1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include <linux/slab.h>
27
28 #include "dm_services.h"
29
30 #include "resource.h"
31 #include "include/irq_service_interface.h"
32 #include "link_encoder.h"
33 #include "stream_encoder.h"
34 #include "opp.h"
35 #include "timing_generator.h"
36 #include "transform.h"
37 #include "dccg.h"
38 #include "dchubbub.h"
39 #include "dpp.h"
40 #include "core_types.h"
41 #include "set_mode_types.h"
42 #include "virtual/virtual_stream_encoder.h"
43 #include "dpcd_defs.h"
44 #include "link_enc_cfg.h"
45 #include "dc_link_dp.h"
46
47 #if defined(CONFIG_DRM_AMD_DC_SI)
48 #include "dce60/dce60_resource.h"
49 #endif
50 #include "dce80/dce80_resource.h"
51 #include "dce100/dce100_resource.h"
52 #include "dce110/dce110_resource.h"
53 #include "dce112/dce112_resource.h"
54 #include "dce120/dce120_resource.h"
55 #if defined(CONFIG_DRM_AMD_DC_DCN)
56 #include "dcn10/dcn10_resource.h"
57 #include "dcn20/dcn20_resource.h"
58 #include "dcn21/dcn21_resource.h"
59 #include "dcn201/dcn201_resource.h"
60 #include "dcn30/dcn30_resource.h"
61 #include "dcn301/dcn301_resource.h"
62 #include "dcn302/dcn302_resource.h"
63 #include "dcn303/dcn303_resource.h"
64 #include "dcn31/dcn31_resource.h"
65 #endif
66
67 #define DC_LOGGER_INIT(logger)
68
resource_parse_asic_id(struct hw_asic_id asic_id)69 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
70 {
71 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
72 switch (asic_id.chip_family) {
73
74 #if defined(CONFIG_DRM_AMD_DC_SI)
75 case FAMILY_SI:
76 if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
77 ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
78 ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
79 dc_version = DCE_VERSION_6_0;
80 else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
81 dc_version = DCE_VERSION_6_4;
82 else
83 dc_version = DCE_VERSION_6_1;
84 break;
85 #endif
86 case FAMILY_CI:
87 dc_version = DCE_VERSION_8_0;
88 break;
89 case FAMILY_KV:
90 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
91 ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
92 ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
93 dc_version = DCE_VERSION_8_3;
94 else
95 dc_version = DCE_VERSION_8_1;
96 break;
97 case FAMILY_CZ:
98 dc_version = DCE_VERSION_11_0;
99 break;
100
101 case FAMILY_VI:
102 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
103 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
104 dc_version = DCE_VERSION_10_0;
105 break;
106 }
107 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
108 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
109 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
110 dc_version = DCE_VERSION_11_2;
111 }
112 if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
113 dc_version = DCE_VERSION_11_22;
114 break;
115 case FAMILY_AI:
116 if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
117 dc_version = DCE_VERSION_12_1;
118 else
119 dc_version = DCE_VERSION_12_0;
120 break;
121 #if defined(CONFIG_DRM_AMD_DC_DCN)
122 case FAMILY_RV:
123 dc_version = DCN_VERSION_1_0;
124 if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
125 dc_version = DCN_VERSION_1_01;
126 if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
127 dc_version = DCN_VERSION_2_1;
128 if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
129 dc_version = DCN_VERSION_2_1;
130 break;
131
132 case FAMILY_NV:
133 dc_version = DCN_VERSION_2_0;
134 if (asic_id.chip_id == DEVICE_ID_NV_13FE) {
135 dc_version = DCN_VERSION_2_01;
136 break;
137 }
138 if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
139 dc_version = DCN_VERSION_3_0;
140 if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
141 dc_version = DCN_VERSION_3_02;
142 if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
143 dc_version = DCN_VERSION_3_03;
144 break;
145
146 case FAMILY_VGH:
147 dc_version = DCN_VERSION_3_01;
148 break;
149
150 case FAMILY_YELLOW_CARP:
151 if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
152 dc_version = DCN_VERSION_3_1;
153 break;
154 #endif
155
156 default:
157 dc_version = DCE_VERSION_UNKNOWN;
158 break;
159 }
160 return dc_version;
161 }
162
dc_create_resource_pool(struct dc * dc,const struct dc_init_data * init_data,enum dce_version dc_version)163 struct resource_pool *dc_create_resource_pool(struct dc *dc,
164 const struct dc_init_data *init_data,
165 enum dce_version dc_version)
166 {
167 struct resource_pool *res_pool = NULL;
168
169 switch (dc_version) {
170 #if defined(CONFIG_DRM_AMD_DC_SI)
171 case DCE_VERSION_6_0:
172 res_pool = dce60_create_resource_pool(
173 init_data->num_virtual_links, dc);
174 break;
175 case DCE_VERSION_6_1:
176 res_pool = dce61_create_resource_pool(
177 init_data->num_virtual_links, dc);
178 break;
179 case DCE_VERSION_6_4:
180 res_pool = dce64_create_resource_pool(
181 init_data->num_virtual_links, dc);
182 break;
183 #endif
184 case DCE_VERSION_8_0:
185 res_pool = dce80_create_resource_pool(
186 init_data->num_virtual_links, dc);
187 break;
188 case DCE_VERSION_8_1:
189 res_pool = dce81_create_resource_pool(
190 init_data->num_virtual_links, dc);
191 break;
192 case DCE_VERSION_8_3:
193 res_pool = dce83_create_resource_pool(
194 init_data->num_virtual_links, dc);
195 break;
196 case DCE_VERSION_10_0:
197 res_pool = dce100_create_resource_pool(
198 init_data->num_virtual_links, dc);
199 break;
200 case DCE_VERSION_11_0:
201 res_pool = dce110_create_resource_pool(
202 init_data->num_virtual_links, dc,
203 init_data->asic_id);
204 break;
205 case DCE_VERSION_11_2:
206 case DCE_VERSION_11_22:
207 res_pool = dce112_create_resource_pool(
208 init_data->num_virtual_links, dc);
209 break;
210 case DCE_VERSION_12_0:
211 case DCE_VERSION_12_1:
212 res_pool = dce120_create_resource_pool(
213 init_data->num_virtual_links, dc);
214 break;
215
216 #if defined(CONFIG_DRM_AMD_DC_DCN)
217 case DCN_VERSION_1_0:
218 case DCN_VERSION_1_01:
219 res_pool = dcn10_create_resource_pool(init_data, dc);
220 break;
221 case DCN_VERSION_2_0:
222 res_pool = dcn20_create_resource_pool(init_data, dc);
223 break;
224 case DCN_VERSION_2_1:
225 res_pool = dcn21_create_resource_pool(init_data, dc);
226 break;
227 case DCN_VERSION_2_01:
228 res_pool = dcn201_create_resource_pool(init_data, dc);
229 break;
230 case DCN_VERSION_3_0:
231 res_pool = dcn30_create_resource_pool(init_data, dc);
232 break;
233 case DCN_VERSION_3_01:
234 res_pool = dcn301_create_resource_pool(init_data, dc);
235 break;
236 case DCN_VERSION_3_02:
237 res_pool = dcn302_create_resource_pool(init_data, dc);
238 break;
239 case DCN_VERSION_3_03:
240 res_pool = dcn303_create_resource_pool(init_data, dc);
241 break;
242 case DCN_VERSION_3_1:
243 res_pool = dcn31_create_resource_pool(init_data, dc);
244 break;
245 #endif
246 default:
247 break;
248 }
249
250 if (res_pool != NULL) {
251 if (dc->ctx->dc_bios->fw_info_valid) {
252 res_pool->ref_clocks.xtalin_clock_inKhz =
253 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
254 /* initialize with firmware data first, no all
255 * ASIC have DCCG SW component. FPGA or
256 * simulation need initialization of
257 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
258 * with xtalin_clock_inKhz
259 */
260 res_pool->ref_clocks.dccg_ref_clock_inKhz =
261 res_pool->ref_clocks.xtalin_clock_inKhz;
262 res_pool->ref_clocks.dchub_ref_clock_inKhz =
263 res_pool->ref_clocks.xtalin_clock_inKhz;
264 } else
265 ASSERT_CRITICAL(false);
266 }
267
268 return res_pool;
269 }
270
dc_destroy_resource_pool(struct dc * dc)271 void dc_destroy_resource_pool(struct dc *dc)
272 {
273 if (dc) {
274 if (dc->res_pool)
275 dc->res_pool->funcs->destroy(&dc->res_pool);
276
277 kfree(dc->hwseq);
278 }
279 }
280
update_num_audio(const struct resource_straps * straps,unsigned int * num_audio,struct audio_support * aud_support)281 static void update_num_audio(
282 const struct resource_straps *straps,
283 unsigned int *num_audio,
284 struct audio_support *aud_support)
285 {
286 aud_support->dp_audio = true;
287 aud_support->hdmi_audio_native = false;
288 aud_support->hdmi_audio_on_dongle = false;
289
290 if (straps->hdmi_disable == 0) {
291 if (straps->dc_pinstraps_audio & 0x2) {
292 aud_support->hdmi_audio_on_dongle = true;
293 aud_support->hdmi_audio_native = true;
294 }
295 }
296
297 switch (straps->audio_stream_number) {
298 case 0: /* multi streams supported */
299 break;
300 case 1: /* multi streams not supported */
301 *num_audio = 1;
302 break;
303 default:
304 DC_ERR("DC: unexpected audio fuse!\n");
305 }
306 }
307
resource_construct(unsigned int num_virtual_links,struct dc * dc,struct resource_pool * pool,const struct resource_create_funcs * create_funcs)308 bool resource_construct(
309 unsigned int num_virtual_links,
310 struct dc *dc,
311 struct resource_pool *pool,
312 const struct resource_create_funcs *create_funcs)
313 {
314 struct dc_context *ctx = dc->ctx;
315 const struct resource_caps *caps = pool->res_cap;
316 int i;
317 unsigned int num_audio = caps->num_audio;
318 struct resource_straps straps = {0};
319
320 if (create_funcs->read_dce_straps)
321 create_funcs->read_dce_straps(dc->ctx, &straps);
322
323 pool->audio_count = 0;
324 if (create_funcs->create_audio) {
325 /* find the total number of streams available via the
326 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
327 * registers (one for each pin) starting from pin 1
328 * up to the max number of audio pins.
