get_dfs_referral_rsp * rsp,u32 rsp_size,unsigned int * num_of_nodes,struct dfs_info3_param ** target_nodes,const struct nls_table * nls_codepage,int remap,const char * searchName,bool is_unicode)829 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
830 unsigned int *num_of_nodes,
831 struct dfs_info3_param **target_nodes,
832 const struct nls_table *nls_codepage, int remap,
833 const char *searchName, bool is_unicode)
834 {
835 int i, rc = 0;
836 char *data_end;
837 struct dfs_referral_level_3 *ref;
838
839 *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
840
841 if (*num_of_nodes < 1) {
842 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
843 *num_of_nodes);
844 rc = -EINVAL;
845 goto parse_DFS_referrals_exit;
846 }
847
848 ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
849 if (ref->VersionNumber != cpu_to_le16(3)) {
850 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
851 le16_to_cpu(ref->VersionNumber));
852 rc = -EINVAL;
853 goto parse_DFS_referrals_exit;
854 }
855
856 /* get the upper boundary of the resp buffer */
857 data_end = (char *)rsp + rsp_size;
858
859 cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
860 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
861
862 *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
863 GFP_KERNEL);
864 if (*target_nodes == NULL) {
865 rc = -ENOMEM;
866 goto parse_DFS_referrals_exit;
867 }
868
869 /* collect necessary data from referrals */
870 for (i = 0; i < *num_of_nodes; i++) {
871 char *temp;
872 int max_len;
873 struct dfs_info3_param *node = (*target_nodes)+i;
874
875 node->flags = le32_to_cpu(rsp->DFSFlags);
876 if (is_unicode) {
877 __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
878 GFP_KERNEL);
879 if (tmp == NULL) {
880 rc = -ENOMEM;
881 goto parse_DFS_referrals_exit;
882 }
883 cifsConvertToUTF16((__le16 *) tmp, searchName,
884 PATH_MAX, nls_codepage, remap);
885 node->path_consumed = cifs_utf16_bytes(tmp,
886 le16_to_cpu(rsp->PathConsumed),
887 nls_codepage);
888 kfree(tmp);
889 } else
890 node->path_consumed = le16_to_cpu(rsp->PathConsumed);
891
892 node->server_type = le16_to_cpu(ref->ServerType);
893 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
894
895 /* copy DfsPath */
896 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
897 max_len = data_end - temp;
898 node->path_name = cifs_strndup_from_utf16(temp, max_len,
899 is_unicode, nls_codepage);
900 if (!node->path_name) {
901 rc = -ENOMEM;
902 goto parse_DFS_referrals_exit;
903 }
904
905 /* copy link target UNC */
906 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
907 max_len = data_end - temp;
908 node->node_name = cifs_strndup_from_utf16(temp, max_len,
909 is_unicode, nls_codepage);
910 if (!node->node_name) {
911 rc = -ENOMEM;
912 goto parse_DFS_referrals_exit;
913 }
914
915 node->ttl = le32_to_cpu(ref->TimeToLive);
916
917 ref++;
918 }
919
920 parse_DFS_referrals_exit:
921 if (rc) {
922 free_dfs_info_array(*target_nodes, *num_of_nodes);
923 *target_nodes = NULL;
924 *num_of_nodes = 0;
925 }
926 return rc;
927 }
928
929 struct cifs_aio_ctx *
cifs_aio_ctx_alloc(void)930 cifs_aio_ctx_alloc(void)
931 {
932 struct cifs_aio_ctx *ctx;
933
934 /*
935 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
936 * to false so that we know when we have to unreference pages within
937 * cifs_aio_ctx_release()
938 */
939 ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
940 if (!ctx)
941 return NULL;
942
943 INIT_LIST_HEAD(&ctx->list);
944 mutex_init(&ctx->aio_mutex);
945 init_completion(&ctx->done);
946 kref_init(&ctx->refcount);
947 return ctx;
948 }
949
950 void
cifs_aio_ctx_release(struct kref * refcount)951 cifs_aio_ctx_release(struct kref *refcount)
952 {
953 struct cifs_aio_ctx *ctx = container_of(refcount,
954 struct cifs_aio_ctx, refcount);
955
956 cifsFileInfo_put(ctx->cfile);
957
958 /*
959 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
960 * which means that iov_iter_get_pages() was a success and thus that
961 * we have taken reference on pages.
