1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) 2014 Google, Inc
4 * Written by Simon Glass <sjg@chromium.org>
5 */
6
7 #include <common.h>
8 #include <dm.h>
9 #include <errno.h>
10 #include <init.h>
11 #include <log.h>
12 #include <malloc.h>
13 #include <pci.h>
14 #include <asm/global_data.h>
15 #include <asm/io.h>
16 #include <dm/device-internal.h>
17 #include <dm/lists.h>
18 #include <dm/uclass-internal.h>
19 #if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP)
20 #include <asm/fsp/fsp_support.h>
21 #endif
22 #include <linux/delay.h>
23 #include "pci_internal.h"
24
25 DECLARE_GLOBAL_DATA_PTR;
26
pci_get_bus(int busnum,struct udevice ** busp)27 int pci_get_bus(int busnum, struct udevice **busp)
28 {
29 int ret;
30
31 ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp);
32
33 /* Since buses may not be numbered yet try a little harder with bus 0 */
34 if (ret == -ENODEV) {
35 ret = uclass_first_device_err(UCLASS_PCI, busp);
36 if (ret)
37 return ret;
38 ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp);
39 }
40
41 return ret;
42 }
43
pci_get_controller(struct udevice * dev)44 struct udevice *pci_get_controller(struct udevice *dev)
45 {
46 while (device_is_on_pci_bus(dev))
47 dev = dev->parent;
48
49 return dev;
50 }
51
dm_pci_get_bdf(const struct udevice * dev)52 pci_dev_t dm_pci_get_bdf(const struct udevice *dev)
53 {
54 struct pci_child_plat *pplat = dev_get_parent_plat(dev);
55 struct udevice *bus = dev->parent;
56
57 /*
58 * This error indicates that @dev is a device on an unprobed PCI bus.
59 * The bus likely has bus=seq == -1, so the PCI_ADD_BUS() macro below
60 * will produce a bad BDF>
61 *
62 * A common cause of this problem is that this function is called in the
63 * of_to_plat() method of @dev. Accessing the PCI bus in that
64 * method is not allowed, since it has not yet been probed. To fix this,
65 * move that access to the probe() method of @dev instead.
66 */
67 if (!device_active(bus))
68 log_err("PCI: Device '%s' on unprobed bus '%s'\n", dev->name,
69 bus->name);
70 return PCI_ADD_BUS(dev_seq(bus), pplat->devfn);
71 }
72
73 /**
74 * pci_get_bus_max() - returns the bus number of the last active bus
75 *
76 * @return last bus number, or -1 if no active buses
77 */
pci_get_bus_max(void)78 static int pci_get_bus_max(void)
79 {
80 struct udevice *bus;
81 struct uclass *uc;
82 int ret = -1;
83
84 ret = uclass_get(UCLASS_PCI, &uc);
85 uclass_foreach_dev(bus, uc) {
86 if (dev_seq(bus) > ret)
87 ret = dev_seq(bus);
88 }
89
90 debug("%s: ret=%d\n", __func__, ret);
91
92 return ret;
93 }
94
pci_last_busno(void)95 int pci_last_busno(void)
96 {
97 return pci_get_bus_max();
98 }
99
pci_get_ff(enum pci_size_t size)100 int pci_get_ff(enum pci_size_t size)
101 {
102 switch (size) {
103 case PCI_SIZE_8:
104 return 0xff;
105 case PCI_SIZE_16:
106 return 0xffff;
107 default:
108 return 0xffffffff;
109 }
110 }
111
pci_dev_find_ofnode(struct udevice * bus,phys_addr_t bdf,ofnode * rnode)112 static void pci_dev_find_ofnode(struct udevice *bus, phys_addr_t bdf,
113 ofnode *rnode)
114 {
115 struct fdt_pci_addr addr;
116 ofnode node;
117 int ret;
118
119 dev_for_each_subnode(node, bus) {
120 ret = ofnode_read_pci_addr(node, FDT_PCI_SPACE_CONFIG, "reg",
121 &addr);
122 if (ret)
123 continue;
124
125 if (PCI_MASK_BUS(addr.phys_hi) != PCI_MASK_BUS(bdf))
126 continue;
127
128 *rnode = node;
129 break;
130 }
131 };
132
pci_bus_find_devfn(const struct udevice * bus,pci_dev_t find_devfn,struct udevice ** devp)133 int pci_bus_find_devfn(const struct udevice *bus, pci_dev_t find_devfn,
134 struct udevice **devp)
135 {
136 struct udevice *dev;
137
138 for (device_find_first_child(bus, &dev);
139 dev;
140 device_find_next_child(&dev)) {
141 struct pci_child_plat *pplat;
142
143 pplat = dev_get_parent_plat(dev);
144 if (pplat && pplat->devfn == find_devfn) {
145 *devp = dev;
146 return 0;
147 }
148 }
149
150 return -ENODEV;
151 }
152
dm_pci_bus_find_bdf(pci_dev_t bdf,struct udevice ** devp)153 int dm_pci_bus_find_bdf(pci_dev_t bdf, struct udevice **devp)
154 {
155 struct udevice *bus;
156 int ret;
157
158 ret = pci_get_bus(PCI_BUS(bdf), &bus);
159 if (ret)
160 return ret;
161 return pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), devp);
162 }
163
pci_device_matches_ids(struct udevice * dev,struct pci_device_id * ids)164 static int pci_device_matches_ids(struct udevice *dev,
165 struct pci_device_id *ids)
166 {
167 struct pci_child_plat *pplat;
168 int i;
169
170 pplat = dev_get_parent_plat(dev);
171 if (!pplat)
172 return -EINVAL;
173 for (i = 0; ids[i].vendor != 0; i++) {
174 if (pplat->vendor == ids[i].vendor &&
175 pplat->device == ids[i].device)
176 return i;
177 }
178
179 return -EINVAL;
180 }
181
pci_bus_find_devices(struct udevice * bus,struct pci_device_id * ids,int * indexp,struct udevice ** devp)182 int pci_bus_find_devices(struct udevice *bus, struct pci_device_id *ids,
183 int *indexp, struct udevice **devp)
184 {
185 struct udevice *dev;
186
187 /* Scan all devices on this bus */
188 for (device_find_first_child(bus, &dev);
189 dev;
190 device_find_next_child(&dev)) {
191 if (pci_device_matches_ids(dev, ids) >= 0) {
192 if ((*indexp)-- <= 0) {
193 *devp = dev;
194 return 0;
195 }
196 }
197 }
198
199 return -ENODEV;
200 }
201
pci_find_device_id(struct pci_device_id * ids,int index,struct udevice ** devp)202 int pci_find_device_id(struct pci_device_id *ids, int index,
203 struct udevice **devp)
204 {
205 struct udevice *bus;
206
207 /* Scan all known buses */
208 for (uclass_first_device(UCLASS_PCI, &bus);
209 bus;
210 uclass_next_device(&bus)) {
211 if (!pci_bus_find_devices(bus, ids, &index, devp))
212 return 0;
213 }
214 *devp = NULL;
215
216 return -ENODEV;
217 }
218
dm_pci_bus_find_device(struct udevice * bus,unsigned int vendor,unsigned int device,int * indexp,struct udevice ** devp)219 static int dm_pci_bus_find_device(struct udevice *bus, unsigned int vendor,
220 unsigned int device, int *indexp,
221 struct udevice **devp)
222 {
223 struct pci_child_plat *pplat;
224 struct udevice *dev;
225
226 for (device_find_first_child(bus, &dev);
227 dev;
228 device_find_next_child(&dev)) {
229 pplat = dev_get_parent_plat(dev);
230 if (pplat->vendor == vendor && pplat->device == device) {
231 if (!(*indexp)--) {
232 *devp = dev;
233 return 0;
234 }
235 }
236 }
237
238 return -ENODEV;
239 }
240
dm_pci_find_device(unsigned int vendor,unsigned int device,int index,struct udevice ** devp)241 int dm_pci_find_device(unsigned int vendor, unsigned int device, int index,
242 struct udevice **devp)
243 {
244 struct udevice *bus;
245
246 /* Scan all known buses */
247 for (uclass_first_device(UCLASS_PCI, &bus);
248 bus;
249 uclass_next_device(&bus)) {
250 if (!dm_pci_bus_find_device(bus, vendor, device, &index, devp))
251 return device_probe(*devp);
252 }
253 *devp = NULL;
254
255 return -ENODEV;
256 }
257
dm_pci_find_class(uint find_class,int index,struct udevice ** devp)258 int dm_pci_find_class(uint find_class, int index, struct udevice **devp)
259 {
260 struct udevice *dev;
261
262 /* Scan all known buses */
263 for (pci_find_first_device(&dev);
264 dev;