329 * We stop on the first pin where
330 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
331 */
332 update_num_audio(&straps, &num_audio, &pool->audio_support);
333 for (i = 0; i < caps->num_audio; i++) {
334 struct audio *aud = create_funcs->create_audio(ctx, i);
335
336 if (aud == NULL) {
337 DC_ERR("DC: failed to create audio!\n");
338 return false;
339 }
340 if (!aud->funcs->endpoint_valid(aud)) {
341 aud->funcs->destroy(&aud);
342 break;
343 }
344 pool->audios[i] = aud;
345 pool->audio_count++;
346 }
347 }
348
349 pool->stream_enc_count = 0;
350 if (create_funcs->create_stream_encoder) {
351 for (i = 0; i < caps->num_stream_encoder; i++) {
352 pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
353 if (pool->stream_enc[i] == NULL)
354 DC_ERR("DC: failed to create stream_encoder!\n");
355 pool->stream_enc_count++;
356 }
357 }
358
359 #if defined(CONFIG_DRM_AMD_DC_DCN)
360 pool->hpo_dp_stream_enc_count = 0;
361 if (create_funcs->create_hpo_dp_stream_encoder) {
362 for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
363 pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
364 if (pool->hpo_dp_stream_enc[i] == NULL)
365 DC_ERR("DC: failed to create HPO DP stream encoder!\n");
366 pool->hpo_dp_stream_enc_count++;
367
368 }
369 }
370
371 pool->hpo_dp_link_enc_count = 0;
372 if (create_funcs->create_hpo_dp_link_encoder) {
373 for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
374 pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
375 if (pool->hpo_dp_link_enc[i] == NULL)
376 DC_ERR("DC: failed to create HPO DP link encoder!\n");
377 pool->hpo_dp_link_enc_count++;
378 }
379 }
380 #endif
381
382 #if defined(CONFIG_DRM_AMD_DC_DCN)
383 for (i = 0; i < caps->num_mpc_3dlut; i++) {
384 pool->mpc_lut[i] = dc_create_3dlut_func();
385 if (pool->mpc_lut[i] == NULL)
386 DC_ERR("DC: failed to create MPC 3dlut!\n");
387 pool->mpc_shaper[i] = dc_create_transfer_func();
388 if (pool->mpc_shaper[i] == NULL)
389 DC_ERR("DC: failed to create MPC shaper!\n");
390 }
391 #endif
392 dc->caps.dynamic_audio = false;
393 if (pool->audio_count < pool->stream_enc_count) {
394 dc->caps.dynamic_audio = true;
395 }
396 for (i = 0; i < num_virtual_links; i++) {
397 pool->stream_enc[pool->stream_enc_count] =
398 virtual_stream_encoder_create(
399 ctx, ctx->dc_bios);
400 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
401 DC_ERR("DC: failed to create stream_encoder!\n");
402 return false;
403 }
404 pool->stream_enc_count++;
405 }
406
407 dc->hwseq = create_funcs->create_hwseq(ctx);
408
409 return true;
410 }
find_matching_clock_source(const struct resource_pool * pool,struct clock_source * clock_source)411 static int find_matching_clock_source(
412 const struct resource_pool *pool,
413 struct clock_source *clock_source)
414 {
415
416 int i;
417
418 for (i = 0; i < pool->clk_src_count; i++) {
419 if (pool->clock_sources[i] == clock_source)
420 return i;
421 }
422 return -1;
423 }
424
resource_unreference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)425 void resource_unreference_clock_source(
426 struct resource_context *res_ctx,
427 const struct resource_pool *pool,
428 struct clock_source *clock_source)
429 {
430 int i = find_matching_clock_source(pool, clock_source);
431
432 if (i > -1)
433 res_ctx->clock_source_ref_count[i]--;
434
435 if (pool->dp_clock_source == clock_source)
436 res_ctx->dp_clock_source_ref_count--;
437 }
438
resource_reference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)439 void resource_reference_clock_source(
440 struct resource_context *res_ctx,
441 const struct resource_pool *pool,
442 struct clock_source *clock_source)
443 {
444 int i = find_matching_clock_source(pool, clock_source);
445
446 if (i > -1)
447 res_ctx->clock_source_ref_count[i]++;
448
449 if (pool->dp_clock_source == clock_source)
450 res_ctx->dp_clock_source_ref_count++;
451 }
452
resource_get_clock_source_reference(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)453 int resource_get_clock_source_reference(
454 struct resource_context *res_ctx,
455 const struct resource_pool *pool,
456 struct clock_source *clock_source)
457 {
458 int i = find_matching_clock_source(pool, clock_source);
459
460 if (i > -1)
461 return res_ctx->clock_source_ref_count[i];
462
463 if (pool->dp_clock_source == clock_source)
464 return res_ctx->dp_clock_source_ref_count;
465
466 return -1;
467 }
468
resource_are_vblanks_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)469 bool resource_are_vblanks_synchronizable(
470 struct dc_stream_state *stream1,
471 struct dc_stream_state *stream2)
472 {
473 uint32_t base60_refresh_rates[] = {10, 20, 5};
474 uint8_t i;
475 uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
476 uint64_t frame_time_diff;
477
478 if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
479 stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
480 dc_is_dp_signal(stream1->signal) &&
481 dc_is_dp_signal(stream2->signal) &&
482 false == stream1->has_non_synchronizable_pclk &&
483 false == stream2->has_non_synchronizable_pclk &&
484 stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
485 stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
486 /* disable refresh rates higher than 60Hz for now */
487 if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
488 stream1->timing.v_total > 60)
489 return false;
490 if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
491 stream2->timing.v_total > 60)
492 return false;
493 frame_time_diff = (uint64_t)10000 *
494 stream1->timing.h_total *
495 stream1->timing.v_total *
496 stream2->timing.pix_clk_100hz;
497 frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
498 frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
499 frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
500 for (i = 0; i < rr_count; i++) {
501 int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
502
503 if (diff < 0)
504 diff = -diff;
505 if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
506 return true;
507 }
508 }
509 return false;
510 }
511
resource_are_streams_timing_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)512 bool resource_are_streams_timing_synchronizable(
513 struct dc_stream_state *stream1,
514 struct dc_stream_state *stream2)
515 {
516 if (stream1->timing.h_total != stream2->timing.h_total)
517 return false;
518
519 if (stream1->timing.v_total != stream2->timing.v_total)
520 return false;
521
522 if (stream1->timing.h_addressable
523 != stream2->timing.h_addressable)
524 return false;
525
526 if (stream1->timing.v_addressable
527 != stream2->timing.v_addressable)
528 return false;
529
530 if (stream1->timing.v_front_porch
531 != stream2->timing.v_front_porch)
532 return false;
533
534 if (stream1->timing.pix_clk_100hz
535 != stream2->timing.pix_clk_100hz)
536 return false;
537
538 if (stream1->clamping.c_depth != stream2->clamping.c_depth)
539 return false;
540
541 if (stream1->phy_pix_clk != stream2->phy_pix_clk
542 && (!dc_is_dp_signal(stream1->signal)
543 || !dc_is_dp_signal(stream2->signal)))
544 return false;
545
546 if (stream1->view_format != stream2->view_format)
547 return false;
548
549 if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
550 return false;
551
552 return true;
553 }
is_dp_and_hdmi_sharable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)554 static bool is_dp_and_hdmi_sharable(
555 struct dc_stream_state *stream1,
556 struct dc_stream_state *stream2)
557 {
558 if (stream1->ctx->dc->caps.disable_dp_clk_share)
559 return false;
560
561 if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
562 stream2->clamping.c_depth != COLOR_DEPTH_888)
563 return false;
564
565 return true;
566
567 }
568
is_sharable_clk_src(const struct pipe_ctx * pipe_with_clk_src,const struct pipe_ctx * pipe)569 static bool is_sharable_clk_src(
570 const struct pipe_ctx *pipe_with_clk_src,
571 const struct pipe_ctx *pipe)
572 {
573 if (pipe_with_clk_src->clock_source == NULL)
574 return false;
575
576 if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
577 return false;
578
579 if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
580 (dc_is_dp_signal(pipe->stream->signal) &&
581 !is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
582 pipe->stream)))
583 return false;
584
585 if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
586 && dc_is_dual_link_signal(pipe->stream->signal))
587 return false;
588
589 if (dc_is_hdmi_signal(pipe->stream->signal)
590 && dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
591 return false;
592
593 if (!resource_are_streams_timing_synchronizable(
594 pipe_with_clk_src->stream, pipe->stream))
595 return false;
596
597 return true;
598 }
599
resource_find_used_clk_src_for_sharing(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx)600 struct clock_source *resource_find_used_clk_src_for_sharing(
601 struct resource_context *res_ctx,
602 struct pipe_ctx *pipe_ctx)
603 {
604 int i;
605
606 for (i = 0; i < MAX_PIPES; i++) {
607 if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
608 return res_ctx->pipe_ctx[i].clock_source;
609 }
610
611 return NULL;
612 }
613
convert_pixel_format_to_dalsurface(enum surface_pixel_format surface_pixel_format)614 static enum pixel_format convert_pixel_format_to_dalsurface(
615 enum surface_pixel_format surface_pixel_format)
616 {
617 enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
618
619 switch (surface_pixel_format) {
620 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
621 dal_pixel_format = PIXEL_FORMAT_INDEX8;
622 break;
623 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
624 dal_pixel_format = PIXEL_FORMAT_RGB565;
625 break;
626 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
627 dal_pixel_format = PIXEL_FORMAT_RGB565;
628 break;
629 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
630 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
631 break;
632 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
633 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
634 break;
635 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
636 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
637 break;
638 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
639 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
640 break;
641 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
642 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
643 break;
644 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
645 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
646 dal_pixel_format = PIXEL_FORMAT_FP16;
647 break;
648 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
649 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
650 dal_pixel_format = PIXEL_FORMAT_420BPP8;
651 break;
652 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
653 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
654 dal_pixel_format = PIXEL_FORMAT_420BPP10;
655 break;
656 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
657 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
658 default:
659 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
660 break;
661 }
662 return dal_pixel_format;
663 }
664
get_vp_scan_direction(enum dc_rotation_angle rotation,bool horizontal_mirror,bool * orthogonal_rotation,bool * flip_vert_scan_dir,bool * flip_horz_scan_dir)665 static inline void get_vp_scan_direction(
666 enum dc_rotation_angle rotation,
667 bool horizontal_mirror,
668 bool *orthogonal_rotation,
669 bool *flip_vert_scan_dir,
670 bool *flip_horz_scan_dir)
671 {
672 *orthogonal_rotation = false;
673 *flip_vert_scan_dir = false;
674 *flip_horz_scan_dir = false;
675 if (rotation == ROTATION_ANGLE_180) {
676 *flip_vert_scan_dir = true;
677 *flip_horz_scan_dir = true;
678 } else if (rotation == ROTATION_ANGLE_90) {
679 *orthogonal_rotation = true;
680 *flip_horz_scan_dir = true;
681 } else if (rotation == ROTATION_ANGLE_270) {
682 *orthogonal_rotation = true;
683 *flip_vert_scan_dir = true;
684 }
685
686 if (horizontal_mirror)
687 *flip_horz_scan_dir = !*flip_horz_scan_dir;
688 }
689
get_num_mpc_splits(struct pipe_ctx * pipe)690 int get_num_mpc_splits(struct pipe_ctx *pipe)
691 {
692 int mpc_split_count = 0;
693 struct pipe_ctx *other_pipe = pipe->bottom_pipe;
694
695 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
696 mpc_split_count++;
697 other_pipe = other_pipe->bottom_pipe;
698 }
699 other_pipe = pipe->top_pipe;
700 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
701 mpc_split_count++;
702 other_pipe = other_pipe->top_pipe;
703 }
704
705 return mpc_split_count;
706 }
707
get_num_odm_splits(struct pipe_ctx * pipe)708 int get_num_odm_splits(struct pipe_ctx *pipe)
709 {
710 int odm_split_count = 0;
711 struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
712 while (next_pipe) {
713 odm_split_count++;
714 next_pipe = next_pipe->next_odm_pipe;
715 }
716 pipe = pipe->prev_odm_pipe;
717 while (pipe) {
718 odm_split_count++;
719 pipe = pipe->prev_odm_pipe;
720 }
721 return odm_split_count;
722 }
723
calculate_split_count_and_index(struct pipe_ctx * pipe_ctx,int * split_count,int * split_idx)724 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
725 {
726 *split_count = get_num_odm_splits(pipe_ctx);
727 *split_idx = 0;
728 if (*split_count == 0) {
729 /*Check for mpc split*/
730 struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
731
732 *split_count = get_num_mpc_splits(pipe_ctx);
733 while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
734 (*split_idx)++;
735 split_pipe = split_pipe->top_pipe;
736 }
737 } else {
738 /*Get odm split index*/
739 struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
740
741 while (split_pipe) {
742 (*split_idx)++;
743 split_pipe = split_pipe->prev_odm_pipe;
744 }
745 }
746 }
747
748 /*
749 * This is a preliminary vp size calculation to allow us to check taps support.
750 * The result is completely overridden afterwards.
