1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45
46 /* How many pages do we try to swap or page in/out together? */
47 int page_cluster;
48
49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
50 struct lru_rotate {
51 local_lock_t lock;
52 struct pagevec pvec;
53 };
54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 .lock = INIT_LOCAL_LOCK(lock),
56 };
57
58 /*
59 * The following struct pagevec are grouped together because they are protected
60 * by disabling preemption (and interrupts remain enabled).
61 */
62 struct lru_pvecs {
63 local_lock_t lock;
64 struct pagevec lru_add;
65 struct pagevec lru_deactivate_file;
66 struct pagevec lru_deactivate;
67 struct pagevec lru_lazyfree;
68 #ifdef CONFIG_SMP
69 struct pagevec activate_page;
70 #endif
71 };
72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73 .lock = INIT_LOCAL_LOCK(lock),
74 };
75
76 /*
77 * This path almost never happens for VM activity - pages are normally
78 * freed via pagevecs. But it gets used by networking.
79 */
__page_cache_release(struct page * page)80 static void __page_cache_release(struct page *page)
81 {
82 if (PageLRU(page)) {
83 struct folio *folio = page_folio(page);
84 struct lruvec *lruvec;
85 unsigned long flags;
86
87 lruvec = folio_lruvec_lock_irqsave(folio, &flags);
88 del_page_from_lru_list(page, lruvec);
89 __clear_page_lru_flags(page);
90 unlock_page_lruvec_irqrestore(lruvec, flags);
91 }
92 __ClearPageWaiters(page);
93 }
94
__put_single_page(struct page * page)95 static void __put_single_page(struct page *page)
96 {
97 __page_cache_release(page);
98 mem_cgroup_uncharge(page_folio(page));
99 free_unref_page(page, 0);
100 }
101
__put_compound_page(struct page * page)102 static void __put_compound_page(struct page *page)
103 {
104 /*
105 * __page_cache_release() is supposed to be called for thp, not for
106 * hugetlb. This is because hugetlb page does never have PageLRU set
107 * (it's never listed to any LRU lists) and no memcg routines should
108 * be called for hugetlb (it has a separate hugetlb_cgroup.)
109 */
110 if (!PageHuge(page))
111 __page_cache_release(page);
112 destroy_compound_page(page);
113 }
114
__put_page(struct page * page)115 void __put_page(struct page *page)
116 {
117 if (is_zone_device_page(page)) {
118 put_dev_pagemap(page->pgmap);
119
120 /*
121 * The page belongs to the device that created pgmap. Do
122 * not return it to page allocator.
123 */
124 return;
125 }
126
127 if (unlikely(PageCompound(page)))
128 __put_compound_page(page);
129 else
130 __put_single_page(page);
131 }
132 EXPORT_SYMBOL(__put_page);
133
134 /**
135 * put_pages_list() - release a list of pages
136 * @pages: list of pages threaded on page->lru
137 *
138 * Release a list of pages which are strung together on page.lru.
139 */
put_pages_list(struct list_head * pages)140 void put_pages_list(struct list_head *pages)
141 {
142 struct page *page, *next;
143
144 list_for_each_entry_safe(page, next, pages, lru) {
145 if (!put_page_testzero(page)) {
146 list_del(&page->lru);
147 continue;
148 }
149 if (PageHead(page)) {
150 list_del(&page->lru);
151 __put_compound_page(page);
152 continue;
153 }
154 /* Cannot be PageLRU because it's passed to us using the lru */
155 __ClearPageWaiters(page);
156 }
157
158 free_unref_page_list(pages);
159 INIT_LIST_HEAD(pages);
160 }
161 EXPORT_SYMBOL(put_pages_list);
162
163 /*
164 * get_kernel_pages() - pin kernel pages in memory
165 * @kiov: An array of struct kvec structures
166 * @nr_segs: number of segments to pin
167 * @write: pinning for read/write, currently ignored
168 * @pages: array that receives pointers to the pages pinned.