265 pci_find_next_device(&dev)) {
266 struct pci_child_plat *pplat = dev_get_parent_plat(dev);
267
268 if (pplat->class == find_class && !index--) {
269 *devp = dev;
270 return device_probe(*devp);
271 }
272 }
273 *devp = NULL;
274
275 return -ENODEV;
276 }
277
pci_bus_write_config(struct udevice * bus,pci_dev_t bdf,int offset,unsigned long value,enum pci_size_t size)278 int pci_bus_write_config(struct udevice *bus, pci_dev_t bdf, int offset,
279 unsigned long value, enum pci_size_t size)
280 {
281 struct dm_pci_ops *ops;
282
283 ops = pci_get_ops(bus);
284 if (!ops->write_config)
285 return -ENOSYS;
286 return ops->write_config(bus, bdf, offset, value, size);
287 }
288
pci_bus_clrset_config32(struct udevice * bus,pci_dev_t bdf,int offset,u32 clr,u32 set)289 int pci_bus_clrset_config32(struct udevice *bus, pci_dev_t bdf, int offset,
290 u32 clr, u32 set)
291 {
292 ulong val;
293 int ret;
294
295 ret = pci_bus_read_config(bus, bdf, offset, &val, PCI_SIZE_32);
296 if (ret)
297 return ret;
298 val &= ~clr;
299 val |= set;
300
301 return pci_bus_write_config(bus, bdf, offset, val, PCI_SIZE_32);
302 }
303
pci_write_config(pci_dev_t bdf,int offset,unsigned long value,enum pci_size_t size)304 int pci_write_config(pci_dev_t bdf, int offset, unsigned long value,
305 enum pci_size_t size)
306 {
307 struct udevice *bus;
308 int ret;
309
310 ret = pci_get_bus(PCI_BUS(bdf), &bus);
311 if (ret)
312 return ret;
313
314 return pci_bus_write_config(bus, bdf, offset, value, size);
315 }
316
dm_pci_write_config(struct udevice * dev,int offset,unsigned long value,enum pci_size_t size)317 int dm_pci_write_config(struct udevice *dev, int offset, unsigned long value,
318 enum pci_size_t size)
319 {
320 struct udevice *bus;
321
322 for (bus = dev; device_is_on_pci_bus(bus);)
323 bus = bus->parent;
324 return pci_bus_write_config(bus, dm_pci_get_bdf(dev), offset, value,
325 size);
326 }
327
pci_write_config32(pci_dev_t bdf,int offset,u32 value)328 int pci_write_config32(pci_dev_t bdf, int offset, u32 value)
329 {
330 return pci_write_config(bdf, offset, value, PCI_SIZE_32);
331 }
332
pci_write_config16(pci_dev_t bdf,int offset,u16 value)333 int pci_write_config16(pci_dev_t bdf, int offset, u16 value)
334 {
335 return pci_write_config(bdf, offset, value, PCI_SIZE_16);
336 }
337
pci_write_config8(pci_dev_t bdf,int offset,u8 value)338 int pci_write_config8(pci_dev_t bdf, int offset, u8 value)
339 {
340 return pci_write_config(bdf, offset, value, PCI_SIZE_8);
341 }
342
dm_pci_write_config8(struct udevice * dev,int offset,u8 value)343 int dm_pci_write_config8(struct udevice *dev, int offset, u8 value)
344 {
345 return dm_pci_write_config(dev, offset, value, PCI_SIZE_8);
346 }
347
dm_pci_write_config16(struct udevice * dev,int offset,u16 value)348 int dm_pci_write_config16(struct udevice *dev, int offset, u16 value)
349 {
350 return dm_pci_write_config(dev, offset, value, PCI_SIZE_16);
351 }
352
dm_pci_write_config32(struct udevice * dev,int offset,u32 value)353 int dm_pci_write_config32(struct udevice *dev, int offset, u32 value)
354 {
355 return dm_pci_write_config(dev, offset, value, PCI_SIZE_32);
356 }
357
pci_bus_read_config(const struct udevice * bus,pci_dev_t bdf,int offset,unsigned long * valuep,enum pci_size_t size)358 int pci_bus_read_config(const struct udevice *bus, pci_dev_t bdf, int offset,
359 unsigned long *valuep, enum pci_size_t size)
360 {
361 struct dm_pci_ops *ops;
362
363 ops = pci_get_ops(bus);
364 if (!ops->read_config)
365 return -ENOSYS;
366 return ops->read_config(bus, bdf, offset, valuep, size);
367 }
368
pci_read_config(pci_dev_t bdf,int offset,unsigned long * valuep,enum pci_size_t size)369 int pci_read_config(pci_dev_t bdf, int offset, unsigned long *valuep,
370 enum pci_size_t size)
371 {
372 struct udevice *bus;
373 int ret;
374
375 ret = pci_get_bus(PCI_BUS(bdf), &bus);
376 if (ret)
377 return ret;
378
379 return pci_bus_read_config(bus, bdf, offset, valuep, size);
380 }
381
dm_pci_read_config(const struct udevice * dev,int offset,unsigned long * valuep,enum pci_size_t size)382 int dm_pci_read_config(const struct udevice *dev, int offset,
383 unsigned long *valuep, enum pci_size_t size)
384 {
385 const struct udevice *bus;
386
387 for (bus = dev; device_is_on_pci_bus(bus);)
388 bus = bus->parent;
389 return pci_bus_read_config(bus, dm_pci_get_bdf(dev), offset, valuep,
390 size);
391 }
392
pci_read_config32(pci_dev_t bdf,int offset,u32 * valuep)393 int pci_read_config32(pci_dev_t bdf, int offset, u32 *valuep)
394 {
395 unsigned long value;
396 int ret;
397
398 ret = pci_read_config(bdf, offset, &value, PCI_SIZE_32);
399 if (ret)
400 return ret;
401 *valuep = value;
402
403 return 0;
404 }
405
pci_read_config16(pci_dev_t bdf,int offset,u16 * valuep)406 int pci_read_config16(pci_dev_t bdf, int offset, u16 *valuep)
407 {
408 unsigned long value;
409 int ret;
410
411 ret = pci_read_config(bdf, offset, &value, PCI_SIZE_16);
412 if (ret)
413 return ret;
414 *valuep = value;
415
416 return 0;
417 }
418
pci_read_config8(pci_dev_t bdf,int offset,u8 * valuep)419 int pci_read_config8(pci_dev_t bdf, int offset, u8 *valuep)
420 {
421 unsigned long value;
422 int ret;
423
424 ret = pci_read_config(bdf, offset, &value, PCI_SIZE_8);
425 if (ret)
426 return ret;
427 *valuep = value;
428
429 return 0;
430 }
431
dm_pci_read_config8(const struct udevice * dev,int offset,u8 * valuep)432 int dm_pci_read_config8(const struct udevice *dev, int offset, u8 *valuep)
433 {
434 unsigned long value;
435 int ret;
436
437 ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_8);
438 if (ret)
439 return ret;
440 *valuep = value;
441
442 return 0;
443 }
444
dm_pci_read_config16(const struct udevice * dev,int offset,u16 * valuep)445 int dm_pci_read_config16(const struct udevice *dev, int offset, u16 *valuep)
446 {
447 unsigned long value;
448 int ret;
449
450 ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_16);
451 if (ret)
452 return ret;
453 *valuep = value;
454
455 return 0;
456 }
457
dm_pci_read_config32(const struct udevice * dev,int offset,u32 * valuep)458 int dm_pci_read_config32(const struct udevice *dev, int offset, u32 *valuep)
459 {
460 unsigned long value;
461 int ret;
462
463 ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_32);
464 if (ret)
465 return ret;
466 *valuep = value;
467
468 return 0;
469 }
470
dm_pci_clrset_config8(struct udevice * dev,int offset,u32 clr,u32 set)471 int dm_pci_clrset_config8(struct udevice *dev, int offset, u32 clr, u32 set)
472 {
473 u8 val;
474 int ret;
475
476 ret = dm_pci_read_config8(dev, offset, &val);
477 if (ret)
478 return ret;
479 val &= ~clr;
480 val |= set;
481
482 return dm_pci_write_config8(dev, offset, val);
483 }
484
dm_pci_clrset_config16(struct udevice * dev,int offset,u32 clr,u32 set)485 int dm_pci_clrset_config16(struct udevice *dev, int offset, u32 clr, u32 set)
486 {
487 u16 val;
488 int ret;
489
490 ret = dm_pci_read_config16(dev, offset, &val);
491 if (ret)
492 return ret;
493 val &= ~clr;
494 val |= set;
495
496 return dm_pci_write_config16(dev, offset, val);
497 }
498