751 */
calculate_viewport_size(struct pipe_ctx * pipe_ctx)752 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
753 {
754 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
755
756 data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
757 data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
758 data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
759 data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
760 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
761 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
762 swap(data->viewport.width, data->viewport.height);
763 swap(data->viewport_c.width, data->viewport_c.height);
764 }
765 }
766
calculate_recout(struct pipe_ctx * pipe_ctx)767 static void calculate_recout(struct pipe_ctx *pipe_ctx)
768 {
769 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
770 const struct dc_stream_state *stream = pipe_ctx->stream;
771 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
772 struct rect surf_clip = plane_state->clip_rect;
773 bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
774 int split_count, split_idx;
775
776 calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
777 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
778 split_idx = 0;
779
780 /*
781 * Only the leftmost ODM pipe should be offset by a nonzero distance
782 */
783 if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
784 data->recout.x = stream->dst.x;
785 if (stream->src.x < surf_clip.x)
786 data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
787 / stream->src.width;
788 } else
789 data->recout.x = 0;
790
791 if (stream->src.x > surf_clip.x)
792 surf_clip.width -= stream->src.x - surf_clip.x;
793 data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
794 if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
795 data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
796
797 data->recout.y = stream->dst.y;
798 if (stream->src.y < surf_clip.y)
799 data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
800 / stream->src.height;
801 else if (stream->src.y > surf_clip.y)
802 surf_clip.height -= stream->src.y - surf_clip.y;
803
804 data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
805 if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
806 data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
807
808 /* Handle h & v split */
809 if (split_tb) {
810 ASSERT(data->recout.height % 2 == 0);
811 data->recout.height /= 2;
812 } else if (split_count) {
813 if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
814 /* extra pixels in the division remainder need to go to pipes after
815 * the extra pixel index minus one(epimo) defined here as:
816 */
817 int epimo = split_count - data->recout.width % (split_count + 1);
818
819 data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
820 if (split_idx > epimo)
821 data->recout.x += split_idx - epimo - 1;
822 ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
823 data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
824 } else {
825 /* odm */
826 if (split_idx == split_count) {
827 /* rightmost pipe is the remainder recout */
828 data->recout.width -= data->h_active * split_count - data->recout.x;
829
830 /* ODM combine cases with MPO we can get negative widths */
831 if (data->recout.width < 0)
832 data->recout.width = 0;
833
834 data->recout.x = 0;
835 } else
836 data->recout.width = data->h_active - data->recout.x;
837 }
838 }
839 }
840
calculate_scaling_ratios(struct pipe_ctx * pipe_ctx)841 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
842 {
843 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
844 const struct dc_stream_state *stream = pipe_ctx->stream;
845 struct rect surf_src = plane_state->src_rect;
846 const int in_w = stream->src.width;
847 const int in_h = stream->src.height;
848 const int out_w = stream->dst.width;
849 const int out_h = stream->dst.height;
850
851 /*Swap surf_src height and width since scaling ratios are in recout rotation*/
852 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
853 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
854 swap(surf_src.height, surf_src.width);
855
856 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
857 surf_src.width,
858 plane_state->dst_rect.width);
859 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
860 surf_src.height,
861 plane_state->dst_rect.height);
862
863 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
864 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
865 else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
866 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
867
868 pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
869 pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
870 pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
871 pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
872
873 pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
874 pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
875
876 if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
877 || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
878 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
879 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
880 }
881 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
882 pipe_ctx->plane_res.scl_data.ratios.horz, 19);
883 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
884 pipe_ctx->plane_res.scl_data.ratios.vert, 19);
885 pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
886 pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
887 pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
888 pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
889 }
890
891
892 /*
893 * We completely calculate vp offset, size and inits here based entirely on scaling
894 * ratios and recout for pixel perfect pipe combine.
895 */
calculate_init_and_vp(bool flip_scan_dir,int recout_offset_within_recout_full,int recout_size,int src_size,int taps,struct fixed31_32 ratio,struct fixed31_32 * init,int * vp_offset,int * vp_size)896 static void calculate_init_and_vp(
897 bool flip_scan_dir,
898 int recout_offset_within_recout_full,
899 int recout_size,
900 int src_size,
901 int taps,
902 struct fixed31_32 ratio,
903 struct fixed31_32 *init,
904 int *vp_offset,
905 int *vp_size)
906 {
907 struct fixed31_32 temp;
908 int int_part;
909
910 /*
911 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
912 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
913 * All following calculations are based on this logic.
914 *
915 * Init calculated according to formula:
916 * init = (scaling_ratio + number_of_taps + 1) / 2
917 * init_bot = init + scaling_ratio
918 * to get pixel perfect combine add the fraction from calculating vp offset
919 */
920 temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
921 *vp_offset = dc_fixpt_floor(temp);
922 temp.value &= 0xffffffff;
923 *init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
924 dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
925 /*
926 * If viewport has non 0 offset and there are more taps than covered by init then
927 * we should decrease the offset and increase init so we are never sampling
928 * outside of viewport.
929 */
930 int_part = dc_fixpt_floor(*init);
931 if (int_part < taps) {
932 int_part = taps - int_part;
933 if (int_part > *vp_offset)
934 int_part = *vp_offset;
935 *vp_offset -= int_part;
936 *init = dc_fixpt_add_int(*init, int_part);
937 }
938 /*
939 * If taps are sampling outside of viewport at end of recout and there are more pixels
940 * available in the surface we should increase the viewport size, regardless set vp to
941 * only what is used.
942 */
943 temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
944 *vp_size = dc_fixpt_floor(temp);
945 if (*vp_size + *vp_offset > src_size)
946 *vp_size = src_size - *vp_offset;
947
948 /* We did all the math assuming we are scanning same direction as display does,
949 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
950 * is flipped we simply need to calculate offset from the other side of plane.
951 * Note that outside of viewport all scaling hardware works in recout space.
952 */
953 if (flip_scan_dir)
954 *vp_offset = src_size - *vp_offset - *vp_size;
955 }
956
calculate_inits_and_viewports(struct pipe_ctx * pipe_ctx)957 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
958 {
959 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
960 const struct dc_stream_state *stream = pipe_ctx->stream;
961 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
962 struct rect src = plane_state->src_rect;
963 int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
964 || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
965 int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
966 bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
967
968 calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
969 /*
970 * recout full is what the recout would have been if we didnt clip
971 * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
972 * offsets of recout within recout full because those are the directions
973 * we scan from and therefore the only ones that affect inits.
974 */
975 recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
976 * stream->dst.width / stream->src.width;
977 recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
978 * stream->dst.height / stream->src.height;
979 if (pipe_ctx->prev_odm_pipe && split_idx)
980 ro_lb = data->h_active * split_idx - recout_full_x;
981 else
982 ro_lb = data->recout.x - recout_full_x;
983 ro_tb = data->recout.y - recout_full_y;
984 ASSERT(ro_lb >= 0 && ro_tb >= 0);
985
986 /*
987 * Work in recout rotation since that requires less transformations
988 */
989 get_vp_scan_direction(
990 plane_state->rotation,
991 plane_state->horizontal_mirror,
992 &orthogonal_rotation,
993 &flip_vert_scan_dir,
994 &flip_horz_scan_dir);
995
996 if (orthogonal_rotation) {
997 swap(src.width, src.height);
998 swap(flip_vert_scan_dir, flip_horz_scan_dir);
999 }
1000
1001 calculate_init_and_vp(
1002 flip_horz_scan_dir,
1003 ro_lb,
1004 data->recout.width,
1005 src.width,
1006 data->taps.h_taps,
1007 data->ratios.horz,
1008 &data->inits.h,
1009 &data->viewport.x,
1010 &data->viewport.width);
1011 calculate_init_and_vp(
1012 flip_horz_scan_dir,
1013 ro_lb,
1014 data->recout.width,
1015 src.width / vpc_div,
1016 data->taps.h_taps_c,
1017 data->ratios.horz_c,
1018 &data->inits.h_c,
1019 &data->viewport_c.x,
1020 &data->viewport_c.width);
1021 calculate_init_and_vp(
1022 flip_vert_scan_dir,
1023 ro_tb,
1024 data->recout.height,
1025 src.height,
1026 data->taps.v_taps,
1027 data->ratios.vert,
1028 &data->inits.v,
1029 &data->viewport.y,
1030 &data->viewport.height);
1031 calculate_init_and_vp(
1032 flip_vert_scan_dir,
1033 ro_tb,
1034 data->recout.height,
1035 src.height / vpc_div,
1036 data->taps.v_taps_c,
1037 data->ratios.vert_c,
1038 &data->inits.v_c,
1039 &data->viewport_c.y,
1040 &data->viewport_c.height);
1041 if (orthogonal_rotation) {
1042 swap(data->viewport.x, data->viewport.y);
1043 swap(data->viewport.width, data->viewport.height);
1044 swap(data->viewport_c.x, data->viewport_c.y);
1045 swap(data->viewport_c.width, data->viewport_c.height);
1046 }
1047 data->viewport.x += src.x;
1048 data->viewport.y += src.y;
1049 ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1050 data->viewport_c.x += src.x / vpc_div;
1051 data->viewport_c.y += src.y / vpc_div;
1052 }
1053
resource_build_scaling_params(struct pipe_ctx * pipe_ctx)1054 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1055 {
1056 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1057 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1058 bool res = false;
1059 DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1060
1061 pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1062 pipe_ctx->plane_state->format);
1063
1064 /* Timing borders are part of vactive that we are also supposed to skip in addition
1065 * to any stream dst offset. Since dm logic assumes dst is in addressable
1066 * space we need to add the left and top borders to dst offsets temporarily.
1067 * TODO: fix in DM, stream dst is supposed to be in vactive
1068 */
1069 pipe_ctx->stream->dst.x += timing->h_border_left;
1070 pipe_ctx->stream->dst.y += timing->v_border_top;
1071
1072 /* Calculate H and V active size */
1073 pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1074 timing->h_border_left + timing->h_border_right;
1075 pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1076 timing->v_border_top + timing->v_border_bottom;
1077 if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe)
1078 pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1079
1080 /* depends on h_active */
1081 calculate_recout(pipe_ctx);
1082 /* depends on pixel format */
1083 calculate_scaling_ratios(pipe_ctx);
1084 /* depends on scaling ratios and recout, does not calculate offset yet */
1085 calculate_viewport_size(pipe_ctx);
1086
1087 /* Stopgap for validation of ODM + MPO on one side of screen case */
1088 if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1089 pipe_ctx->plane_res.scl_data.viewport.width < 1)
1090 return false;
1091
1092 /*
1093 * LB calculations depend on vp size, h/v_active and scaling ratios
1094 * Setting line buffer pixel depth to 24bpp yields banding
1095 * on certain displays, such as the Sharp 4k. 36bpp is needed
1096 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1097 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1098 * precision on at least DCN display engines. However, at least
1099 * Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1100 * so use only 30 bpp on DCE_VERSION_11_0. Testing with DCE 11.2 and 8.3
1101 * did not show such problems, so this seems to be the exception.
1102 */
1103 if (plane_state->ctx->dce_version > DCE_VERSION_11_0)
1104 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1105 else
1106 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1107
1108 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1109
1110 if (pipe_ctx->plane_res.xfm != NULL)
1111 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1112 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1113
1114 if (pipe_ctx->plane_res.dpp != NULL)
1115 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1116 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1117
1118
1119 if (!res) {
1120 /* Try 24 bpp linebuffer */
1121 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1122
1123 if (pipe_ctx->plane_res.xfm != NULL)
1124 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1125 pipe_ctx->plane_res.xfm,
1126 &pipe_ctx->plane_res.scl_data,
1127 &plane_state->scaling_quality);
1128
1129 if (pipe_ctx->plane_res.dpp != NULL)
1130 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1131 pipe_ctx->plane_res.dpp,
1132 &pipe_ctx->plane_res.scl_data,
1133 &plane_state->scaling_quality);
1134 }
1135
1136 /*
1137 * Depends on recout, scaling ratios, h_active and taps
1138 * May need to re-check lb size after this in some obscure scenario
1139 */
1140 if (res)
1141 calculate_inits_and_viewports(pipe_ctx);
1142
1143 /*
1144 * Handle side by side and top bottom 3d recout offsets after vp calculation
1145 * since 3d is special and needs to calculate vp as if there is no recout offset
1146 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1147 */
1148 if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1149 ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1150 (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1151 pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1152 if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1153 pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1154 else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1155 pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1156 }
1157
1158 if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1159 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1160 pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1161 res = false;
1162 } else {
1163 /* Clamp minimum viewport size */
1164 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1165 pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1166 if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1167 pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1168 }
1169
1170 DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d Recout: height:%d width:%d x:%d y:%d HACTIVE:%d VACTIVE:%d\n"
1171 "src_rect: height:%d width:%d x:%d y:%d dst_rect: height:%d width:%d x:%d y:%d clip_rect: height:%d width:%d x:%d y:%d\n",
1172 __func__,
1173 pipe_ctx->pipe_idx,
1174 pipe_ctx->plane_res.scl_data.viewport.height,
1175 pipe_ctx->plane_res.scl_data.viewport.width,
1176 pipe_ctx->plane_res.scl_data.viewport.x,
1177 pipe_ctx->plane_res.scl_data.viewport.y,
1178 pipe_ctx->plane_res.scl_data.recout.height,
1179 pipe_ctx->plane_res.scl_data.recout.width,
1180 pipe_ctx->plane_res.scl_data.recout.x,
1181 pipe_ctx->plane_res.scl_data.recout.y,
1182 pipe_ctx->plane_res.scl_data.h_active,
1183 pipe_ctx->plane_res.scl_data.v_active,
1184 plane_state->src_rect.height,
1185 plane_state->src_rect.width,
1186 plane_state->src_rect.x,
1187 plane_state->src_rect.y,
1188 plane_state->dst_rect.height,
1189 plane_state->dst_rect.width,
1190 plane_state->dst_rect.x,
1191 plane_state->dst_rect.y,
1192 plane_state->clip_rect.height,
1193 plane_state->clip_rect.width,
1194 plane_state->clip_rect.x,
1195 plane_state->clip_rect.y);
1196
1197 pipe_ctx->stream->dst.x -= timing->h_border_left;
1198 pipe_ctx->stream->dst.y -= timing->v_border_top;
1199
1200 return res;
1201 }
1202
1203
resource_build_scaling_params_for_context(const struct dc * dc,struct dc_state * context)1204 enum dc_status resource_build_scaling_params_for_context(
1205 const struct dc *dc,
1206 struct dc_state *context)
1207 {
1208 int i;
1209
1210 for (i = 0; i < MAX_PIPES; i++) {
1211 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1212 context->res_ctx.pipe_ctx[i].stream != NULL)
1213 if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1214 return DC_FAIL_SCALING;
1215 }
1216
1217 return DC_OK;
1218 }
1219
find_idle_secondary_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1220 struct pipe_ctx *find_idle_secondary_pipe(
1221 struct resource_context *res_ctx,
1222 const struct resource_pool *pool,
1223 const struct pipe_ctx *primary_pipe)
1224 {
1225 int i;
1226 struct pipe_ctx *secondary_pipe = NULL;
1227
1228 /*
1229 * We add a preferred pipe mapping to avoid the chance that
1230 * MPCCs already in use will need to be reassigned to other trees.