962 */
963 if (ctx->bv) {
964 unsigned i;
965
966 for (i = 0; i < ctx->npages; i++) {
967 if (ctx->should_dirty)
968 set_page_dirty(ctx->bv[i].bv_page);
969 put_page(ctx->bv[i].bv_page);
970 }
971 kvfree(ctx->bv);
972 }
973
974 kfree(ctx);
975 }
976
977 #define CIFS_AIO_KMALLOC_LIMIT (1024 * 1024)
978
979 int
setup_aio_ctx_iter(struct cifs_aio_ctx * ctx,struct iov_iter * iter,int rw)980 setup_aio_ctx_iter(struct cifs_aio_ctx *ctx, struct iov_iter *iter, int rw)
981 {
982 ssize_t rc;
983 unsigned int cur_npages;
984 unsigned int npages = 0;
985 unsigned int i;
986 size_t len;
987 size_t count = iov_iter_count(iter);
988 unsigned int saved_len;
989 size_t start;
990 unsigned int max_pages = iov_iter_npages(iter, INT_MAX);
991 struct page **pages = NULL;
992 struct bio_vec *bv = NULL;
993
994 if (iov_iter_is_kvec(iter)) {
995 memcpy(&ctx->iter, iter, sizeof(*iter));
996 ctx->len = count;
997 iov_iter_advance(iter, count);
998 return 0;
999 }
1000
1001 if (array_size(max_pages, sizeof(*bv)) <= CIFS_AIO_KMALLOC_LIMIT)
1002 bv = kmalloc_array(max_pages, sizeof(*bv), GFP_KERNEL);
1003
1004 if (!bv) {
1005 bv = vmalloc(array_size(max_pages, sizeof(*bv)));
1006 if (!bv)
1007 return -ENOMEM;
1008 }
1009
1010 if (array_size(max_pages, sizeof(*pages)) <= CIFS_AIO_KMALLOC_LIMIT)
1011 pages = kmalloc_array(max_pages, sizeof(*pages), GFP_KERNEL);
1012
1013 if (!pages) {
1014 pages = vmalloc(array_size(max_pages, sizeof(*pages)));
1015 if (!pages) {
1016 kvfree(bv);
1017 return -ENOMEM;
1018 }
1019 }
1020
1021 saved_len = count;
1022
1023 while (count && npages < max_pages) {
1024 rc = iov_iter_get_pages(iter, pages, count, max_pages, &start);
1025 if (rc < 0) {
1026 cifs_dbg(VFS, "Couldn't get user pages (rc=%zd)\n", rc);
1027 break;
1028 }
1029
1030 if (rc > count) {
1031 cifs_dbg(VFS, "get pages rc=%zd more than %zu\n", rc,
1032 count);
1033 break;
1034 }
1035
1036 iov_iter_advance(iter, rc);
1037 count -= rc;
1038 rc += start;
1039 cur_npages = DIV_ROUND_UP(rc, PAGE_SIZE);
1040
1041 if (npages + cur_npages > max_pages) {
1042 cifs_dbg(VFS, "out of vec array capacity (%u vs %u)\n",
1043 npages + cur_npages, max_pages);
1044 break;
1045 }
1046
1047 for (i = 0; i < cur_npages; i++) {
1048 len = rc > PAGE_SIZE ? PAGE_SIZE : rc;
1049 bv[npages + i].bv_page = pages[i];
1050 bv[npages + i].bv_offset = start;
1051 bv[npages + i].bv_len = len - start;
1052 rc -= len;
1053 start = 0;
1054 }
1055
1056 npages += cur_npages;
1057 }
1058
1059 kvfree(pages);
1060 ctx->bv = bv;
1061 ctx->len = saved_len - count;
1062 ctx->npages = npages;
1063 iov_iter_bvec(&ctx->iter, rw, ctx->bv, npages, ctx->len);
1064 return 0;
1065 }
1066
1067 /**
1068 * cifs_alloc_hash - allocate hash and hash context together
1069 * @name: The name of the crypto hash algo
1070 * @shash: Where to put the pointer to the hash algo
1071 * @sdesc: Where to put the pointer to the hash descriptor
1072 *
1073 * The caller has to make sure @sdesc is initialized to either NULL or
1074 * a valid context. Both can be freed via cifs_free_hash().