dm_pci_clrset_config32(struct udevice * dev,int offset,u32 clr,u32 set)499 int dm_pci_clrset_config32(struct udevice *dev, int offset, u32 clr, u32 set)
500 {
501 u32 val;
502 int ret;
503
504 ret = dm_pci_read_config32(dev, offset, &val);
505 if (ret)
506 return ret;
507 val &= ~clr;
508 val |= set;
509
510 return dm_pci_write_config32(dev, offset, val);
511 }
512
set_vga_bridge_bits(struct udevice * dev)513 static void set_vga_bridge_bits(struct udevice *dev)
514 {
515 struct udevice *parent = dev->parent;
516 u16 bc;
517
518 while (dev_seq(parent) != 0) {
519 dm_pci_read_config16(parent, PCI_BRIDGE_CONTROL, &bc);
520 bc |= PCI_BRIDGE_CTL_VGA;
521 dm_pci_write_config16(parent, PCI_BRIDGE_CONTROL, bc);
522 parent = parent->parent;
523 }
524 }
525
pci_auto_config_devices(struct udevice * bus)526 int pci_auto_config_devices(struct udevice *bus)
527 {
528 struct pci_controller *hose = dev_get_uclass_priv(bus);
529 struct pci_child_plat *pplat;
530 unsigned int sub_bus;
531 struct udevice *dev;
532 int ret;
533
534 sub_bus = dev_seq(bus);
535 debug("%s: start\n", __func__);
536 pciauto_config_init(hose);
537 for (ret = device_find_first_child(bus, &dev);
538 !ret && dev;
539 ret = device_find_next_child(&dev)) {
540 unsigned int max_bus;
541 int ret;
542
543 debug("%s: device %s\n", __func__, dev->name);
544 if (dev_has_ofnode(dev) &&
545 dev_read_bool(dev, "pci,no-autoconfig"))
546 continue;
547 ret = dm_pciauto_config_device(dev);
548 if (ret < 0)
549 return log_msg_ret("auto", ret);
550 max_bus = ret;
551 sub_bus = max(sub_bus, max_bus);
552
553 pplat = dev_get_parent_plat(dev);
554 if (pplat->class == (PCI_CLASS_DISPLAY_VGA << 8))
555 set_vga_bridge_bits(dev);
556 }
557 debug("%s: done\n", __func__);
558
559 return log_msg_ret("sub", sub_bus);
560 }
561
pci_generic_mmap_write_config(const struct udevice * bus,int (* addr_f)(const struct udevice * bus,pci_dev_t bdf,uint offset,void ** addrp),pci_dev_t bdf,uint offset,ulong value,enum pci_size_t size)562 int pci_generic_mmap_write_config(
563 const struct udevice *bus,
564 int (*addr_f)(const struct udevice *bus, pci_dev_t bdf, uint offset,
565 void **addrp),
566 pci_dev_t bdf,
567 uint offset,
568 ulong value,
569 enum pci_size_t size)
570 {
571 void *address;
572
573 if (addr_f(bus, bdf, offset, &address) < 0)
574 return 0;
575
576 switch (size) {
577 case PCI_SIZE_8:
578 writeb(value, address);
579 return 0;
580 case PCI_SIZE_16:
581 writew(value, address);
582 return 0;
583 case PCI_SIZE_32:
584 writel(value, address);
585 return 0;
586 default:
587 return -EINVAL;
588 }
589 }
590
pci_generic_mmap_read_config(const struct udevice * bus,int (* addr_f)(const struct udevice * bus,pci_dev_t bdf,uint offset,void ** addrp),pci_dev_t bdf,uint offset,ulong * valuep,enum pci_size_t size)591 int pci_generic_mmap_read_config(
592 const struct udevice *bus,
593 int (*addr_f)(const struct udevice *bus, pci_dev_t bdf, uint offset,
594 void **addrp),
595 pci_dev_t bdf,
596 uint offset,
597 ulong *valuep,
598 enum pci_size_t size)
599 {
600 void *address;
601
602 if (addr_f(bus, bdf, offset, &address) < 0) {
603 *valuep = pci_get_ff(size);
604 return 0;
605 }
606
607 switch (size) {
608 case PCI_SIZE_8:
609 *valuep = readb(address);
610 return 0;
611 case PCI_SIZE_16:
612 *valuep = readw(address);
613 return 0;
614 case PCI_SIZE_32:
615 *valuep = readl(address);
616 return 0;
617 default:
618 return -EINVAL;
619 }
620 }
621
dm_pci_hose_probe_bus(struct udevice * bus)622 int dm_pci_hose_probe_bus(struct udevice *bus)
623 {
624 int sub_bus;
625 int ret;
626 int ea_pos;
627 u8 reg;
628
629 debug("%s\n", __func__);
630
631 ea_pos = dm_pci_find_capability(bus, PCI_CAP_ID_EA);
632 if (ea_pos) {
633 dm_pci_read_config8(bus, ea_pos + sizeof(u32) + sizeof(u8),
634 ®);
635 sub_bus = reg;
636 } else {
637 sub_bus = pci_get_bus_max() + 1;
638 }
639 debug("%s: bus = %d/%s\n", __func__, sub_bus, bus->name);
640 dm_pciauto_prescan_setup_bridge(bus, sub_bus);
641
642 ret = device_probe(bus);
643 if (ret) {
644 debug("%s: Cannot probe bus %s: %d\n", __func__, bus->name,
645 ret);
646 return log_msg_ret("probe", ret);
647 }
648
649 dm_pciauto_postscan_setup_bridge(bus, sub_bus);
650
651 return sub_bus;
652 }
653
654 /**
655 * pci_match_one_device - Tell if a PCI device structure has a matching
656 * PCI device id structure
657 * @id: single PCI device id structure to match
658 * @find: the PCI device id structure to match against
659 *
660 * Returns true if the finding pci_device_id structure matched or false if
661 * there is no match.
662 */
pci_match_one_id(const struct pci_device_id * id,const struct pci_device_id * find)663 static bool pci_match_one_id(const struct pci_device_id *id,
664 const struct pci_device_id *find)
665 {
666 if ((id->vendor == PCI_ANY_ID || id->vendor == find->vendor) &&
667 (id->device == PCI_ANY_ID || id->device == find->device) &&
668 (id->subvendor == PCI_ANY_ID || id->subvendor == find->subvendor) &&
669 (id->subdevice == PCI_ANY_ID || id->subdevice == find->subdevice) &&
670 !((id->class ^ find->class) & id->class_mask))
671 return true;
672
673 return false;
674 }
675
676 /**
677 * pci_find_and_bind_driver() - Find and bind the right PCI driver
678 *
679 * This only looks at certain fields in the descriptor.
680 *
681 * @parent: Parent bus
682 * @find_id: Specification of the driver to find
683 * @bdf: Bus/device/function addreess - see PCI_BDF()
684 * @devp: Returns a pointer to the device created
685 * @return 0 if OK, -EPERM if the device is not needed before relocation and
686 * therefore was not created, other -ve value on error
687 */
pci_find_and_bind_driver(struct udevice * parent,struct pci_device_id * find_id,pci_dev_t bdf,struct udevice ** devp)688 static int pci_find_and_bind_driver(struct udevice *parent,
689 struct pci_device_id *find_id,
690 pci_dev_t bdf, struct udevice **devp)
691 {
692 struct pci_driver_entry *start, *entry;
693 ofnode node = ofnode_null();
694 const char *drv;
695 int n_ents;
696 int ret;
697 char name[30], *str;
698 bool bridge;
699
700 *devp = NULL;
701
702 debug("%s: Searching for driver: vendor=%x, device=%x\n", __func__,
703 find_id->vendor, find_id->device);
704
705 /* Determine optional OF node */
706 if (ofnode_valid(dev_ofnode(parent)))
707 pci_dev_find_ofnode(parent, bdf, &node);
708
709 if (ofnode_valid(node) && !ofnode_is_available(node)) {
710 debug("%s: Ignoring disabled device\n", __func__);
711 return log_msg_ret("dis", -EPERM);
712 }
713
714 start = ll_entry_start(struct pci_driver_entry, pci_driver_entry);
715 n_ents = ll_entry_count(struct pci_driver_entry, pci_driver_entry);
716 for (entry = start; entry != start + n_ents; entry++) {
717 const struct pci_device_id *id;
718 struct udevice *dev;
719 const struct driver *drv;
720
721 for (id = entry->match;
722 id->vendor || id->subvendor || id->class_mask;
723 id++) {
724 if (!pci_match_one_id(id, find_id))
725 continue;
726
727 drv = entry->driver;
728
729 /*
730 * In the pre-relocation phase, we only bind devices
731 * whose driver has the DM_FLAG_PRE_RELOC set, to save
732 * precious memory space as on some platforms as that
733 * space is pretty limited (ie: using Cache As RAM).