1231 * For example, if we went with the strict, assign backwards logic:
1232 *
1233 * (State 1)
1234 * Display A on, no surface, top pipe = 0
1235 * Display B on, no surface, top pipe = 1
1236 *
1237 * (State 2)
1238 * Display A on, no surface, top pipe = 0
1239 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1240 *
1241 * (State 3)
1242 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1243 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1244 *
1245 * The state 2->3 transition requires remapping MPCC 5 from display B
1246 * to display A.
1247 *
1248 * However, with the preferred pipe logic, state 2 would look like:
1249 *
1250 * (State 2)
1251 * Display A on, no surface, top pipe = 0
1252 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1253 *
1254 * This would then cause 2->3 to not require remapping any MPCCs.
1255 */
1256 if (primary_pipe) {
1257 int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1258 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1259 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1260 secondary_pipe->pipe_idx = preferred_pipe_idx;
1261 }
1262 }
1263
1264 /*
1265 * search backwards for the second pipe to keep pipe
1266 * assignment more consistent
1267 */
1268 if (!secondary_pipe)
1269 for (i = pool->pipe_count - 1; i >= 0; i--) {
1270 if (res_ctx->pipe_ctx[i].stream == NULL) {
1271 secondary_pipe = &res_ctx->pipe_ctx[i];
1272 secondary_pipe->pipe_idx = i;
1273 break;
1274 }
1275 }
1276
1277 return secondary_pipe;
1278 }
1279
resource_get_head_pipe_for_stream(struct resource_context * res_ctx,struct dc_stream_state * stream)1280 struct pipe_ctx *resource_get_head_pipe_for_stream(
1281 struct resource_context *res_ctx,
1282 struct dc_stream_state *stream)
1283 {
1284 int i;
1285
1286 for (i = 0; i < MAX_PIPES; i++) {
1287 if (res_ctx->pipe_ctx[i].stream == stream
1288 && !res_ctx->pipe_ctx[i].top_pipe
1289 && !res_ctx->pipe_ctx[i].prev_odm_pipe)
1290 return &res_ctx->pipe_ctx[i];
1291 }
1292 return NULL;
1293 }
1294
resource_get_tail_pipe(struct resource_context * res_ctx,struct pipe_ctx * head_pipe)1295 static struct pipe_ctx *resource_get_tail_pipe(
1296 struct resource_context *res_ctx,
1297 struct pipe_ctx *head_pipe)
1298 {
1299 struct pipe_ctx *tail_pipe;
1300
1301 tail_pipe = head_pipe->bottom_pipe;
1302
1303 while (tail_pipe) {
1304 head_pipe = tail_pipe;
1305 tail_pipe = tail_pipe->bottom_pipe;
1306 }
1307
1308 return head_pipe;
1309 }
1310
1311 /*
1312 * A free_pipe for a stream is defined here as a pipe
1313 * that has no surface attached yet
1314 */
acquire_free_pipe_for_head(struct dc_state * context,const struct resource_pool * pool,struct pipe_ctx * head_pipe)1315 static struct pipe_ctx *acquire_free_pipe_for_head(
1316 struct dc_state *context,
1317 const struct resource_pool *pool,
1318 struct pipe_ctx *head_pipe)
1319 {
1320 int i;
1321 struct resource_context *res_ctx = &context->res_ctx;
1322
1323 if (!head_pipe->plane_state)
1324 return head_pipe;
1325
1326 /* Re-use pipe already acquired for this stream if available*/
1327 for (i = pool->pipe_count - 1; i >= 0; i--) {
1328 if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1329 !res_ctx->pipe_ctx[i].plane_state) {
1330 return &res_ctx->pipe_ctx[i];
1331 }
1332 }
1333
1334 /*
1335 * At this point we have no re-useable pipe for this stream and we need
1336 * to acquire an idle one to satisfy the request
1337 */
1338
1339 if (!pool->funcs->acquire_idle_pipe_for_layer)
1340 return NULL;
1341
1342 return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1343 }
1344
1345 #if defined(CONFIG_DRM_AMD_DC_DCN)
acquire_first_split_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)1346 static int acquire_first_split_pipe(
1347 struct resource_context *res_ctx,
1348 const struct resource_pool *pool,
1349 struct dc_stream_state *stream)
1350 {
1351 int i;
1352
1353 for (i = 0; i < pool->pipe_count; i++) {
1354 struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1355
1356 if (split_pipe->top_pipe &&
1357 split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1358 split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1359 if (split_pipe->bottom_pipe)
1360 split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1361
1362 if (split_pipe->top_pipe->plane_state)
1363 resource_build_scaling_params(split_pipe->top_pipe);
1364
1365 memset(split_pipe, 0, sizeof(*split_pipe));
1366 split_pipe->stream_res.tg = pool->timing_generators[i];
1367 split_pipe->plane_res.hubp = pool->hubps[i];
1368 split_pipe->plane_res.ipp = pool->ipps[i];
1369 split_pipe->plane_res.dpp = pool->dpps[i];
1370 split_pipe->stream_res.opp = pool->opps[i];
1371 split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1372 split_pipe->pipe_idx = i;
1373
1374 split_pipe->stream = stream;
1375 return i;
1376 }
1377 }
1378 return -1;
1379 }
1380 #endif
1381
dc_add_plane_to_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1382 bool dc_add_plane_to_context(
1383 const struct dc *dc,
1384 struct dc_stream_state *stream,
1385 struct dc_plane_state *plane_state,
1386 struct dc_state *context)
1387 {
1388 int i;
1389 struct resource_pool *pool = dc->res_pool;
1390 struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1391 struct dc_stream_status *stream_status = NULL;
1392
1393 for (i = 0; i < context->stream_count; i++)
1394 if (context->streams[i] == stream) {
1395 stream_status = &context->stream_status[i];
1396 break;
1397 }
1398 if (stream_status == NULL) {
1399 dm_error("Existing stream not found; failed to attach surface!\n");
1400 return false;
1401 }
1402
1403
1404 if (stream_status->plane_count == MAX_SURFACE_NUM) {
1405 dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1406 plane_state, MAX_SURFACE_NUM);
1407 return false;
1408 }
1409
1410 head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1411
1412 if (!head_pipe) {
1413 dm_error("Head pipe not found for stream_state %p !\n", stream);
1414 return false;
1415 }
1416
1417 /* retain new surface, but only once per stream */
1418 dc_plane_state_retain(plane_state);
1419
1420 while (head_pipe) {
1421 free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1422
1423 #if defined(CONFIG_DRM_AMD_DC_DCN)
1424 if (!free_pipe) {
1425 int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1426 if (pipe_idx >= 0)
1427 free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1428 }
1429 #endif
1430 if (!free_pipe) {
1431 dc_plane_state_release(plane_state);
1432 return false;
1433 }
1434
1435 free_pipe->plane_state = plane_state;
1436
1437 if (head_pipe != free_pipe) {
1438 tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1439 ASSERT(tail_pipe);
1440 free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1441 free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1442 free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1443 free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1444 free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1445 free_pipe->clock_source = tail_pipe->clock_source;
1446 free_pipe->top_pipe = tail_pipe;
1447 tail_pipe->bottom_pipe = free_pipe;
1448 if (!free_pipe->next_odm_pipe && tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1449 free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1450 tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1451 }
1452 if (!free_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1453 free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1454 tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1455 }
1456 }
1457 head_pipe = head_pipe->next_odm_pipe;
1458 }
1459 /* assign new surfaces*/
1460 stream_status->plane_states[stream_status->plane_count] = plane_state;
1461
1462 stream_status->plane_count++;
1463
1464 return true;
1465 }
1466
dc_remove_plane_from_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1467 bool dc_remove_plane_from_context(
1468 const struct dc *dc,
1469 struct dc_stream_state *stream,
1470 struct dc_plane_state *plane_state,
1471 struct dc_state *context)
1472 {
1473 int i;
1474 struct dc_stream_status *stream_status = NULL;
1475 struct resource_pool *pool = dc->res_pool;
1476
1477 for (i = 0; i < context->stream_count; i++)
1478 if (context->streams[i] == stream) {
1479 stream_status = &context->stream_status[i];
1480 break;
1481 }
1482
1483 if (stream_status == NULL) {
1484 dm_error("Existing stream not found; failed to remove plane.\n");
1485 return false;
1486 }
1487
1488 /* release pipe for plane*/
1489 for (i = pool->pipe_count - 1; i >= 0; i--) {
1490 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1491
1492 if (pipe_ctx->plane_state == plane_state) {
1493 if (pipe_ctx->top_pipe)
1494 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1495
1496 /* Second condition is to avoid setting NULL to top pipe
1497 * of tail pipe making it look like head pipe in subsequent
1498 * deletes
1499 */
1500 if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1501 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1502
1503 /*
1504 * For head pipe detach surfaces from pipe for tail
1505 * pipe just zero it out
1506 */
1507 if (!pipe_ctx->top_pipe)
1508 pipe_ctx->plane_state = NULL;
1509 else
1510 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1511 }
1512 }
1513
1514
1515 for (i = 0; i < stream_status->plane_count; i++) {
1516 if (stream_status->plane_states[i] == plane_state) {
1517
1518 dc_plane_state_release(stream_status->plane_states[i]);
1519 break;
1520 }
1521 }
1522
1523 if (i == stream_status->plane_count) {
1524 dm_error("Existing plane_state not found; failed to detach it!\n");
1525 return false;
1526 }
1527
1528 stream_status->plane_count--;
1529
1530 /* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1531 for (; i < stream_status->plane_count; i++)
1532 stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1533
1534 stream_status->plane_states[stream_status->plane_count] = NULL;
1535
1536 return true;
1537 }
1538
dc_rem_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1539 bool dc_rem_all_planes_for_stream(
1540 const struct dc *dc,
1541 struct dc_stream_state *stream,
1542 struct dc_state *context)
1543 {
1544 int i, old_plane_count;
1545 struct dc_stream_status *stream_status = NULL;
1546 struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1547
1548 for (i = 0; i < context->stream_count; i++)
1549 if (context->streams[i] == stream) {
1550 stream_status = &context->stream_status[i];
1551 break;
1552 }
1553
1554 if (stream_status == NULL) {
1555 dm_error("Existing stream %p not found!\n", stream);
1556 return false;
1557 }
1558
1559 old_plane_count = stream_status->plane_count;
1560
1561 for (i = 0; i < old_plane_count; i++)
1562 del_planes[i] = stream_status->plane_states[i];
1563
1564 for (i = 0; i < old_plane_count; i++)
1565 if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1566 return false;
1567
1568 return true;
1569 }
1570
add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count,struct dc_state * context)1571 static bool add_all_planes_for_stream(
1572 const struct dc *dc,
1573 struct dc_stream_state *stream,
1574 const struct dc_validation_set set[],
1575 int set_count,
1576 struct dc_state *context)
1577 {
1578 int i, j;
1579
1580 for (i = 0; i < set_count; i++)
1581 if (set[i].stream == stream)
1582 break;
1583
1584 if (i == set_count) {
1585 dm_error("Stream %p not found in set!\n", stream);
1586 return false;
1587 }
1588
1589 for (j = 0; j < set[i].plane_count; j++)
1590 if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1591 return false;
1592
1593 return true;
1594 }
1595
dc_add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * const * plane_states,int plane_count,struct dc_state * context)1596 bool dc_add_all_planes_for_stream(
1597 const struct dc *dc,
1598 struct dc_stream_state *stream,
1599 struct dc_plane_state * const *plane_states,
1600 int plane_count,
1601 struct dc_state *context)
1602 {
1603 struct dc_validation_set set;
1604 int i;
1605
1606 set.stream = stream;
1607 set.plane_count = plane_count;
1608
1609 for (i = 0; i < plane_count; i++)
1610 set.plane_states[i] = plane_states[i];
1611
1612 return add_all_planes_for_stream(dc, stream, &set, 1, context);
1613 }
1614
is_timing_changed(struct dc_stream_state * cur_stream,struct dc_stream_state * new_stream)1615 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1616 struct dc_stream_state *new_stream)
1617 {
1618 if (cur_stream == NULL)
1619 return true;
1620
1621 /* If output color space is changed, need to reprogram info frames */
1622 if (cur_stream->output_color_space != new_stream->output_color_space)
1623 return true;
1624
1625 return memcmp(
1626 &cur_stream->timing,
1627 &new_stream->timing,
1628 sizeof(struct dc_crtc_timing)) != 0;
1629 }
1630
are_stream_backends_same(struct dc_stream_state * stream_a,struct dc_stream_state * stream_b)1631 static bool are_stream_backends_same(
1632 struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1633 {
1634 if (stream_a == stream_b)
1635 return true;
1636
1637 if (stream_a == NULL || stream_b == NULL)
1638 return false;
1639
1640 if (is_timing_changed(stream_a, stream_b))
1641 return false;
1642
1643 if (stream_a->dpms_off != stream_b->dpms_off)
1644 return false;
1645
1646 return true;
1647 }
1648
1649 /*
1650 * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1651 *
1652 * Checks if there a difference between the two states
1653 * that would require a mode change.