1075 */
1076 int
cifs_alloc_hash(const char * name,struct crypto_shash ** shash,struct sdesc ** sdesc)1077 cifs_alloc_hash(const char *name,
1078 struct crypto_shash **shash, struct sdesc **sdesc)
1079 {
1080 int rc = 0;
1081 size_t size;
1082
1083 if (*sdesc != NULL)
1084 return 0;
1085
1086 *shash = crypto_alloc_shash(name, 0, 0);
1087 if (IS_ERR(*shash)) {
1088 cifs_dbg(VFS, "Could not allocate crypto %s\n", name);
1089 rc = PTR_ERR(*shash);
1090 *shash = NULL;
1091 *sdesc = NULL;
1092 return rc;
1093 }
1094
1095 size = sizeof(struct shash_desc) + crypto_shash_descsize(*shash);
1096 *sdesc = kmalloc(size, GFP_KERNEL);
1097 if (*sdesc == NULL) {
1098 cifs_dbg(VFS, "no memory left to allocate crypto %s\n", name);
1099 crypto_free_shash(*shash);
1100 *shash = NULL;
1101 return -ENOMEM;
1102 }
1103
1104 (*sdesc)->shash.tfm = *shash;
1105 return 0;
1106 }
1107
1108 /**
1109 * cifs_free_hash - free hash and hash context together
1110 * @shash: Where to find the pointer to the hash algo
1111 * @sdesc: Where to find the pointer to the hash descriptor
1112 *
1113 * Freeing a NULL hash or context is safe.
1114 */
1115 void
cifs_free_hash(struct crypto_shash ** shash,struct sdesc ** sdesc)1116 cifs_free_hash(struct crypto_shash **shash, struct sdesc **sdesc)
1117 {
1118 kfree(*sdesc);
1119 *sdesc = NULL;
1120 if (*shash)
1121 crypto_free_shash(*shash);
1122 *shash = NULL;
1123 }
1124
1125 /**
1126 * rqst_page_get_length - obtain the length and offset for a page in smb_rqst
1127 * @rqst: The request descriptor
1128 * @page: The index of the page to query
1129 * @len: Where to store the length for this page:
1130 * @offset: Where to store the offset for this page
1131 */
rqst_page_get_length(struct smb_rqst * rqst,unsigned int page,unsigned int * len,unsigned int * offset)1132 void rqst_page_get_length(struct smb_rqst *rqst, unsigned int page,
1133 unsigned int *len, unsigned int *offset)
1134 {
1135 *len = rqst->rq_pagesz;
1136 *offset = (page == 0) ? rqst->rq_offset : 0;
1137
1138 if (rqst->rq_npages == 1 || page == rqst->rq_npages-1)
1139 *len = rqst->rq_tailsz;
1140 else if (page == 0)
1141 *len = rqst->rq_pagesz - rqst->rq_offset;
1142 }
1143
extract_unc_hostname(const char * unc,const char ** h,size_t * len)1144 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1145 {
1146 const char *end;
1147
1148 /* skip initial slashes */
1149 while (*unc && (*unc == '\\' || *unc == '/'))
1150 unc++;
1151
1152 end = unc;
1153
1154 while (*end && !(*end == '\\' || *end == '/'))
1155 end++;
1156
1157 *h = unc;
1158 *len = end - unc;
1159 }
1160
1161 /**
1162 * copy_path_name - copy src path to dst, possibly truncating
1163 * @dst: The destination buffer
1164 * @src: The source name
1165 *
1166 * returns number of bytes written (including trailing nul)
1167 */
copy_path_name(char * dst,const char * src)1168 int copy_path_name(char *dst, const char *src)
1169 {
1170 int name_len;
1171
1172 /*
1173 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1174 * will truncate and strlen(dst) will be PATH_MAX-1
1175 */
1176 name_len = strscpy(dst, src, PATH_MAX);
1177 if (WARN_ON_ONCE(name_len < 0))
1178 name_len = PATH_MAX-1;
1179
1180 /* we count the trailing nul */
1181 name_len++;
1182 return name_len;
1183 }
1184
1185 struct super_cb_data {
1186 void *data;