734 */
735 if (!(gd->flags & GD_FLG_RELOC) &&
736 !(drv->flags & DM_FLAG_PRE_RELOC))
737 return log_msg_ret("pre", -EPERM);
738
739 /*
740 * We could pass the descriptor to the driver as
741 * plat (instead of NULL) and allow its bind()
742 * method to return -ENOENT if it doesn't support this
743 * device. That way we could continue the search to
744 * find another driver. For now this doesn't seem
745 * necesssary, so just bind the first match.
746 */
747 ret = device_bind(parent, drv, drv->name, NULL, node,
748 &dev);
749 if (ret)
750 goto error;
751 debug("%s: Match found: %s\n", __func__, drv->name);
752 dev->driver_data = id->driver_data;
753 *devp = dev;
754 return 0;
755 }
756 }
757
758 bridge = (find_id->class >> 8) == PCI_CLASS_BRIDGE_PCI;
759 /*
760 * In the pre-relocation phase, we only bind bridge devices to save
761 * precious memory space as on some platforms as that space is pretty
762 * limited (ie: using Cache As RAM).
763 */
764 if (!(gd->flags & GD_FLG_RELOC) && !bridge)
765 return log_msg_ret("notbr", -EPERM);
766
767 /* Bind a generic driver so that the device can be used */
768 sprintf(name, "pci_%x:%x.%x", dev_seq(parent), PCI_DEV(bdf),
769 PCI_FUNC(bdf));
770 str = strdup(name);
771 if (!str)
772 return -ENOMEM;
773 drv = bridge ? "pci_bridge_drv" : "pci_generic_drv";
774
775 ret = device_bind_driver_to_node(parent, drv, str, node, devp);
776 if (ret) {
777 debug("%s: Failed to bind generic driver: %d\n", __func__, ret);
778 free(str);
779 return ret;
780 }
781 debug("%s: No match found: bound generic driver instead\n", __func__);
782
783 return 0;
784
785 error:
786 debug("%s: No match found: error %d\n", __func__, ret);
787 return ret;
788 }
789
pci_bind_bus_devices(struct udevice * bus)790 int pci_bind_bus_devices(struct udevice *bus)
791 {
792 ulong vendor, device;
793 ulong header_type;
794 pci_dev_t bdf, end;
795 bool found_multi;
796 int ari_off;
797 int ret;
798
799 found_multi = false;
800 end = PCI_BDF(dev_seq(bus), PCI_MAX_PCI_DEVICES - 1,
801 PCI_MAX_PCI_FUNCTIONS - 1);
802 for (bdf = PCI_BDF(dev_seq(bus), 0, 0); bdf <= end;
803 bdf += PCI_BDF(0, 0, 1)) {
804 struct pci_child_plat *pplat;
805 struct udevice *dev;
806 ulong class;
807
808 if (!PCI_FUNC(bdf))
809 found_multi = false;
810 if (PCI_FUNC(bdf) && !found_multi)
811 continue;
812
813 /* Check only the first access, we don't expect problems */
814 ret = pci_bus_read_config(bus, bdf, PCI_VENDOR_ID, &vendor,
815 PCI_SIZE_16);
816 if (ret)
817 goto error;
818
819 if (vendor == 0xffff || vendor == 0x0000)
820 continue;
821
822 pci_bus_read_config(bus, bdf, PCI_HEADER_TYPE,
823 &header_type, PCI_SIZE_8);
824
825 if (!PCI_FUNC(bdf))
826 found_multi = header_type & 0x80;
827
828 debug("%s: bus %d/%s: found device %x, function %d", __func__,
829 dev_seq(bus), bus->name, PCI_DEV(bdf), PCI_FUNC(bdf));
830 pci_bus_read_config(bus, bdf, PCI_DEVICE_ID, &device,
831 PCI_SIZE_16);
832 pci_bus_read_config(bus, bdf, PCI_CLASS_REVISION, &class,
833 PCI_SIZE_32);
834 class >>= 8;
835
836 /* Find this device in the device tree */
837 ret = pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), &dev);
838 debug(": find ret=%d\n", ret);
839
840 /* If nothing in the device tree, bind a device */
841 if (ret == -ENODEV) {
842 struct pci_device_id find_id;
843 ulong val;
844
845 memset(&find_id, '\0', sizeof(find_id));
846 find_id.vendor = vendor;
847 find_id.device = device;
848 find_id.class = class;
849 if ((header_type & 0x7f) == PCI_HEADER_TYPE_NORMAL) {
850 pci_bus_read_config(bus, bdf,
851 PCI_SUBSYSTEM_VENDOR_ID,
852 &val, PCI_SIZE_32);
853 find_id.subvendor = val & 0xffff;
854 find_id.subdevice = val >> 16;
855 }
856 ret = pci_find_and_bind_driver(bus, &find_id, bdf,
857 &dev);
858 }
859 if (ret == -EPERM)
860 continue;
861 else if (ret)
862 return ret;
863
864 /* Update the platform data */
865 pplat = dev_get_parent_plat(dev);
866 pplat->devfn = PCI_MASK_BUS(bdf);
867 pplat->vendor = vendor;
868 pplat->device = device;
869 pplat->class = class;
870
871 if (IS_ENABLED(CONFIG_PCI_ARID)) {
872 ari_off = dm_pci_find_ext_capability(dev,
873 PCI_EXT_CAP_ID_ARI);
874 if (ari_off) {
875 u16 ari_cap;
876
877 /*
878 * Read Next Function number in ARI Cap
879 * Register
880 */
881 dm_pci_read_config16(dev, ari_off + 4,
882 &ari_cap);
883 /*
884 * Update next scan on this function number,
885 * subtract 1 in BDF to satisfy loop increment.
886 */
887 if (ari_cap & 0xff00) {
888 bdf = PCI_BDF(PCI_BUS(bdf),
889 PCI_DEV(ari_cap),
890 PCI_FUNC(ari_cap));
891 bdf = bdf - 0x100;
892 }
893 }
894 }
895 }
896
897 return 0;
898 error:
899 printf("Cannot read bus configuration: %d\n", ret);
900
901 return ret;
902 }
903
decode_regions(struct pci_controller * hose,ofnode parent_node,ofnode node)904 static void decode_regions(struct pci_controller *hose, ofnode parent_node,
905 ofnode node)
906 {
907 int pci_addr_cells, addr_cells, size_cells;
908 int cells_per_record;
909 struct bd_info *bd;
910 const u32 *prop;
911 int max_regions;
912 int len;
913 int i;
914
915 prop = ofnode_get_property(node, "ranges", &len);
916 if (!prop) {
917 debug("%s: Cannot decode regions\n", __func__);
918 return;
919 }
920
921 pci_addr_cells = ofnode_read_simple_addr_cells(node);
922 addr_cells = ofnode_read_simple_addr_cells(parent_node);
923 size_cells = ofnode_read_simple_size_cells(node);
924
925 /* PCI addresses are always 3-cells */
926 len /= sizeof(u32);
927 cells_per_record = pci_addr_cells + addr_cells + size_cells;
928 hose->region_count = 0;
929 debug("%s: len=%d, cells_per_record=%d\n", __func__, len,
930 cells_per_record);
931
932 /* Dynamically allocate the regions array */
933 max_regions = len / cells_per_record + CONFIG_NR_DRAM_BANKS;
934 hose->regions = (struct pci_region *)
935 calloc(1, max_regions * sizeof(struct pci_region));
936
937 for (i = 0; i < max_regions; i++, len -= cells_per_record) {
938 u64 pci_addr, addr, size;
939 int space_code;
940 u32 flags;
941 int type;
942 int pos;
943
944 if (len < cells_per_record)
945 break;
946 flags = fdt32_to_cpu(prop[0]);