169 * Should be at least nr_segs long.
170 *
171 * Returns number of pages pinned. This may be fewer than the number
172 * requested. If nr_pages is 0 or negative, returns 0. If no pages
173 * were pinned, returns -errno. Each page returned must be released
174 * with a put_page() call when it is finished with.
175 */
get_kernel_pages(const struct kvec * kiov,int nr_segs,int write,struct page ** pages)176 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
177 struct page **pages)
178 {
179 int seg;
180
181 for (seg = 0; seg < nr_segs; seg++) {
182 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
183 return seg;
184
185 pages[seg] = kmap_to_page(kiov[seg].iov_base);
186 get_page(pages[seg]);
187 }
188
189 return seg;
190 }
191 EXPORT_SYMBOL_GPL(get_kernel_pages);
192
pagevec_lru_move_fn(struct pagevec * pvec,void (* move_fn)(struct page * page,struct lruvec * lruvec))193 static void pagevec_lru_move_fn(struct pagevec *pvec,
194 void (*move_fn)(struct page *page, struct lruvec *lruvec))
195 {
196 int i;
197 struct lruvec *lruvec = NULL;
198 unsigned long flags = 0;
199
200 for (i = 0; i < pagevec_count(pvec); i++) {
201 struct page *page = pvec->pages[i];
202 struct folio *folio = page_folio(page);
203
204 /* block memcg migration during page moving between lru */
205 if (!TestClearPageLRU(page))
206 continue;
207
208 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
209 (*move_fn)(page, lruvec);
210
211 SetPageLRU(page);
212 }
213 if (lruvec)
214 unlock_page_lruvec_irqrestore(lruvec, flags);
215 release_pages(pvec->pages, pvec->nr);
216 pagevec_reinit(pvec);
217 }
218
pagevec_move_tail_fn(struct page * page,struct lruvec * lruvec)219 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
220 {
221 struct folio *folio = page_folio(page);
222
223 if (!folio_test_unevictable(folio)) {
224 lruvec_del_folio(lruvec, folio);
225 folio_clear_active(folio);
226 lruvec_add_folio_tail(lruvec, folio);
227 __count_vm_events(PGROTATED, folio_nr_pages(folio));
228 }
229 }
230
231 /* return true if pagevec needs to drain */
pagevec_add_and_need_flush(struct pagevec * pvec,struct page * page)232 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
233 {
234 bool ret = false;
235
236 if (!pagevec_add(pvec, page) || PageCompound(page) ||
237 lru_cache_disabled())
238 ret = true;
239
240 return ret;
241 }
242
243 /*
244 * Writeback is about to end against a folio which has been marked for
245 * immediate reclaim. If it still appears to be reclaimable, move it
246 * to the tail of the inactive list.
247 *
248 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
249 */
folio_rotate_reclaimable(struct folio * folio)250 void folio_rotate_reclaimable(struct folio *folio)
251 {
252 if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
253 !folio_test_unevictable(folio) && folio_test_lru(folio)) {
254 struct pagevec *pvec;
255 unsigned long flags;
256
257 folio_get(folio);
258 local_lock_irqsave(&lru_rotate.lock, flags);
259 pvec = this_cpu_ptr(&lru_rotate.pvec);
260 if (pagevec_add_and_need_flush(pvec, &folio->page))
261 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
262 local_unlock_irqrestore(&lru_rotate.lock, flags);
263 }
264 }
265
lru_note_cost(struct lruvec * lruvec,bool file,unsigned int nr_pages)266 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
267 {
268 do {
269 unsigned long lrusize;
270
271 /*
272 * Hold lruvec->lru_lock is safe here, since
273 * 1) The pinned lruvec in reclaim, or
274 * 2) From a pre-LRU page during refault (which also holds the
275 * rcu lock, so would be safe even if the page was on the LRU
276 * and could move simultaneously to a new lruvec).