1187 struct super_block *sb;
1188 };
1189
tcp_super_cb(struct super_block * sb,void * arg)1190 static void tcp_super_cb(struct super_block *sb, void *arg)
1191 {
1192 struct super_cb_data *sd = arg;
1193 struct TCP_Server_Info *server = sd->data;
1194 struct cifs_sb_info *cifs_sb;
1195 struct cifs_tcon *tcon;
1196
1197 if (sd->sb)
1198 return;
1199
1200 cifs_sb = CIFS_SB(sb);
1201 tcon = cifs_sb_master_tcon(cifs_sb);
1202 if (tcon->ses->server == server)
1203 sd->sb = sb;
1204 }
1205
__cifs_get_super(void (* f)(struct super_block *,void *),void * data)1206 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1207 void *data)
1208 {
1209 struct super_cb_data sd = {
1210 .data = data,
1211 .sb = NULL,
1212 };
1213
1214 iterate_supers_type(&cifs_fs_type, f, &sd);
1215
1216 if (!sd.sb)
1217 return ERR_PTR(-EINVAL);
1218 /*
1219 * Grab an active reference in order to prevent automounts (DFS links)
1220 * of expiring and then freeing up our cifs superblock pointer while
1221 * we're doing failover.
1222 */
1223 cifs_sb_active(sd.sb);
1224 return sd.sb;
1225 }
1226
__cifs_put_super(struct super_block * sb)1227 static void __cifs_put_super(struct super_block *sb)
1228 {
1229 if (!IS_ERR_OR_NULL(sb))
1230 cifs_sb_deactive(sb);
1231 }
1232
cifs_get_tcp_super(struct TCP_Server_Info * server)1233 struct super_block *cifs_get_tcp_super(struct TCP_Server_Info *server)
1234 {
1235 return __cifs_get_super(tcp_super_cb, server);
1236 }
1237
cifs_put_tcp_super(struct super_block * sb)1238 void cifs_put_tcp_super(struct super_block *sb)
1239 {
1240 __cifs_put_super(sb);
1241 }
1242
1243 #ifdef CONFIG_CIFS_DFS_UPCALL
match_target_ip(struct TCP_Server_Info * server,const char * share,size_t share_len,bool * result)1244 int match_target_ip(struct TCP_Server_Info *server,
1245 const char *share, size_t share_len,
1246 bool *result)
1247 {
1248 int rc;
1249 char *target, *tip = NULL;
1250 struct sockaddr tipaddr;
1251
1252 *result = false;
1253
1254 target = kzalloc(share_len + 3, GFP_KERNEL);
1255 if (!target) {
1256 rc = -ENOMEM;
1257 goto out;
1258 }
1259
1260 scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1261
1262 cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1263
1264 rc = dns_resolve_server_name_to_ip(target, &tip, NULL);
1265 if (rc < 0)
1266 goto out;
1267
1268 cifs_dbg(FYI, "%s: target ip: %s\n", __func__, tip);
1269
1270 if (!cifs_convert_address(&tipaddr, tip, strlen(tip))) {
1271 cifs_dbg(VFS, "%s: failed to convert target ip address\n",
1272 __func__);
1273 rc = -EINVAL;
1274 goto out;
1275 }
1276
1277 *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr,
1278 &tipaddr);
1279 cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1280 rc = 0;
1281
1282 out:
1283 kfree(target);
1284 kfree(tip);
1285
1286 return rc;
1287 }
1288
cifs_update_super_prepath(struct cifs_sb_info * cifs_sb,char * prefix)1289 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1290 {
1291 kfree(cifs_sb->prepath);
1292
1293 if (prefix && *prefix) {
1294 cifs_sb->prepath = kstrdup(prefix, GFP_ATOMIC);
1295 if (!cifs_sb->prepath)
1296 return -ENOMEM;
1297
1298 convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1299 } else
1300 cifs_sb->prepath = NULL;
1301
1302 cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1303 return 0;
1304 }
1305 #endif
1306