947 space_code = (flags >> 24) & 3;
948 pci_addr = fdtdec_get_number(prop + 1, 2);
949 prop += pci_addr_cells;
950 addr = fdtdec_get_number(prop, addr_cells);
951 prop += addr_cells;
952 size = fdtdec_get_number(prop, size_cells);
953 prop += size_cells;
954 debug("%s: region %d, pci_addr=%llx, addr=%llx, size=%llx, space_code=%d\n",
955 __func__, hose->region_count, pci_addr, addr, size, space_code);
956 if (space_code & 2) {
957 type = flags & (1U << 30) ? PCI_REGION_PREFETCH :
958 PCI_REGION_MEM;
959 } else if (space_code & 1) {
960 type = PCI_REGION_IO;
961 } else {
962 continue;
963 }
964
965 if (!IS_ENABLED(CONFIG_SYS_PCI_64BIT) &&
966 type == PCI_REGION_MEM && upper_32_bits(pci_addr)) {
967 debug(" - beyond the 32-bit boundary, ignoring\n");
968 continue;
969 }
970
971 pos = -1;
972 if (!IS_ENABLED(CONFIG_PCI_REGION_MULTI_ENTRY)) {
973 for (i = 0; i < hose->region_count; i++) {
974 if (hose->regions[i].flags == type)
975 pos = i;
976 }
977 }
978
979 if (pos == -1)
980 pos = hose->region_count++;
981 debug(" - type=%d, pos=%d\n", type, pos);
982 pci_set_region(hose->regions + pos, pci_addr, addr, size, type);
983 }
984
985 /* Add a region for our local memory */
986 bd = gd->bd;
987 if (!bd)
988 return;
989
990 for (i = 0; i < CONFIG_NR_DRAM_BANKS; ++i) {
991 if (bd->bi_dram[i].size) {
992 pci_set_region(hose->regions + hose->region_count++,
993 bd->bi_dram[i].start,
994 bd->bi_dram[i].start,
995 bd->bi_dram[i].size,
996 PCI_REGION_MEM | PCI_REGION_SYS_MEMORY);
997 }
998 }
999
1000 return;
1001 }
1002
pci_uclass_pre_probe(struct udevice * bus)1003 static int pci_uclass_pre_probe(struct udevice *bus)
1004 {
1005 struct pci_controller *hose;
1006 struct uclass *uc;
1007 int ret;
1008
1009 debug("%s, bus=%d/%s, parent=%s\n", __func__, dev_seq(bus), bus->name,
1010 bus->parent->name);
1011 hose = dev_get_uclass_priv(bus);
1012
1013 /*
1014 * Set the sequence number, if device_bind() doesn't. We want control
1015 * of this so that numbers are allocated as devices are probed. That
1016 * ensures that sub-bus numbered is correct (sub-buses must get numbers
1017 * higher than their parents)
1018 */
1019 if (dev_seq(bus) == -1) {
1020 ret = uclass_get(UCLASS_PCI, &uc);
1021 if (ret)
1022 return ret;
1023 bus->seq_ = uclass_find_next_free_seq(uc);
1024 }
1025
1026 /* For bridges, use the top-level PCI controller */
1027 if (!device_is_on_pci_bus(bus)) {
1028 hose->ctlr = bus;
1029 decode_regions(hose, dev_ofnode(bus->parent), dev_ofnode(bus));
1030 } else {
1031 struct pci_controller *parent_hose;
1032
1033 parent_hose = dev_get_uclass_priv(bus->parent);
1034 hose->ctlr = parent_hose->bus;
1035 }
1036
1037 hose->bus = bus;
1038 hose->first_busno = dev_seq(bus);
1039 hose->last_busno = dev_seq(bus);
1040 if (dev_has_ofnode(bus)) {
1041 hose->skip_auto_config_until_reloc =
1042 dev_read_bool(bus,
1043 "u-boot,skip-auto-config-until-reloc");
1044 }
1045
1046 return 0;
1047 }
1048
pci_uclass_post_probe(struct udevice * bus)1049 static int pci_uclass_post_probe(struct udevice *bus)
1050 {
1051 struct pci_controller *hose = dev_get_uclass_priv(bus);
1052 int ret;
1053
1054 debug("%s: probing bus %d\n", __func__, dev_seq(bus));
1055 ret = pci_bind_bus_devices(bus);
1056 if (ret)
1057 return log_msg_ret("bind", ret);
1058
1059 if (CONFIG_IS_ENABLED(PCI_PNP) && ll_boot_init() &&
1060 (!hose->skip_auto_config_until_reloc ||
1061 (gd->flags & GD_FLG_RELOC))) {
1062 ret = pci_auto_config_devices(bus);
1063 if (ret < 0)
1064 return log_msg_ret("cfg", ret);
1065 }
1066
1067 #if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP)
1068 /*
1069 * Per Intel FSP specification, we should call FSP notify API to
1070 * inform FSP that PCI enumeration has been done so that FSP will
1071 * do any necessary initialization as required by the chipset's
1072 * BIOS Writer's Guide (BWG).
1073 *
1074 * Unfortunately we have to put this call here as with driver model,
1075 * the enumeration is all done on a lazy basis as needed, so until
1076 * something is touched on PCI it won't happen.
1077 *
1078 * Note we only call this 1) after U-Boot is relocated, and 2)
1079 * root bus has finished probing.
1080 */
1081 if ((gd->flags & GD_FLG_RELOC) && dev_seq(bus) == 0 && ll_boot_init()) {
1082 ret = fsp_init_phase_pci();
1083 if (ret)
1084 return log_msg_ret("fsp", ret);
1085 }
1086 #endif
1087
1088 return 0;
1089 }
1090
pci_uclass_child_post_bind(struct udevice * dev)1091 static int pci_uclass_child_post_bind(struct udevice *dev)
1092 {
1093 struct pci_child_plat *pplat;
1094
1095 if (!dev_has_ofnode(dev))
1096 return 0;
1097
1098 pplat = dev_get_parent_plat(dev);
1099
1100 /* Extract vendor id and device id if available */
1101 ofnode_read_pci_vendev(dev_ofnode(dev), &pplat->vendor, &pplat->device);
1102
1103 /* Extract the devfn from fdt_pci_addr */
1104 pplat->devfn = pci_get_devfn(dev);
1105
1106 return 0;
1107 }
1108
pci_bridge_read_config(const struct udevice * bus,pci_dev_t bdf,uint offset,ulong * valuep,enum pci_size_t size)1109 static int pci_bridge_read_config(const struct udevice *bus, pci_dev_t bdf,
1110 uint offset, ulong *valuep,
1111 enum pci_size_t size)
1112 {
1113 struct pci_controller *hose = dev_get_uclass_priv(bus);
1114
1115 return pci_bus_read_config(hose->ctlr, bdf, offset, valuep, size);
1116 }
1117
pci_bridge_write_config(struct udevice * bus,pci_dev_t bdf,uint offset,ulong value,enum pci_size_t size)1118 static int pci_bridge_write_config(struct udevice *bus, pci_dev_t bdf,
1119 uint offset, ulong value,
1120 enum pci_size_t size)
1121 {
1122 struct pci_controller *hose = dev_get_uclass_priv(bus);
1123
1124 return pci_bus_write_config(hose->ctlr, bdf, offset, value, size);
1125 }
1126
skip_to_next_device(struct udevice * bus,struct udevice ** devp)1127 static int skip_to_next_device(struct udevice *bus, struct udevice **devp)
1128 {
1129 struct udevice *dev;
1130 int ret = 0;
1131
1132 /*
1133 * Scan through all the PCI controllers. On x86 there will only be one
1134 * but that is not necessarily true on other hardware.