277 */
278 spin_lock_irq(&lruvec->lru_lock);
279 /* Record cost event */
280 if (file)
281 lruvec->file_cost += nr_pages;
282 else
283 lruvec->anon_cost += nr_pages;
284
285 /*
286 * Decay previous events
287 *
288 * Because workloads change over time (and to avoid
289 * overflow) we keep these statistics as a floating
290 * average, which ends up weighing recent refaults
291 * more than old ones.
292 */
293 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
294 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
295 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
296 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
297
298 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
299 lruvec->file_cost /= 2;
300 lruvec->anon_cost /= 2;
301 }
302 spin_unlock_irq(&lruvec->lru_lock);
303 } while ((lruvec = parent_lruvec(lruvec)));
304 }
305
lru_note_cost_folio(struct folio * folio)306 void lru_note_cost_folio(struct folio *folio)
307 {
308 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
309 folio_nr_pages(folio));
310 }
311
__folio_activate(struct folio * folio,struct lruvec * lruvec)312 static void __folio_activate(struct folio *folio, struct lruvec *lruvec)
313 {
314 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
315 long nr_pages = folio_nr_pages(folio);
316
317 lruvec_del_folio(lruvec, folio);
318 folio_set_active(folio);
319 lruvec_add_folio(lruvec, folio);
320 trace_mm_lru_activate(folio);
321
322 __count_vm_events(PGACTIVATE, nr_pages);
323 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
324 nr_pages);
325 }
326 }
327
328 #ifdef CONFIG_SMP
__activate_page(struct page * page,struct lruvec * lruvec)329 static void __activate_page(struct page *page, struct lruvec *lruvec)
330 {
331 return __folio_activate(page_folio(page), lruvec);
332 }
333
activate_page_drain(int cpu)334 static void activate_page_drain(int cpu)
335 {
336 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
337
338 if (pagevec_count(pvec))
339 pagevec_lru_move_fn(pvec, __activate_page);
340 }
341
need_activate_page_drain(int cpu)342 static bool need_activate_page_drain(int cpu)
343 {
344 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
345 }
346
folio_activate(struct folio * folio)347 static void folio_activate(struct folio *folio)
348 {
349 if (folio_test_lru(folio) && !folio_test_active(folio) &&
350 !folio_test_unevictable(folio)) {
351 struct pagevec *pvec;
352
353 folio_get(folio);
354 local_lock(&lru_pvecs.lock);
355 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
356 if (pagevec_add_and_need_flush(pvec, &folio->page))
357 pagevec_lru_move_fn(pvec, __activate_page);
358 local_unlock(&lru_pvecs.lock);
359 }
360 }
361
362 #else
activate_page_drain(int cpu)363 static inline void activate_page_drain(int cpu)
364 {
365 }
366
folio_activate(struct folio * folio)367 static void folio_activate(struct folio *folio)
368 {
369 struct lruvec *lruvec;
370
371 if (folio_test_clear_lru(folio)) {
372 lruvec = folio_lruvec_lock_irq(folio);
373 __folio_activate(folio, lruvec);
374 unlock_page_lruvec_irq(lruvec);
375 folio_set_lru(folio);
376 }
377 }
378 #endif
379
__lru_cache_activate_folio(struct folio * folio)380 static void __lru_cache_activate_folio(struct folio *folio)
381 {
382 struct pagevec *pvec;
383 int i;
384
385 local_lock(&lru_pvecs.lock);
386 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
387
388 /*
389 * Search backwards on the optimistic assumption that the page being
390 * activated has just been added to this pagevec. Note that only
391 * the local pagevec is examined as a !PageLRU page could be in the
392 * process of being released, reclaimed, migrated or on a remote
393 * pagevec that is currently being drained. Furthermore, marking
394 * a remote pagevec's page PageActive potentially hits a race where
395 * a page is marked PageActive just after it is added to the inactive
396 * list causing accounting errors and BUG_ON checks to trigger.