1654 *
1655 * Does not compare cursor position or attributes.
1656 */
dc_is_stream_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)1657 bool dc_is_stream_unchanged(
1658 struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1659 {
1660
1661 if (!are_stream_backends_same(old_stream, stream))
1662 return false;
1663
1664 if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1665 return false;
1666
1667 // Only Have Audio left to check whether it is same or not. This is a corner case for Tiled sinks
1668 if (old_stream->audio_info.mode_count != stream->audio_info.mode_count)
1669 return false;
1670
1671 return true;
1672 }
1673
1674 /*
1675 * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1676 */
dc_is_stream_scaling_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)1677 bool dc_is_stream_scaling_unchanged(
1678 struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1679 {
1680 if (old_stream == stream)
1681 return true;
1682
1683 if (old_stream == NULL || stream == NULL)
1684 return false;
1685
1686 if (memcmp(&old_stream->src,
1687 &stream->src,
1688 sizeof(struct rect)) != 0)
1689 return false;
1690
1691 if (memcmp(&old_stream->dst,
1692 &stream->dst,
1693 sizeof(struct rect)) != 0)
1694 return false;
1695
1696 return true;
1697 }
1698
update_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct stream_encoder * stream_enc,bool acquired)1699 static void update_stream_engine_usage(
1700 struct resource_context *res_ctx,
1701 const struct resource_pool *pool,
1702 struct stream_encoder *stream_enc,
1703 bool acquired)
1704 {
1705 int i;
1706
1707 for (i = 0; i < pool->stream_enc_count; i++) {
1708 if (pool->stream_enc[i] == stream_enc)
1709 res_ctx->is_stream_enc_acquired[i] = acquired;
1710 }
1711 }
1712
1713 #if defined(CONFIG_DRM_AMD_DC_DCN)
update_hpo_dp_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct hpo_dp_stream_encoder * hpo_dp_stream_enc,bool acquired)1714 static void update_hpo_dp_stream_engine_usage(
1715 struct resource_context *res_ctx,
1716 const struct resource_pool *pool,
1717 struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
1718 bool acquired)
1719 {
1720 int i;
1721
1722 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
1723 if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
1724 res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
1725 }
1726 }
1727 #endif
1728
1729 /* TODO: release audio object */
update_audio_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct audio * audio,bool acquired)1730 void update_audio_usage(
1731 struct resource_context *res_ctx,
1732 const struct resource_pool *pool,
1733 struct audio *audio,
1734 bool acquired)
1735 {
1736 int i;
1737 for (i = 0; i < pool->audio_count; i++) {
1738 if (pool->audios[i] == audio)
1739 res_ctx->is_audio_acquired[i] = acquired;
1740 }
1741 }
1742
acquire_first_free_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)1743 static int acquire_first_free_pipe(
1744 struct resource_context *res_ctx,
1745 const struct resource_pool *pool,
1746 struct dc_stream_state *stream)
1747 {
1748 int i;
1749
1750 for (i = 0; i < pool->pipe_count; i++) {
1751 if (!res_ctx->pipe_ctx[i].stream) {
1752 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1753
1754 pipe_ctx->stream_res.tg = pool->timing_generators[i];
1755 pipe_ctx->plane_res.mi = pool->mis[i];
1756 pipe_ctx->plane_res.hubp = pool->hubps[i];
1757 pipe_ctx->plane_res.ipp = pool->ipps[i];
1758 pipe_ctx->plane_res.xfm = pool->transforms[i];
1759 pipe_ctx->plane_res.dpp = pool->dpps[i];
1760 pipe_ctx->stream_res.opp = pool->opps[i];
1761 if (pool->dpps[i])
1762 pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
1763 pipe_ctx->pipe_idx = i;
1764
1765
1766 pipe_ctx->stream = stream;
1767 return i;
1768 }
1769 }
1770 return -1;
1771 }
1772
1773 #if defined(CONFIG_DRM_AMD_DC_DCN)
find_first_free_match_hpo_dp_stream_enc_for_link(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)1774 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
1775 struct resource_context *res_ctx,
1776 const struct resource_pool *pool,
1777 struct dc_stream_state *stream)
1778 {
1779 int i;
1780
1781 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
1782 if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
1783 pool->hpo_dp_stream_enc[i]) {
1784
1785 return pool->hpo_dp_stream_enc[i];
1786 }
1787 }
1788
1789 return NULL;
1790 }
1791 #endif
1792
find_first_free_audio(struct resource_context * res_ctx,const struct resource_pool * pool,enum engine_id id,enum dce_version dc_version)1793 static struct audio *find_first_free_audio(
1794 struct resource_context *res_ctx,
1795 const struct resource_pool *pool,
1796 enum engine_id id,
1797 enum dce_version dc_version)
1798 {
1799 int i, available_audio_count;
1800
1801 available_audio_count = pool->audio_count;
1802
1803 for (i = 0; i < available_audio_count; i++) {
1804 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1805 /*we have enough audio endpoint, find the matching inst*/
1806 if (id != i)
1807 continue;
1808 return pool->audios[i];
1809 }
1810 }
1811
1812 /* use engine id to find free audio */
1813 if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
1814 return pool->audios[id];
1815 }
1816 /*not found the matching one, first come first serve*/
1817 for (i = 0; i < available_audio_count; i++) {
1818 if (res_ctx->is_audio_acquired[i] == false) {
1819 return pool->audios[i];
1820 }
1821 }
1822 return 0;
1823 }
1824
1825 /*
1826 * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
1827 */
dc_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)1828 enum dc_status dc_add_stream_to_ctx(
1829 struct dc *dc,
1830 struct dc_state *new_ctx,
1831 struct dc_stream_state *stream)
1832 {
1833 enum dc_status res;
1834 DC_LOGGER_INIT(dc->ctx->logger);
1835
1836 if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
1837 DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
1838 return DC_ERROR_UNEXPECTED;
1839 }
1840
1841 new_ctx->streams[new_ctx->stream_count] = stream;
1842 dc_stream_retain(stream);
1843 new_ctx->stream_count++;
1844
1845 res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1846 if (res != DC_OK)
1847 DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
1848
1849 return res;
1850 }
1851
1852 /*
1853 * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
1854 */
dc_remove_stream_from_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)1855 enum dc_status dc_remove_stream_from_ctx(
1856 struct dc *dc,
1857 struct dc_state *new_ctx,
1858 struct dc_stream_state *stream)
1859 {
1860 int i;
1861 struct dc_context *dc_ctx = dc->ctx;
1862 struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
1863 struct pipe_ctx *odm_pipe;
1864
1865 if (!del_pipe) {
1866 DC_ERROR("Pipe not found for stream %p !\n", stream);
1867 return DC_ERROR_UNEXPECTED;
1868 }
1869
1870 odm_pipe = del_pipe->next_odm_pipe;
1871
1872 /* Release primary pipe */
1873 ASSERT(del_pipe->stream_res.stream_enc);
1874 update_stream_engine_usage(
1875 &new_ctx->res_ctx,
1876 dc->res_pool,
1877 del_pipe->stream_res.stream_enc,
1878 false);
1879 /* Release link encoder from stream in new dc_state. */
1880 if (dc->res_pool->funcs->link_enc_unassign)
1881 dc->res_pool->funcs->link_enc_unassign(new_ctx, del_pipe->stream);
1882
1883 #if defined(CONFIG_DRM_AMD_DC_DCN)
1884 if (is_dp_128b_132b_signal(del_pipe)) {
1885 update_hpo_dp_stream_engine_usage(
1886 &new_ctx->res_ctx, dc->res_pool,
1887 del_pipe->stream_res.hpo_dp_stream_enc,
1888 false);
1889 }
1890 #endif
1891
1892 if (del_pipe->stream_res.audio)
1893 update_audio_usage(
1894 &new_ctx->res_ctx,
1895 dc->res_pool,
1896 del_pipe->stream_res.audio,
1897 false);
1898
1899 resource_unreference_clock_source(&new_ctx->res_ctx,
1900 dc->res_pool,
1901 del_pipe->clock_source);
1902
1903 if (dc->res_pool->funcs->remove_stream_from_ctx)
1904 dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
1905
1906 while (odm_pipe) {
1907 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1908
1909 memset(odm_pipe, 0, sizeof(*odm_pipe));
1910 odm_pipe = next_odm_pipe;
1911 }
1912 memset(del_pipe, 0, sizeof(*del_pipe));
1913
1914 for (i = 0; i < new_ctx->stream_count; i++)
1915 if (new_ctx->streams[i] == stream)
1916 break;
1917
1918 if (new_ctx->streams[i] != stream) {
1919 DC_ERROR("Context doesn't have stream %p !\n", stream);
1920 return DC_ERROR_UNEXPECTED;
1921 }
1922
1923 dc_stream_release(new_ctx->streams[i]);
1924 new_ctx->stream_count--;
1925
1926 /* Trim back arrays */
1927 for (; i < new_ctx->stream_count; i++) {
1928 new_ctx->streams[i] = new_ctx->streams[i + 1];
1929 new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1930 }
1931
1932 new_ctx->streams[new_ctx->stream_count] = NULL;
1933 memset(
1934 &new_ctx->stream_status[new_ctx->stream_count],
1935 0,
1936 sizeof(new_ctx->stream_status[0]));
1937
1938 return DC_OK;
1939 }
1940
find_pll_sharable_stream(struct dc_stream_state * stream_needs_pll,struct dc_state * context)1941 static struct dc_stream_state *find_pll_sharable_stream(
1942 struct dc_stream_state *stream_needs_pll,
1943 struct dc_state *context)
1944 {
1945 int i;
1946
1947 for (i = 0; i < context->stream_count; i++) {
1948 struct dc_stream_state *stream_has_pll = context->streams[i];
1949
1950 /* We are looking for non dp, non virtual stream */
1951 if (resource_are_streams_timing_synchronizable(
1952 stream_needs_pll, stream_has_pll)
1953 && !dc_is_dp_signal(stream_has_pll->signal)
1954 && stream_has_pll->link->connector_signal
1955 != SIGNAL_TYPE_VIRTUAL)
1956 return stream_has_pll;
1957
1958 }
1959
1960 return NULL;
1961 }
1962
get_norm_pix_clk(const struct dc_crtc_timing * timing)1963 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
1964 {
1965 uint32_t pix_clk = timing->pix_clk_100hz;
1966 uint32_t normalized_pix_clk = pix_clk;
1967
1968 if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
1969 pix_clk /= 2;
1970 if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
1971 switch (timing->display_color_depth) {
1972 case COLOR_DEPTH_666:
1973 case COLOR_DEPTH_888:
1974 normalized_pix_clk = pix_clk;
1975 break;
1976 case COLOR_DEPTH_101010:
1977 normalized_pix_clk = (pix_clk * 30) / 24;
1978 break;
1979 case COLOR_DEPTH_121212:
1980 normalized_pix_clk = (pix_clk * 36) / 24;
1981 break;
1982 case COLOR_DEPTH_161616:
1983 normalized_pix_clk = (pix_clk * 48) / 24;
1984 break;
1985 default:
1986 ASSERT(0);
1987 break;
1988 }
1989 }
1990 return normalized_pix_clk;
1991 }
1992