1135 */
1136 do {
1137 device_find_first_child(bus, &dev);
1138 if (dev) {
1139 *devp = dev;
1140 return 0;
1141 }
1142 ret = uclass_next_device(&bus);
1143 if (ret)
1144 return ret;
1145 } while (bus);
1146
1147 return 0;
1148 }
1149
pci_find_next_device(struct udevice ** devp)1150 int pci_find_next_device(struct udevice **devp)
1151 {
1152 struct udevice *child = *devp;
1153 struct udevice *bus = child->parent;
1154 int ret;
1155
1156 /* First try all the siblings */
1157 *devp = NULL;
1158 while (child) {
1159 device_find_next_child(&child);
1160 if (child) {
1161 *devp = child;
1162 return 0;
1163 }
1164 }
1165
1166 /* We ran out of siblings. Try the next bus */
1167 ret = uclass_next_device(&bus);
1168 if (ret)
1169 return ret;
1170
1171 return bus ? skip_to_next_device(bus, devp) : 0;
1172 }
1173
pci_find_first_device(struct udevice ** devp)1174 int pci_find_first_device(struct udevice **devp)
1175 {
1176 struct udevice *bus;
1177 int ret;
1178
1179 *devp = NULL;
1180 ret = uclass_first_device(UCLASS_PCI, &bus);
1181 if (ret)
1182 return ret;
1183
1184 return skip_to_next_device(bus, devp);
1185 }
1186
pci_conv_32_to_size(ulong value,uint offset,enum pci_size_t size)1187 ulong pci_conv_32_to_size(ulong value, uint offset, enum pci_size_t size)
1188 {
1189 switch (size) {
1190 case PCI_SIZE_8:
1191 return (value >> ((offset & 3) * 8)) & 0xff;
1192 case PCI_SIZE_16:
1193 return (value >> ((offset & 2) * 8)) & 0xffff;
1194 default:
1195 return value;
1196 }
1197 }
1198
pci_conv_size_to_32(ulong old,ulong value,uint offset,enum pci_size_t size)1199 ulong pci_conv_size_to_32(ulong old, ulong value, uint offset,
1200 enum pci_size_t size)
1201 {
1202 uint off_mask;
1203 uint val_mask, shift;
1204 ulong ldata, mask;
1205
1206 switch (size) {
1207 case PCI_SIZE_8:
1208 off_mask = 3;
1209 val_mask = 0xff;
1210 break;
1211 case PCI_SIZE_16:
1212 off_mask = 2;
1213 val_mask = 0xffff;
1214 break;
1215 default:
1216 return value;
1217 }
1218 shift = (offset & off_mask) * 8;
1219 ldata = (value & val_mask) << shift;
1220 mask = val_mask << shift;
1221 value = (old & ~mask) | ldata;
1222
1223 return value;
1224 }
1225
pci_get_dma_regions(struct udevice * dev,struct pci_region * memp,int index)1226 int pci_get_dma_regions(struct udevice *dev, struct pci_region *memp, int index)
1227 {
1228 int pci_addr_cells, addr_cells, size_cells;
1229 int cells_per_record;
1230 const u32 *prop;
1231 int len;
1232 int i = 0;
1233
1234 prop = ofnode_get_property(dev_ofnode(dev), "dma-ranges", &len);
1235 if (!prop) {
1236 log_err("PCI: Device '%s': Cannot decode dma-ranges\n",
1237 dev->name);
1238 return -EINVAL;
1239 }
1240
1241 pci_addr_cells = ofnode_read_simple_addr_cells(dev_ofnode(dev));
1242 addr_cells = ofnode_read_simple_addr_cells(dev_ofnode(dev->parent));
1243 size_cells = ofnode_read_simple_size_cells(dev_ofnode(dev));
1244
1245 /* PCI addresses are always 3-cells */
1246 len /= sizeof(u32);
1247 cells_per_record = pci_addr_cells + addr_cells + size_cells;
1248 debug("%s: len=%d, cells_per_record=%d\n", __func__, len,
1249 cells_per_record);
1250
1251 while (len) {
1252 memp->bus_start = fdtdec_get_number(prop + 1, 2);
1253 prop += pci_addr_cells;
1254 memp->phys_start = fdtdec_get_number(prop, addr_cells);
1255 prop += addr_cells;
1256 memp->size = fdtdec_get_number(prop, size_cells);
1257 prop += size_cells;
1258
1259 if (i == index)
1260 return 0;
1261 i++;
1262 len -= cells_per_record;
1263 }
1264
1265 return -EINVAL;
1266 }
1267
pci_get_regions(struct udevice * dev,struct pci_region ** iop,struct pci_region ** memp,struct pci_region ** prefp)1268 int pci_get_regions(struct udevice *dev, struct pci_region **iop,
1269 struct pci_region **memp, struct pci_region **prefp)
1270 {
1271 struct udevice *bus = pci_get_controller(dev);
1272 struct pci_controller *hose = dev_get_uclass_priv(bus);
1273 int i;
1274
1275 *iop = NULL;
1276 *memp = NULL;
1277 *prefp = NULL;
1278 for (i = 0; i < hose->region_count; i++) {
1279 switch (hose->regions[i].flags) {
1280 case PCI_REGION_IO:
1281 if (!*iop || (*iop)->size < hose->regions[i].size)
1282 *iop = hose->regions + i;
1283 break;
1284 case PCI_REGION_MEM:
1285 if (!*memp || (*memp)->size < hose->regions[i].size)
1286 *memp = hose->regions + i;
1287 break;
1288 case (PCI_REGION_MEM | PCI_REGION_PREFETCH):
1289 if (!*prefp || (*prefp)->size < hose->regions[i].size)
1290 *prefp = hose->regions + i;
1291 break;
1292 }
1293 }
1294
1295 return (*iop != NULL) + (*memp != NULL) + (*prefp != NULL);
1296 }
1297
dm_pci_read_bar32(const struct udevice * dev,int barnum)1298 u32 dm_pci_read_bar32(const struct udevice *dev, int barnum)
1299 {
1300 u32 addr;
1301 int bar;
1302
1303 bar = PCI_BASE_ADDRESS_0 + barnum * 4;
1304 dm_pci_read_config32(dev, bar, &addr);
1305
1306 /*
1307 * If we get an invalid address, return this so that comparisons with
1308 * FDT_ADDR_T_NONE work correctly
1309 */
1310 if (addr == 0xffffffff)
1311 return addr;
1312 else if (addr & PCI_BASE_ADDRESS_SPACE_IO)
1313 return addr & PCI_BASE_ADDRESS_IO_MASK;
1314 else
1315 return addr & PCI_BASE_ADDRESS_MEM_MASK;
1316 }
1317
dm_pci_write_bar32(struct udevice * dev,int barnum,u32 addr)1318 void dm_pci_write_bar32(struct udevice *dev, int barnum, u32 addr)
1319 {
1320 int bar;
1321
1322 bar = PCI_BASE_ADDRESS_0 + barnum * 4;
1323 dm_pci_write_config32(dev, bar, addr);
1324 }
1325
_dm_pci_bus_to_phys(struct udevice * ctlr,pci_addr_t bus_addr,unsigned long flags,unsigned long skip_mask,phys_addr_t * pa)1326 static int _dm_pci_bus_to_phys(struct udevice *ctlr,
1327 pci_addr_t bus_addr, unsigned long flags,
1328 unsigned long skip_mask, phys_addr_t *pa)
1329 {
1330 struct pci_controller *hose = dev_get_uclass_priv(ctlr);
1331 struct pci_region *res;
1332 int i;
1333
1334 if (hose->region_count == 0) {
1335 *pa = bus_addr;
1336 return 0;
1337 }
1338
1339 for (i = 0; i < hose->region_count; i++) {
1340 res = &hose->regions[i];
1341
1342 if (((res->flags ^ flags) & PCI_REGION_TYPE) != 0)
1343 continue;
1344
1345 if (res->flags & skip_mask)
1346 continue;
1347
1348 if (bus_addr >= res->bus_start &&
1349 (bus_addr - res->bus_start) < res->size) {
1350 *pa = (bus_addr - res->bus_start + res->phys_start);
1351 return 0;
1352 }
1353 }
1354
1355 return 1;
1356 }
1357
dm_pci_bus_to_phys(struct udevice * dev,pci_addr_t bus_addr,unsigned long flags)1358 phys_addr_t dm_pci_bus_to_phys(struct udevice *dev, pci_addr_t bus_addr,
1359 unsigned long flags)
1360 {
1361 phys_addr_t phys_addr = 0;
1362 struct udevice *ctlr;
1363 int ret;
1364
1365 /* The root controller has the region information */
1366 ctlr = pci_get_controller(dev);
1367
1368 /*
1369 * if PCI_REGION_MEM is set we do a two pass search with preference
1370 * on matches that don't have PCI_REGION_SYS_MEMORY set
1371 */
1372 if ((flags & PCI_REGION_TYPE) == PCI_REGION_MEM) {
1373 ret = _dm_pci_bus_to_phys(ctlr, bus_addr,
1374 flags, PCI_REGION_SYS_MEMORY,
1375 &phys_addr);
1376 if (!ret)
1377 return phys_addr;
1378 }
1379
1380 ret = _dm_pci_bus_to_phys(ctlr, bus_addr, flags, 0, &phys_addr);
1381
1382 if (ret)
1383 puts("pci_hose_bus_to_phys: invalid physical address\n");
1384
1385 return phys_addr;
1386 }
1387
_dm_pci_phys_to_bus(struct udevice * dev,phys_addr_t phys_addr,unsigned long flags,unsigned long skip_mask,pci_addr_t * ba)1388 int _dm_pci_phys_to_bus(struct udevice *dev, phys_addr_t phys_addr,
1389 unsigned long flags, unsigned long skip_mask,