calculate_phy_pix_clks(struct dc_stream_state * stream)1993 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
1994 {
1995 /* update actual pixel clock on all streams */
1996 if (dc_is_hdmi_signal(stream->signal))
1997 stream->phy_pix_clk = get_norm_pix_clk(
1998 &stream->timing) / 10;
1999 else
2000 stream->phy_pix_clk =
2001 stream->timing.pix_clk_100hz / 10;
2002
2003 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
2004 stream->phy_pix_clk *= 2;
2005 }
2006
acquire_resource_from_hw_enabled_state(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2007 static int acquire_resource_from_hw_enabled_state(
2008 struct resource_context *res_ctx,
2009 const struct resource_pool *pool,
2010 struct dc_stream_state *stream)
2011 {
2012 struct dc_link *link = stream->link;
2013 unsigned int i, inst, tg_inst = 0;
2014
2015 /* Check for enabled DIG to identify enabled display */
2016 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2017 return -1;
2018
2019 inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2020
2021 if (inst == ENGINE_ID_UNKNOWN)
2022 return -1;
2023
2024 for (i = 0; i < pool->stream_enc_count; i++) {
2025 if (pool->stream_enc[i]->id == inst) {
2026 tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2027 pool->stream_enc[i]);
2028 break;
2029 }
2030 }
2031
2032 // tg_inst not found
2033 if (i == pool->stream_enc_count)
2034 return -1;
2035
2036 if (tg_inst >= pool->timing_generator_count)
2037 return -1;
2038
2039 if (!res_ctx->pipe_ctx[tg_inst].stream) {
2040 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2041
2042 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2043 pipe_ctx->plane_res.mi = pool->mis[tg_inst];
2044 pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
2045 pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
2046 pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
2047 pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
2048 pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2049
2050 if (pool->dpps[tg_inst]) {
2051 pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
2052
2053 // Read DPP->MPCC->OPP Pipe from HW State
2054 if (pool->mpc->funcs->read_mpcc_state) {
2055 struct mpcc_state s = {0};
2056
2057 pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2058
2059 if (s.dpp_id < MAX_MPCC)
2060 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id = s.dpp_id;
2061
2062 if (s.bot_mpcc_id < MAX_MPCC)
2063 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2064 &pool->mpc->mpcc_array[s.bot_mpcc_id];
2065
2066 if (s.opp_id < MAX_OPP)
2067 pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2068 }
2069 }
2070 pipe_ctx->pipe_idx = tg_inst;
2071
2072 pipe_ctx->stream = stream;
2073 return tg_inst;
2074 }
2075
2076 return -1;
2077 }
2078
mark_seamless_boot_stream(const struct dc * dc,struct dc_stream_state * stream)2079 static void mark_seamless_boot_stream(
2080 const struct dc *dc,
2081 struct dc_stream_state *stream)
2082 {
2083 struct dc_bios *dcb = dc->ctx->dc_bios;
2084
2085 /* TODO: Check Linux */
2086 if (dc->config.allow_seamless_boot_optimization &&
2087 !dcb->funcs->is_accelerated_mode(dcb)) {
2088 if (dc_validate_seamless_boot_timing(dc, stream->sink, &stream->timing))
2089 stream->apply_seamless_boot_optimization = true;
2090 }
2091 }
2092
resource_map_pool_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)2093 enum dc_status resource_map_pool_resources(
2094 const struct dc *dc,
2095 struct dc_state *context,
2096 struct dc_stream_state *stream)
2097 {
2098 const struct resource_pool *pool = dc->res_pool;
2099 int i;
2100 struct dc_context *dc_ctx = dc->ctx;
2101 struct pipe_ctx *pipe_ctx = NULL;
2102 int pipe_idx = -1;
2103
2104 calculate_phy_pix_clks(stream);
2105
2106 mark_seamless_boot_stream(dc, stream);
2107
2108 if (stream->apply_seamless_boot_optimization) {
2109 pipe_idx = acquire_resource_from_hw_enabled_state(
2110 &context->res_ctx,
2111 pool,
2112 stream);
2113 if (pipe_idx < 0)
2114 /* hw resource was assigned to other stream */
2115 stream->apply_seamless_boot_optimization = false;
2116 }
2117
2118 if (pipe_idx < 0)
2119 /* acquire new resources */
2120 pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2121
2122 #ifdef CONFIG_DRM_AMD_DC_DCN
2123 if (pipe_idx < 0)
2124 pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2125 #endif
2126
2127 if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2128 return DC_NO_CONTROLLER_RESOURCE;
2129
2130 pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2131
2132 pipe_ctx->stream_res.stream_enc =
2133 dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2134 &context->res_ctx, pool, stream);
2135
2136 if (!pipe_ctx->stream_res.stream_enc)
2137 return DC_NO_STREAM_ENC_RESOURCE;
2138
2139 update_stream_engine_usage(
2140 &context->res_ctx, pool,
2141 pipe_ctx->stream_res.stream_enc,
2142 true);
2143
2144 #if defined(CONFIG_DRM_AMD_DC_DCN)
2145 /* Allocate DP HPO Stream Encoder based on signal, hw capabilities
2146 * and link settings
2147 */
2148 if (dc_is_dp_signal(stream->signal) &&
2149 dc->caps.dp_hpo) {
2150 struct dc_link_settings link_settings = {0};
2151
2152 decide_link_settings(stream, &link_settings);
2153 if (dp_get_link_encoding_format(&link_settings) == DP_128b_132b_ENCODING) {
2154 pipe_ctx->stream_res.hpo_dp_stream_enc =
2155 find_first_free_match_hpo_dp_stream_enc_for_link(
2156 &context->res_ctx, pool, stream);
2157
2158 if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
2159 return DC_NO_STREAM_ENC_RESOURCE;
2160
2161 update_hpo_dp_stream_engine_usage(
2162 &context->res_ctx, pool,
2163 pipe_ctx->stream_res.hpo_dp_stream_enc,
2164 true);
2165 }
2166 }
2167 #endif
2168
2169 /* TODO: Add check if ASIC support and EDID audio */
2170 if (!stream->converter_disable_audio &&
2171 dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2172 stream->audio_info.mode_count && stream->audio_info.flags.all) {
2173 pipe_ctx->stream_res.audio = find_first_free_audio(
2174 &context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2175
2176 /*
2177 * Audio assigned in order first come first get.
2178 * There are asics which has number of audio
2179 * resources less then number of pipes
2180 */
2181 if (pipe_ctx->stream_res.audio)
2182 update_audio_usage(&context->res_ctx, pool,
2183 pipe_ctx->stream_res.audio, true);
2184 }
2185
2186 /* Add ABM to the resource if on EDP */
2187 if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2188 #if defined(CONFIG_DRM_AMD_DC_DCN)
2189 if (pool->abm)
2190 pipe_ctx->stream_res.abm = pool->abm;
2191 else
2192 pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2193 #else
2194 pipe_ctx->stream_res.abm = pool->abm;
2195 #endif
2196 }
2197
2198 for (i = 0; i < context->stream_count; i++)
2199 if (context->streams[i] == stream) {
2200 context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2201 context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2202 context->stream_status[i].audio_inst =
2203 pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2204
2205 return DC_OK;
2206 }
2207
2208 DC_ERROR("Stream %p not found in new ctx!\n", stream);
2209 return DC_ERROR_UNEXPECTED;
2210 }
2211
2212 /**
2213 * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2214 * Is a shallow copy. Increments refcounts on existing streams and planes.
2215 * @dc: copy out of dc->current_state
2216 * @dst_ctx: copy into this
2217 */
dc_resource_state_copy_construct_current(const struct dc * dc,struct dc_state * dst_ctx)2218 void dc_resource_state_copy_construct_current(
2219 const struct dc *dc,
2220 struct dc_state *dst_ctx)
2221 {
2222 dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2223 }
2224
2225
dc_resource_state_construct(const struct dc * dc,struct dc_state * dst_ctx)2226 void dc_resource_state_construct(
2227 const struct dc *dc,
2228 struct dc_state *dst_ctx)
2229 {
2230 dst_ctx->clk_mgr = dc->clk_mgr;
2231 }
2232
2233
dc_resource_is_dsc_encoding_supported(const struct dc * dc)2234 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2235 {
2236 return dc->res_pool->res_cap->num_dsc > 0;
2237 }
2238
2239
2240 /**
2241 * dc_validate_global_state() - Determine if HW can support a given state
2242 * Checks HW resource availability and bandwidth requirement.
2243 * @dc: dc struct for this driver
2244 * @new_ctx: state to be validated
2245 * @fast_validate: set to true if only yes/no to support matters
2246 *
2247 * Return: DC_OK if the result can be programmed. Otherwise, an error code.
2248 */
dc_validate_global_state(struct dc * dc,struct dc_state * new_ctx,bool fast_validate)2249 enum dc_status dc_validate_global_state(
2250 struct dc *dc,
2251 struct dc_state *new_ctx,
2252 bool fast_validate)
2253 {
2254 enum dc_status result = DC_ERROR_UNEXPECTED;
2255 int i, j;
2256
2257 if (!new_ctx)
2258 return DC_ERROR_UNEXPECTED;
2259
2260 if (dc->res_pool->funcs->validate_global) {
2261 result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2262 if (result != DC_OK)
2263 return result;
2264 }
2265
2266 for (i = 0; i < new_ctx->stream_count; i++) {
2267 struct dc_stream_state *stream = new_ctx->streams[i];
2268
2269 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2270 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2271
2272 if (pipe_ctx->stream != stream)
2273 continue;
2274
2275 if (dc->res_pool->funcs->patch_unknown_plane_state &&
2276 pipe_ctx->plane_state &&
2277 pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2278 result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2279 if (result != DC_OK)
2280 return result;
2281 }
2282
2283 /* Switch to dp clock source only if there is
2284 * no non dp stream that shares the same timing
2285 * with the dp stream.
2286 */
2287 if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2288 !find_pll_sharable_stream(stream, new_ctx)) {
2289
2290 resource_unreference_clock_source(
2291 &new_ctx->res_ctx,
2292 dc->res_pool,
2293 pipe_ctx->clock_source);
2294
2295 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2296 resource_reference_clock_source(
2297 &new_ctx->res_ctx,
2298 dc->res_pool,
2299 pipe_ctx->clock_source);
2300 }
2301 }
2302 }
2303
2304 result = resource_build_scaling_params_for_context(dc, new_ctx);
2305
2306 if (result == DC_OK)
2307 if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2308 result = DC_FAIL_BANDWIDTH_VALIDATE;
2309
2310 #if defined(CONFIG_DRM_AMD_DC_DCN)
2311 /*
2312 * Only update link encoder to stream assignment after bandwidth validation passed.
2313 * TODO: Split out assignment and validation.