1390 pci_addr_t *ba)
1391 {
1392 struct pci_region *res;
1393 struct udevice *ctlr;
1394 pci_addr_t bus_addr;
1395 int i;
1396 struct pci_controller *hose;
1397
1398 /* The root controller has the region information */
1399 ctlr = pci_get_controller(dev);
1400 hose = dev_get_uclass_priv(ctlr);
1401
1402 if (hose->region_count == 0) {
1403 *ba = phys_addr;
1404 return 0;
1405 }
1406
1407 for (i = 0; i < hose->region_count; i++) {
1408 res = &hose->regions[i];
1409
1410 if (((res->flags ^ flags) & PCI_REGION_TYPE) != 0)
1411 continue;
1412
1413 if (res->flags & skip_mask)
1414 continue;
1415
1416 bus_addr = phys_addr - res->phys_start + res->bus_start;
1417
1418 if (bus_addr >= res->bus_start &&
1419 (bus_addr - res->bus_start) < res->size) {
1420 *ba = bus_addr;
1421 return 0;
1422 }
1423 }
1424
1425 return 1;
1426 }
1427
dm_pci_phys_to_bus(struct udevice * dev,phys_addr_t phys_addr,unsigned long flags)1428 pci_addr_t dm_pci_phys_to_bus(struct udevice *dev, phys_addr_t phys_addr,
1429 unsigned long flags)
1430 {
1431 pci_addr_t bus_addr = 0;
1432 int ret;
1433
1434 /*
1435 * if PCI_REGION_MEM is set we do a two pass search with preference
1436 * on matches that don't have PCI_REGION_SYS_MEMORY set
1437 */
1438 if ((flags & PCI_REGION_TYPE) == PCI_REGION_MEM) {
1439 ret = _dm_pci_phys_to_bus(dev, phys_addr, flags,
1440 PCI_REGION_SYS_MEMORY, &bus_addr);
1441 if (!ret)
1442 return bus_addr;
1443 }
1444
1445 ret = _dm_pci_phys_to_bus(dev, phys_addr, flags, 0, &bus_addr);
1446
1447 if (ret)
1448 puts("pci_hose_phys_to_bus: invalid physical address\n");
1449
1450 return bus_addr;
1451 }
1452
dm_pci_map_ea_virt(struct udevice * dev,int ea_off,struct pci_child_plat * pdata)1453 static phys_addr_t dm_pci_map_ea_virt(struct udevice *dev, int ea_off,
1454 struct pci_child_plat *pdata)
1455 {
1456 phys_addr_t addr = 0;
1457
1458 /*
1459 * In the case of a Virtual Function device using BAR
1460 * base and size, add offset for VFn BAR(1, 2, 3...n)
1461 */
1462 if (pdata->is_virtfn) {
1463 size_t sz;
1464 u32 ea_entry;
1465
1466 /* MaxOffset, 1st DW */
1467 dm_pci_read_config32(dev, ea_off + 8, &ea_entry);
1468 sz = ea_entry & PCI_EA_FIELD_MASK;
1469 /* Fill up lower 2 bits */
1470 sz |= (~PCI_EA_FIELD_MASK);
1471
1472 if (ea_entry & PCI_EA_IS_64) {
1473 /* MaxOffset 2nd DW */
1474 dm_pci_read_config32(dev, ea_off + 16, &ea_entry);
1475 sz |= ((u64)ea_entry) << 32;
1476 }
1477
1478 addr = (pdata->virtid - 1) * (sz + 1);
1479 }
1480
1481 return addr;
1482 }
1483
dm_pci_map_ea_bar(struct udevice * dev,int bar,int flags,int ea_off,struct pci_child_plat * pdata)1484 static void *dm_pci_map_ea_bar(struct udevice *dev, int bar, int flags,
1485 int ea_off, struct pci_child_plat *pdata)
1486 {
1487 int ea_cnt, i, entry_size;
1488 int bar_id = (bar - PCI_BASE_ADDRESS_0) >> 2;
1489 u32 ea_entry;
1490 phys_addr_t addr;
1491
1492 if (IS_ENABLED(CONFIG_PCI_SRIOV)) {
1493 /*
1494 * In the case of a Virtual Function device, device is
1495 * Physical function, so pdata will point to required VF
1496 * specific data.
1497 */
1498 if (pdata->is_virtfn)
1499 bar_id += PCI_EA_BEI_VF_BAR0;
1500 }
1501
1502 /* EA capability structure header */
1503 dm_pci_read_config32(dev, ea_off, &ea_entry);
1504 ea_cnt = (ea_entry >> 16) & PCI_EA_NUM_ENT_MASK;
1505 ea_off += PCI_EA_FIRST_ENT;
1506
1507 for (i = 0; i < ea_cnt; i++, ea_off += entry_size) {
1508 /* Entry header */
1509 dm_pci_read_config32(dev, ea_off, &ea_entry);
1510 entry_size = ((ea_entry & PCI_EA_ES) + 1) << 2;
1511
1512 if (((ea_entry & PCI_EA_BEI) >> 4) != bar_id)
1513 continue;
1514
1515 /* Base address, 1st DW */
1516 dm_pci_read_config32(dev, ea_off + 4, &ea_entry);
1517 addr = ea_entry & PCI_EA_FIELD_MASK;
1518 if (ea_entry & PCI_EA_IS_64) {
1519 /* Base address, 2nd DW, skip over 4B MaxOffset */
1520 dm_pci_read_config32(dev, ea_off + 12, &ea_entry);
1521 addr |= ((u64)ea_entry) << 32;
1522 }
1523
1524 if (IS_ENABLED(CONFIG_PCI_SRIOV))
1525 addr += dm_pci_map_ea_virt(dev, ea_off, pdata);
1526
1527 /* size ignored for now */
1528 return map_physmem(addr, 0, flags);
1529 }
1530
1531 return 0;
1532 }
1533
dm_pci_map_bar(struct udevice * dev,int bar,int flags)1534 void *dm_pci_map_bar(struct udevice *dev, int bar, int flags)
1535 {
1536 struct pci_child_plat *pdata = dev_get_parent_plat(dev);
1537 struct udevice *udev = dev;
1538 pci_addr_t pci_bus_addr;
1539 u32 bar_response;
1540 int ea_off;
1541
1542 if (IS_ENABLED(CONFIG_PCI_SRIOV)) {
1543 /*
1544 * In case of Virtual Function devices, use PF udevice
1545 * as EA capability is defined in Physical Function
1546 */
1547 if (pdata->is_virtfn)
1548 udev = pdata->pfdev;
1549 }
1550
1551 /*
1552 * if the function supports Enhanced Allocation use that instead of
1553 * BARs
1554 * Incase of virtual functions, pdata will help read VF BEI
1555 * and EA entry size.
1556 */
1557 ea_off = dm_pci_find_capability(udev, PCI_CAP_ID_EA);
1558 if (ea_off)
1559 return dm_pci_map_ea_bar(udev, bar, flags, ea_off, pdata);
1560
1561 /* read BAR address */
1562 dm_pci_read_config32(udev, bar, &bar_response);
1563 pci_bus_addr = (pci_addr_t)(bar_response & ~0xf);
1564
1565 /*
1566 * Pass "0" as the length argument to pci_bus_to_virt. The arg
1567 * isn't actually used on any platform because U-Boot assumes a static
1568 * linear mapping. In the future, this could read the BAR size
1569 * and pass that as the size if needed.
1570 */
1571 return dm_pci_bus_to_virt(udev, pci_bus_addr, flags, 0, MAP_NOCACHE);
1572 }
1573
_dm_pci_find_next_capability(struct udevice * dev,u8 pos,int cap)1574 static int _dm_pci_find_next_capability(struct udevice *dev, u8 pos, int cap)
1575 {
1576 int ttl = PCI_FIND_CAP_TTL;
1577 u8 id;
1578 u16 ent;
1579
1580 dm_pci_read_config8(dev, pos, &pos);
1581
1582 while (ttl--) {
1583 if (pos < PCI_STD_HEADER_SIZEOF)
1584 break;
1585 pos &= ~3;
1586 dm_pci_read_config16(dev, pos, &ent);
1587
1588 id = ent & 0xff;
1589 if (id == 0xff)
1590 break;
1591 if (id == cap)
1592 return pos;
1593 pos = (ent >> 8);
1594 }
1595
1596 return 0;
1597 }
1598
dm_pci_find_next_capability(struct udevice * dev,u8 start,int cap)1599 int dm_pci_find_next_capability(struct udevice *dev, u8 start, int cap)
1600 {
1601 return _dm_pci_find_next_capability(dev, start + PCI_CAP_LIST_NEXT,
1602 cap);
1603 }
1604
dm_pci_find_capability(struct udevice * dev,int cap)1605 int dm_pci_find_capability(struct udevice *dev, int cap)
1606 {
1607 u16 status;
1608 u8 header_type;
1609 u8 pos;
1610
1611 dm_pci_read_config16(dev, PCI_STATUS, &status);
1612 if (!(status & PCI_STATUS_CAP_LIST))
1613 return 0;
1614
1615 dm_pci_read_config8(dev, PCI_HEADER_TYPE, &header_type);
1616 if ((header_type & 0x7f) == PCI_HEADER_TYPE_CARDBUS)
1617 pos = PCI_CB_CAPABILITY_LIST;
1618 else
1619 pos = PCI_CAPABILITY_LIST;
1620
1621 return _dm_pci_find_next_capability(dev, pos, cap);
1622 }
1623
dm_pci_find_next_ext_capability(struct udevice * dev,int start,int cap)1624 int dm_pci_find_next_ext_capability(struct udevice *dev, int start, int cap)
1625 {
1626 u32 header;
1627 int ttl;
1628 int pos = PCI_CFG_SPACE_SIZE;
1629
1630 /* minimum 8 bytes per capability */
1631 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
1632
1633 if (start)
1634 pos = start;
1635
1636 dm_pci_read_config32(dev, pos, &header);
1637 /*
1638 * If we have no capabilities, this is indicated by cap ID,
1639 * cap version and next pointer all being 0.