2314 */
2315 if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
2316 dc->res_pool->funcs->link_encs_assign(
2317 dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2318 #endif
2319
2320 return result;
2321 }
2322
patch_gamut_packet_checksum(struct dc_info_packet * gamut_packet)2323 static void patch_gamut_packet_checksum(
2324 struct dc_info_packet *gamut_packet)
2325 {
2326 /* For gamut we recalc checksum */
2327 if (gamut_packet->valid) {
2328 uint8_t chk_sum = 0;
2329 uint8_t *ptr;
2330 uint8_t i;
2331
2332 /*start of the Gamut data. */
2333 ptr = &gamut_packet->sb[3];
2334
2335 for (i = 0; i <= gamut_packet->sb[1]; i++)
2336 chk_sum += ptr[i];
2337
2338 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2339 }
2340 }
2341
set_avi_info_frame(struct dc_info_packet * info_packet,struct pipe_ctx * pipe_ctx)2342 static void set_avi_info_frame(
2343 struct dc_info_packet *info_packet,
2344 struct pipe_ctx *pipe_ctx)
2345 {
2346 struct dc_stream_state *stream = pipe_ctx->stream;
2347 enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2348 uint32_t pixel_encoding = 0;
2349 enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2350 enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2351 bool itc = false;
2352 uint8_t itc_value = 0;
2353 uint8_t cn0_cn1 = 0;
2354 unsigned int cn0_cn1_value = 0;
2355 uint8_t *check_sum = NULL;
2356 uint8_t byte_index = 0;
2357 union hdmi_info_packet hdmi_info;
2358 union display_content_support support = {0};
2359 unsigned int vic = pipe_ctx->stream->timing.vic;
2360 enum dc_timing_3d_format format;
2361
2362 memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2363
2364 color_space = pipe_ctx->stream->output_color_space;
2365 if (color_space == COLOR_SPACE_UNKNOWN)
2366 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2367 COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2368
2369 /* Initialize header */
2370 hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2371 /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2372 * not be used in HDMI 2.0 (Section 10.1) */
2373 hdmi_info.bits.header.version = 2;
2374 hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2375
2376 /*
2377 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2378 * according to HDMI 2.0 spec (Section 10.1)
2379 */
2380
2381 switch (stream->timing.pixel_encoding) {
2382 case PIXEL_ENCODING_YCBCR422:
2383 pixel_encoding = 1;
2384 break;
2385
2386 case PIXEL_ENCODING_YCBCR444:
2387 pixel_encoding = 2;
2388 break;
2389 case PIXEL_ENCODING_YCBCR420:
2390 pixel_encoding = 3;
2391 break;
2392
2393 case PIXEL_ENCODING_RGB:
2394 default:
2395 pixel_encoding = 0;
2396 }
2397
2398 /* Y0_Y1_Y2 : The pixel encoding */
2399 /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2400 hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2401
2402 /* A0 = 1 Active Format Information valid */
2403 hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2404
2405 /* B0, B1 = 3; Bar info data is valid */
2406 hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2407
2408 hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2409
2410 /* S0, S1 : Underscan / Overscan */
2411 /* TODO: un-hardcode scan type */
2412 scan_type = SCANNING_TYPE_UNDERSCAN;
2413 hdmi_info.bits.S0_S1 = scan_type;
2414
2415 /* C0, C1 : Colorimetry */
2416 if (color_space == COLOR_SPACE_YCBCR709 ||
2417 color_space == COLOR_SPACE_YCBCR709_LIMITED)
2418 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2419 else if (color_space == COLOR_SPACE_YCBCR601 ||
2420 color_space == COLOR_SPACE_YCBCR601_LIMITED)
2421 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2422 else {
2423 hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2424 }
2425 if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2426 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2427 color_space == COLOR_SPACE_2020_YCBCR) {
2428 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2429 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
2430 } else if (color_space == COLOR_SPACE_ADOBERGB) {
2431 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2432 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
2433 }
2434
2435 /* TODO: un-hardcode aspect ratio */
2436 aspect = stream->timing.aspect_ratio;
2437
2438 switch (aspect) {
2439 case ASPECT_RATIO_4_3:
2440 case ASPECT_RATIO_16_9:
2441 hdmi_info.bits.M0_M1 = aspect;
2442 break;
2443
2444 case ASPECT_RATIO_NO_DATA:
2445 case ASPECT_RATIO_64_27:
2446 case ASPECT_RATIO_256_135:
2447 default:
2448 hdmi_info.bits.M0_M1 = 0;
2449 }
2450
2451 /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2452 hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2453
2454 /* TODO: un-hardcode cn0_cn1 and itc */
2455
2456 cn0_cn1 = 0;
2457 cn0_cn1_value = 0;
2458
2459 itc = true;
2460 itc_value = 1;
2461
2462 support = stream->content_support;
2463
2464 if (itc) {
2465 if (!support.bits.valid_content_type) {
2466 cn0_cn1_value = 0;
2467 } else {
2468 if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2469 if (support.bits.graphics_content == 1) {
2470 cn0_cn1_value = 0;
2471 }
2472 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2473 if (support.bits.photo_content == 1) {
2474 cn0_cn1_value = 1;
2475 } else {
2476 cn0_cn1_value = 0;
2477 itc_value = 0;
2478 }
2479 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2480 if (support.bits.cinema_content == 1) {
2481 cn0_cn1_value = 2;
2482 } else {
2483 cn0_cn1_value = 0;
2484 itc_value = 0;
2485 }
2486 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2487 if (support.bits.game_content == 1) {
2488 cn0_cn1_value = 3;
2489 } else {
2490 cn0_cn1_value = 0;
2491 itc_value = 0;
2492 }
2493 }
2494 }
2495 hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2496 hdmi_info.bits.ITC = itc_value;
2497 }
2498
2499 if (stream->qs_bit == 1) {
2500 if (color_space == COLOR_SPACE_SRGB ||
2501 color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2502 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_FULL_RANGE;
2503 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2504 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2505 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_LIMITED_RANGE;
2506 else
2507 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
2508 } else
2509 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
2510
2511 /* TODO : We should handle YCC quantization */
2512 /* but we do not have matrix calculation */
2513 if (stream->qy_bit == 1) {
2514 if (color_space == COLOR_SPACE_SRGB ||
2515 color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2516 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2517 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2518 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2519 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2520 else
2521 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2522 } else
2523 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2524
2525 ///VIC
2526 format = stream->timing.timing_3d_format;
2527 /*todo, add 3DStereo support*/
2528 if (format != TIMING_3D_FORMAT_NONE) {
2529 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2530 switch (pipe_ctx->stream->timing.hdmi_vic) {
2531 case 1:
2532 vic = 95;
2533 break;
2534 case 2:
2535 vic = 94;
2536 break;
2537 case 3:
2538 vic = 93;
2539 break;
2540 case 4:
2541 vic = 98;
2542 break;
2543 default:
2544 break;
2545 }
2546 }
2547 /* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2548 hdmi_info.bits.VIC0_VIC7 = vic;
2549 if (vic >= 128)
2550 hdmi_info.bits.header.version = 3;
2551 /* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2552 * the Source shall use 20 AVI InfoFrame Version 4
2553 */
2554 if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2555 hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2556 hdmi_info.bits.header.version = 4;
2557 hdmi_info.bits.header.length = 14;
2558 }
2559
2560 /* pixel repetition
2561 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2562 * repetition start from 1 */
2563 hdmi_info.bits.PR0_PR3 = 0;
2564
2565 /* Bar Info
2566 * barTop: Line Number of End of Top Bar.
2567 * barBottom: Line Number of Start of Bottom Bar.
2568 * barLeft: Pixel Number of End of Left Bar.
2569 * barRight: Pixel Number of Start of Right Bar. */
2570 hdmi_info.bits.bar_top = stream->timing.v_border_top;
2571 hdmi_info.bits.bar_bottom = (stream->timing.v_total
2572 - stream->timing.v_border_bottom + 1);
2573 hdmi_info.bits.bar_left = stream->timing.h_border_left;
2574 hdmi_info.bits.bar_right = (stream->timing.h_total
2575 - stream->timing.h_border_right + 1);
2576
2577 /* Additional Colorimetry Extension
2578 * Used in conduction with C0-C1 and EC0-EC2
2579 * 0 = DCI-P3 RGB (D65)
2580 * 1 = DCI-P3 RGB (theater)
2581 */
2582 hdmi_info.bits.ACE0_ACE3 = 0;
2583
2584 /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2585 check_sum = &hdmi_info.packet_raw_data.sb[0];
2586
2587 *check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2588
2589 for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2590 *check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2591
2592 /* one byte complement */
2593 *check_sum = (uint8_t) (0x100 - *check_sum);
2594
2595 /* Store in hw_path_mode */
2596 info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2597 info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2598 info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2599
2600 for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2601 info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2602
2603 info_packet->valid = true;
2604 }
2605
set_vendor_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)2606 static void set_vendor_info_packet(
2607 struct dc_info_packet *info_packet,
2608 struct dc_stream_state *stream)
2609 {
2610 /* SPD info packet for FreeSync */
2611
2612 /* Check if Freesync is supported. Return if false. If true,
2613 * set the corresponding bit in the info packet
2614 */
2615 if (!stream->vsp_infopacket.valid)
2616 return;
2617
2618 *info_packet = stream->vsp_infopacket;
2619 }
2620
set_spd_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)2621 static void set_spd_info_packet(
2622 struct dc_info_packet *info_packet,
2623 struct dc_stream_state *stream)
2624 {
2625 /* SPD info packet for FreeSync */
2626
2627 /* Check if Freesync is supported. Return if false. If true,
2628 * set the corresponding bit in the info packet
2629 */
2630 if (!stream->vrr_infopacket.valid)
2631 return;
2632
2633 *info_packet = stream->vrr_infopacket;
2634 }
2635
set_hdr_static_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)2636 static void set_hdr_static_info_packet(
2637 struct dc_info_packet *info_packet,
2638 struct dc_stream_state *stream)
2639 {
2640 /* HDR Static Metadata info packet for HDR10 */
2641
2642 if (!stream->hdr_static_metadata.valid ||
2643 stream->use_dynamic_meta)
2644 return;
2645
2646 *info_packet = stream->hdr_static_metadata;
2647 }
2648
set_vsc_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)2649 static void set_vsc_info_packet(
2650 struct dc_info_packet *info_packet,
2651 struct dc_stream_state *stream)
2652 {
2653 if (!stream->vsc_infopacket.valid)
2654 return;
2655
2656 *info_packet = stream->vsc_infopacket;
2657 }
2658
dc_resource_state_destruct(struct dc_state * context)2659 void dc_resource_state_destruct(struct dc_state *context)
2660 {
2661 int i, j;
2662
2663 for (i = 0; i < context->stream_count; i++) {
2664 for (j = 0; j < context->stream_status[i].plane_count; j++)
2665 dc_plane_state_release(
2666 context->stream_status[i].plane_states[j]);
2667
2668 context->stream_status[i].plane_count = 0;
2669 dc_stream_release(context->streams[i]);
2670 context->streams[i] = NULL;
2671 }
2672 context->stream_count = 0;
2673 }
2674
dc_resource_state_copy_construct(const struct dc_state * src_ctx,struct dc_state * dst_ctx)2675 void dc_resource_state_copy_construct(
2676 const struct dc_state *src_ctx,
2677 struct dc_state *dst_ctx)
2678 {
2679 int i, j;
2680 struct kref refcount = dst_ctx->refcount;
2681
2682 *dst_ctx = *src_ctx;
2683
2684 for (i = 0; i < MAX_PIPES; i++) {
2685 struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2686
2687 if (cur_pipe->top_pipe)
2688 cur_pipe->top_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2689
2690 if (cur_pipe->bottom_pipe)
2691 cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2692
2693 if (cur_pipe->next_odm_pipe)
2694 cur_pipe->next_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2695
2696 if (cur_pipe->prev_odm_pipe)
2697 cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2698 }
2699
2700 for (i = 0; i < dst_ctx->stream_count; i++) {
2701 dc_stream_retain(dst_ctx->streams[i]);
2702 for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2703 dc_plane_state_retain(
2704 dst_ctx->stream_status[i].plane_states[j]);
2705 }
2706
2707 /* context refcount should not be overridden */
2708 dst_ctx->refcount = refcount;
2709
2710 }
2711
dc_resource_find_first_free_pll(struct resource_context * res_ctx,const struct resource_pool * pool)2712 struct clock_source *dc_resource_find_first_free_pll(
2713 struct resource_context *res_ctx,
2714 const struct resource_pool *pool)
2715 {
2716 int i;
2717
2718 for (i = 0; i < pool->clk_src_count; ++i) {
2719 if (res_ctx->clock_source_ref_count[i] == 0)
2720 return pool->clock_sources[i];
2721 }
2722
2723 return NULL;
2724 }
2725
resource_build_info_frame(struct pipe_ctx * pipe_ctx)2726 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2727 {
2728 enum signal_type signal = SIGNAL_TYPE_NONE;
2729 struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2730
2731 /* default all packets to invalid */
2732 info->avi.valid = false;
2733 info->gamut.valid = false;
2734 info->vendor.valid = false;
2735 info->spd.valid = false;
2736 info->hdrsmd.valid = false;
2737 info->vsc.valid = false;
2738
2739 signal = pipe_ctx->stream->signal;
2740
2741 /* HDMi and DP have different info packets*/
2742 if (dc_is_hdmi_signal(signal)) {
2743 set_avi_info_frame(&info->avi, pipe_ctx);
2744
2745 set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2746
2747 set_spd_info_packet(&info->spd, pipe_ctx->stream);
2748
2749 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2750
2751 } else if (dc_is_dp_signal(signal)) {
2752 set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2753
2754 set_spd_info_packet(&info->spd, pipe_ctx->stream);
2755
2756 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2757 }
2758
2759 patch_gamut_packet_checksum(&info->gamut);
2760 }
2761
resource_map_clock_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)2762 enum dc_status resource_map_clock_resources(
2763 const struct dc *dc,
2764 struct dc_state *context,
2765 struct dc_stream_state *stream)
2766 {
2767 /* acquire new resources */
2768 const struct resource_pool *pool = dc->res_pool;
2769 struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2770 &context->res_ctx, stream);
2771
2772 if (!pipe_ctx)
2773 return DC_ERROR_UNEXPECTED;
2774
2775 if (dc_is_dp_signal(pipe_ctx->stream->signal)
2776 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2777 pipe_ctx->clock_source = pool->dp_clock_source;
2778 else {
2779 pipe_ctx->clock_source = NULL;
2780
2781 if (!dc->config.disable_disp_pll_sharing)
2782 pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2783 &context->res_ctx,
2784 pipe_ctx);
2785
2786 if (pipe_ctx->clock_source == NULL)
2787 pipe_ctx->clock_source =
2788 dc_resource_find_first_free_pll(
2789 &context->res_ctx,
2790 pool);
2791 }
2792
2793 if (pipe_ctx->clock_source == NULL)
2794 return DC_NO_CLOCK_SOURCE_RESOURCE;
2795
2796 resource_reference_clock_source(
2797 &context->res_ctx, pool,
2798 pipe_ctx->clock_source);
2799
2800 return DC_OK;
2801 }
2802
2803 /*
2804 * Note: We need to disable output if clock sources change,
2805 * since bios does optimization and doesn't apply if changing
2806 * PHY when not already disabled.
2807 */
pipe_need_reprogram(struct pipe_ctx * pipe_ctx_old,struct pipe_ctx * pipe_ctx)2808 bool pipe_need_reprogram(
2809 struct pipe_ctx *pipe_ctx_old,
2810 struct pipe_ctx *pipe_ctx)
2811 {
2812 if (!pipe_ctx_old->stream)
2813 return false;
2814
2815 if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2816 return true;
2817
2818 if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2819 return true;
2820
2821 if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2822 return true;
2823
2824 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2825 && pipe_ctx_old->stream != pipe_ctx->stream)
2826 return true;
2827
2828 if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2829 return true;
2830
2831 if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2832 return true;
2833
2834 if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
2835 return true;
2836
2837 if (false == pipe_ctx_old->stream->link->link_state_valid &&
2838 false == pipe_ctx_old->stream->dpms_off)
2839 return true;
2840
2841 if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
2842 return true;
2843
2844 #if defined(CONFIG_DRM_AMD_DC_DCN)
2845 if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
2846 return true;
2847 #endif
2848
2849 /* DIG link encoder resource assignment for stream changed. */
2850 if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
2851 bool need_reprogram = false;
2852 struct dc *dc = pipe_ctx_old->stream->ctx->dc;
2853 enum link_enc_cfg_mode mode = dc->current_state->res_ctx.link_enc_cfg_ctx.mode;
2854
2855 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
2856 if (link_enc_cfg_get_link_enc_used_by_stream(dc, pipe_ctx_old->stream) != pipe_ctx->stream->link_enc)
2857 need_reprogram = true;
2858 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = mode;
2859
2860 return need_reprogram;
2861 }
2862
2863 return false;
2864 }
2865
resource_build_bit_depth_reduction_params(struct dc_stream_state * stream,struct bit_depth_reduction_params * fmt_bit_depth)2866 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2867 struct bit_depth_reduction_params *fmt_bit_depth)
2868 {
2869 enum dc_dither_option option = stream->dither_option;
2870 enum dc_pixel_encoding pixel_encoding =
2871 stream->timing.pixel_encoding;
2872
2873 memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2874
2875 if (option == DITHER_OPTION_DEFAULT) {
2876 switch (stream->timing.display_color_depth) {
2877 case COLOR_DEPTH_666:
2878 option = DITHER_OPTION_SPATIAL6;
2879 break;
2880 case COLOR_DEPTH_888:
2881 option = DITHER_OPTION_SPATIAL8;
2882 break;
2883 case COLOR_DEPTH_101010:
2884 option = DITHER_OPTION_SPATIAL10;
2885 break;
2886 default:
2887 option = DITHER_OPTION_DISABLE;
2888 }
2889 }
2890
2891 if (option == DITHER_OPTION_DISABLE)
2892 return;
2893
2894 if (option == DITHER_OPTION_TRUN6) {
2895 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2896 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2897 } else if (option == DITHER_OPTION_TRUN8 ||
2898 option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2899 option == DITHER_OPTION_TRUN8_FM6) {
2900 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2901 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2902 } else if (option == DITHER_OPTION_TRUN10 ||
2903 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
2904 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
2905 option == DITHER_OPTION_TRUN10_FM8 ||
2906 option == DITHER_OPTION_TRUN10_FM6 ||
2907 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2908 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2909 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2910 }
2911
2912 /* special case - Formatter can only reduce by 4 bits at most.
2913 * When reducing from 12 to 6 bits,
2914 * HW recommends we use trunc with round mode
2915 * (if we did nothing, trunc to 10 bits would be used)
2916 * note that any 12->10 bit reduction is ignored prior to DCE8,
2917 * as the input was 10 bits.
2918 */
2919 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2920 option == DITHER_OPTION_SPATIAL6 ||
2921 option == DITHER_OPTION_FM6) {
2922 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2923 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2924 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2925 }
2926
2927 /* spatial dither
2928 * note that spatial modes 1-3 are never used
2929 */
2930 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2931 option == DITHER_OPTION_SPATIAL6 ||
2932 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
2933 option == DITHER_OPTION_TRUN8_SPATIAL6) {
2934 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2935 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2936 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2937 fmt_bit_depth->flags.RGB_RANDOM =
2938 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2939 } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM ||
2940 option == DITHER_OPTION_SPATIAL8 ||
2941 option == DITHER_OPTION_SPATIAL8_FM6 ||
2942 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
2943 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2944 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2945 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2946 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2947 fmt_bit_depth->flags.RGB_RANDOM =
2948 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2949 } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2950 option == DITHER_OPTION_SPATIAL10 ||
2951 option == DITHER_OPTION_SPATIAL10_FM8 ||
2952 option == DITHER_OPTION_SPATIAL10_FM6) {
2953 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2954 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2955 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2956 fmt_bit_depth->flags.RGB_RANDOM =
2957 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2958 }
2959
2960 if (option == DITHER_OPTION_SPATIAL6 ||
2961 option == DITHER_OPTION_SPATIAL8 ||
2962 option == DITHER_OPTION_SPATIAL10) {
2963 fmt_bit_depth->flags.FRAME_RANDOM = 0;
2964 } else {
2965 fmt_bit_depth->flags.FRAME_RANDOM = 1;
2966 }
2967
2968 //////////////////////
2969 //// temporal dither
2970 //////////////////////
2971 if (option == DITHER_OPTION_FM6 ||
2972 option == DITHER_OPTION_SPATIAL8_FM6 ||
2973 option == DITHER_OPTION_SPATIAL10_FM6 ||
2974 option == DITHER_OPTION_TRUN10_FM6 ||
2975 option == DITHER_OPTION_TRUN8_FM6 ||
2976 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2977 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2978 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2979 } else if (option == DITHER_OPTION_FM8 ||
2980 option == DITHER_OPTION_SPATIAL10_FM8 ||
2981 option == DITHER_OPTION_TRUN10_FM8) {
2982 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2983 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2984 } else if (option == DITHER_OPTION_FM10) {
2985 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2986 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2987 }
2988
2989 fmt_bit_depth->pixel_encoding = pixel_encoding;
2990 }
2991
dc_validate_stream(struct dc * dc,struct dc_stream_state * stream)2992 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2993 {
2994 struct dc_link *link = stream->link;
2995 struct timing_generator *tg = dc->res_pool->timing_generators[0];
2996 enum dc_status res = DC_OK;
2997
2998 calculate_phy_pix_clks(stream);
2999
3000 if (!tg->funcs->validate_timing(tg, &stream->timing))
3001 res = DC_FAIL_CONTROLLER_VALIDATE;
3002
3003 if (res == DC_OK) {
3004 if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
3005 !link->link_enc->funcs->validate_output_with_stream(
3006 link->link_enc, stream))
3007 res = DC_FAIL_ENC_VALIDATE;
3008 }
3009
3010 /* TODO: validate audio ASIC caps, encoder */
3011
3012 if (res == DC_OK)
3013 res = dc_link_validate_mode_timing(stream,
3014 link,
3015 &stream->timing);
3016
3017 return res;
3018 }
3019
dc_validate_plane(struct dc * dc,const struct dc_plane_state * plane_state)3020 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3021 {
3022 enum dc_status res = DC_OK;
3023
3024 /* check if surface has invalid dimensions */
3025 if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
3026 plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
3027 return DC_FAIL_SURFACE_VALIDATE;
3028
3029 /* TODO For now validates pixel format only */
3030 if (dc->res_pool->funcs->validate_plane)
3031 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3032
3033 return res;
3034 }
3035
resource_pixel_format_to_bpp(enum surface_pixel_format format)3036 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3037 {
3038 switch (format) {
3039 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3040 return 8;
3041 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3042 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3043 return 12;
3044 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3045 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3046 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3047 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3048 return 16;
3049 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3050 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3051 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3052 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
3053 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
3054 #if defined(CONFIG_DRM_AMD_DC_DCN)
3055 case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
3056 case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
3057 #endif
3058 return 32;
3059 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
3060 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
3061 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
3062 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
3063 return 64;
3064 default:
3065 ASSERT_CRITICAL(false);
3066 return -1;
3067 }
3068 }
get_max_audio_sample_rate(struct audio_mode * modes)3069 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
3070 {
3071 if (modes) {
3072 if (modes->sample_rates.rate.RATE_192)
3073 return 192000;
3074 if (modes->sample_rates.rate.RATE_176_4)
3075 return 176400;
3076 if (modes->sample_rates.rate.RATE_96)
3077 return 96000;
3078 if (modes->sample_rates.rate.RATE_88_2)
3079 return 88200;
3080 if (modes->sample_rates.rate.RATE_48)
3081 return 48000;
3082 if (modes->sample_rates.rate.RATE_44_1)
3083 return 44100;
3084 if (modes->sample_rates.rate.RATE_32)
3085 return 32000;
3086 }
3087 /*original logic when no audio info*/
3088 return 441000;
3089 }
3090
get_audio_check(struct audio_info * aud_modes,struct audio_check * audio_chk)3091 void get_audio_check(struct audio_info *aud_modes,
3092 struct audio_check *audio_chk)
3093 {
3094 unsigned int i;
3095 unsigned int max_sample_rate = 0;
3096
3097 if (aud_modes) {
3098 audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
3099
3100 audio_chk->max_audiosample_rate = 0;
3101 for (i = 0; i < aud_modes->mode_count; i++) {
3102 max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
3103 if (audio_chk->max_audiosample_rate < max_sample_rate)
3104 audio_chk->max_audiosample_rate = max_sample_rate;
3105 /*dts takes the same as type 2: AP = 0.25*/
3106 }
3107 /*check which one take more bandwidth*/
3108 if (audio_chk->max_audiosample_rate > 192000)
3109 audio_chk->audio_packet_type = 0x9;/*AP =1*/
3110 audio_chk->acat = 0;/*not support*/
3111 }
3112 }
3113
3114 #if defined(CONFIG_DRM_AMD_DC_DCN)
resource_get_unused_hpo_dp_link_encoder(const struct resource_pool * pool)3115 struct hpo_dp_link_encoder *resource_get_unused_hpo_dp_link_encoder(
3116 const struct resource_pool *pool)
3117 {
3118 uint8_t i;
3119 struct hpo_dp_link_encoder *enc = NULL;
3120
3121 ASSERT(pool->hpo_dp_link_enc_count <= MAX_HPO_DP2_LINK_ENCODERS);
3122
3123 for (i = 0; i < pool->hpo_dp_link_enc_count; i++) {
3124 if (pool->hpo_dp_link_enc[i]->transmitter == TRANSMITTER_UNKNOWN) {
3125 enc = pool->hpo_dp_link_enc[i];
3126 break;
3127 }
3128 }
3129
3130 return enc;
3131 }
3132 #endif
3133