1640 */
1641 if (header == 0)
1642 return 0;
1643
1644 while (ttl--) {
1645 if (PCI_EXT_CAP_ID(header) == cap)
1646 return pos;
1647
1648 pos = PCI_EXT_CAP_NEXT(header);
1649 if (pos < PCI_CFG_SPACE_SIZE)
1650 break;
1651
1652 dm_pci_read_config32(dev, pos, &header);
1653 }
1654
1655 return 0;
1656 }
1657
dm_pci_find_ext_capability(struct udevice * dev,int cap)1658 int dm_pci_find_ext_capability(struct udevice *dev, int cap)
1659 {
1660 return dm_pci_find_next_ext_capability(dev, 0, cap);
1661 }
1662
dm_pci_flr(struct udevice * dev)1663 int dm_pci_flr(struct udevice *dev)
1664 {
1665 int pcie_off;
1666 u32 cap;
1667
1668 /* look for PCI Express Capability */
1669 pcie_off = dm_pci_find_capability(dev, PCI_CAP_ID_EXP);
1670 if (!pcie_off)
1671 return -ENOENT;
1672
1673 /* check FLR capability */
1674 dm_pci_read_config32(dev, pcie_off + PCI_EXP_DEVCAP, &cap);
1675 if (!(cap & PCI_EXP_DEVCAP_FLR))
1676 return -ENOENT;
1677
1678 dm_pci_clrset_config16(dev, pcie_off + PCI_EXP_DEVCTL, 0,
1679 PCI_EXP_DEVCTL_BCR_FLR);
1680
1681 /* wait 100ms, per PCI spec */
1682 mdelay(100);
1683
1684 return 0;
1685 }
1686
1687 #if defined(CONFIG_PCI_SRIOV)
pci_sriov_init(struct udevice * pdev,int vf_en)1688 int pci_sriov_init(struct udevice *pdev, int vf_en)
1689 {
1690 u16 vendor, device;
1691 struct udevice *bus;
1692 struct udevice *dev;
1693 pci_dev_t bdf;
1694 u16 ctrl;
1695 u16 num_vfs;
1696 u16 total_vf;
1697 u16 vf_offset;
1698 u16 vf_stride;
1699 int vf, ret;
1700 int pos;
1701
1702 pos = dm_pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1703 if (!pos) {
1704 debug("Error: SRIOV capability not found\n");
1705 return -ENOENT;
1706 }
1707
1708 dm_pci_read_config16(pdev, pos + PCI_SRIOV_CTRL, &ctrl);
1709
1710 dm_pci_read_config16(pdev, pos + PCI_SRIOV_TOTAL_VF, &total_vf);
1711 if (vf_en > total_vf)
1712 vf_en = total_vf;
1713 dm_pci_write_config16(pdev, pos + PCI_SRIOV_NUM_VF, vf_en);
1714
1715 ctrl |= PCI_SRIOV_CTRL_VFE | PCI_SRIOV_CTRL_MSE;
1716 dm_pci_write_config16(pdev, pos + PCI_SRIOV_CTRL, ctrl);
1717
1718 dm_pci_read_config16(pdev, pos + PCI_SRIOV_NUM_VF, &num_vfs);
1719 if (num_vfs > vf_en)
1720 num_vfs = vf_en;
1721
1722 dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_OFFSET, &vf_offset);
1723 dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_STRIDE, &vf_stride);
1724
1725 dm_pci_read_config16(pdev, PCI_VENDOR_ID, &vendor);
1726 dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_DID, &device);
1727
1728 bdf = dm_pci_get_bdf(pdev);
1729
1730 pci_get_bus(PCI_BUS(bdf), &bus);
1731
1732 if (!bus)
1733 return -ENODEV;
1734
1735 bdf += PCI_BDF(0, 0, vf_offset);
1736
1737 for (vf = 0; vf < num_vfs; vf++) {
1738 struct pci_child_plat *pplat;
1739 ulong class;
1740
1741 pci_bus_read_config(bus, bdf, PCI_CLASS_DEVICE,
1742 &class, PCI_SIZE_16);
1743
1744 debug("%s: bus %d/%s: found VF %x:%x\n", __func__,
1745 dev_seq(bus), bus->name, PCI_DEV(bdf), PCI_FUNC(bdf));
1746
1747 /* Find this device in the device tree */
1748 ret = pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), &dev);
1749
1750 if (ret == -ENODEV) {
1751 struct pci_device_id find_id;
1752
1753 memset(&find_id, '\0', sizeof(find_id));
1754 find_id.vendor = vendor;
1755 find_id.device = device;
1756 find_id.class = class;
1757
1758 ret = pci_find_and_bind_driver(bus, &find_id,
1759 bdf, &dev);
1760
1761 if (ret)
1762 return ret;
1763 }
1764
1765 /* Update the platform data */
1766 pplat = dev_get_parent_plat(dev);
1767 pplat->devfn = PCI_MASK_BUS(bdf);
1768 pplat->vendor = vendor;
1769 pplat->device = device;
1770 pplat->class = class;
1771 pplat->is_virtfn = true;
1772 pplat->pfdev = pdev;
1773 pplat->virtid = vf * vf_stride + vf_offset;
1774
1775 debug("%s: bus %d/%s: found VF %x:%x %x:%x class %lx id %x\n",
1776 __func__, dev_seq(dev), dev->name, PCI_DEV(bdf),
1777 PCI_FUNC(bdf), vendor, device, class, pplat->virtid);
1778 bdf += PCI_BDF(0, 0, vf_stride);
1779 }
1780
1781 return 0;
1782 }
1783
pci_sriov_get_totalvfs(struct udevice * pdev)1784 int pci_sriov_get_totalvfs(struct udevice *pdev)
1785 {
1786 u16 total_vf;
1787 int pos;
1788
1789 pos = dm_pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1790 if (!pos) {
1791 debug("Error: SRIOV capability not found\n");
1792 return -ENOENT;
1793 }
1794
1795 dm_pci_read_config16(pdev, pos + PCI_SRIOV_TOTAL_VF, &total_vf);
1796
1797 return total_vf;
1798 }
1799 #endif /* SRIOV */
1800
1801 UCLASS_DRIVER(pci) = {
1802 .id = UCLASS_PCI,
1803 .name = "pci",
1804 .flags = DM_UC_FLAG_SEQ_ALIAS | DM_UC_FLAG_NO_AUTO_SEQ,
1805 .post_bind = dm_scan_fdt_dev,
1806 .pre_probe = pci_uclass_pre_probe,
1807 .post_probe = pci_uclass_post_probe,
1808 .child_post_bind = pci_uclass_child_post_bind,
1809 .per_device_auto = sizeof(struct pci_controller),
1810 .per_child_plat_auto = sizeof(struct pci_child_plat),
1811 };
1812
1813 static const struct dm_pci_ops pci_bridge_ops = {
1814 .read_config = pci_bridge_read_config,
1815 .write_config = pci_bridge_write_config,
1816 };
1817
1818 static const struct udevice_id pci_bridge_ids[] = {
1819 { .compatible = "pci-bridge" },
1820 { }
1821 };
1822
1823 U_BOOT_DRIVER(pci_bridge_drv) = {
1824 .name = "pci_bridge_drv",
1825 .id = UCLASS_PCI,
1826 .of_match = pci_bridge_ids,
1827 .ops = &pci_bridge_ops,
1828 };
1829
1830 UCLASS_DRIVER(pci_generic) = {
1831 .id = UCLASS_PCI_GENERIC,
1832 .name = "pci_generic",
1833 };
1834
1835 static const struct udevice_id pci_generic_ids[] = {
1836 { .compatible = "pci-generic" },
1837 { }
1838 };
1839
1840 U_BOOT_DRIVER(pci_generic_drv) = {
1841 .name = "pci_generic_drv",
1842 .id = UCLASS_PCI_GENERIC,
1843 .of_match = pci_generic_ids,
1844 };
1845
pci_init(void)1846 int pci_init(void)
1847 {
1848 struct udevice *bus;
1849
1850 /*
1851 * Enumerate all known controller devices. Enumeration has the side-
1852 * effect of probing them, so PCIe devices will be enumerated too.
1853 */
1854 for (uclass_first_device_check(UCLASS_PCI, &bus);
1855 bus;
1856 uclass_next_device_check(&bus)) {
1857 ;
1858 }
1859
1860 return 0;
1861 }
1862