397 */
398 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
399 struct page *pagevec_page = pvec->pages[i];
400
401 if (pagevec_page == &folio->page) {
402 folio_set_active(folio);
403 break;
404 }
405 }
406
407 local_unlock(&lru_pvecs.lock);
408 }
409
410 /*
411 * Mark a page as having seen activity.
412 *
413 * inactive,unreferenced -> inactive,referenced
414 * inactive,referenced -> active,unreferenced
415 * active,unreferenced -> active,referenced
416 *
417 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
418 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
419 */
folio_mark_accessed(struct folio * folio)420 void folio_mark_accessed(struct folio *folio)
421 {
422 if (!folio_test_referenced(folio)) {
423 folio_set_referenced(folio);
424 } else if (folio_test_unevictable(folio)) {
425 /*
426 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
427 * this list is never rotated or maintained, so marking an
428 * evictable page accessed has no effect.
429 */
430 } else if (!folio_test_active(folio)) {
431 /*
432 * If the page is on the LRU, queue it for activation via
433 * lru_pvecs.activate_page. Otherwise, assume the page is on a
434 * pagevec, mark it active and it'll be moved to the active
435 * LRU on the next drain.
436 */
437 if (folio_test_lru(folio))
438 folio_activate(folio);
439 else
440 __lru_cache_activate_folio(folio);
441 folio_clear_referenced(folio);
442 workingset_activation(folio);
443 }
444 if (folio_test_idle(folio))
445 folio_clear_idle(folio);
446 }
447 EXPORT_SYMBOL(folio_mark_accessed);
448
449 /**
450 * folio_add_lru - Add a folio to an LRU list.
451 * @folio: The folio to be added to the LRU.
452 *
453 * Queue the folio for addition to the LRU. The decision on whether
454 * to add the page to the [in]active [file|anon] list is deferred until the
455 * pagevec is drained. This gives a chance for the caller of folio_add_lru()
456 * have the folio added to the active list using folio_mark_accessed().
457 */
folio_add_lru(struct folio * folio)458 void folio_add_lru(struct folio *folio)
459 {
460 struct pagevec *pvec;
461
462 VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio);
463 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
464
465 folio_get(folio);
466 local_lock(&lru_pvecs.lock);
467 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
468 if (pagevec_add_and_need_flush(pvec, &folio->page))
469 __pagevec_lru_add(pvec);
470 local_unlock(&lru_pvecs.lock);
471 }
472 EXPORT_SYMBOL(folio_add_lru);
473
474 /**
475 * lru_cache_add_inactive_or_unevictable
476 * @page: the page to be added to LRU
477 * @vma: vma in which page is mapped for determining reclaimability
478 *
479 * Place @page on the inactive or unevictable LRU list, depending on its
480 * evictability.
481 */
lru_cache_add_inactive_or_unevictable(struct page * page,struct vm_area_struct * vma)482 void lru_cache_add_inactive_or_unevictable(struct page *page,
483 struct vm_area_struct *vma)
484 {
485 bool unevictable;
486
487 VM_BUG_ON_PAGE(PageLRU(page), page);
488
489 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
490 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
491 int nr_pages = thp_nr_pages(page);
492 /*
493 * We use the irq-unsafe __mod_zone_page_state because this
494 * counter is not modified from interrupt context, and the pte
495 * lock is held(spinlock), which implies preemption disabled.
496 */
497 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
498 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
499 }
500 lru_cache_add(page);
501 }
502
503 /*
504 * If the page can not be invalidated, it is moved to the
505 * inactive list to speed up its reclaim. It is moved to the
506 * head of the list, rather than the tail, to give the flusher
507 * threads some time to write it out, as this is much more
508 * effective than the single-page writeout from reclaim.
509 *
510 * If the page isn't page_mapped and dirty/writeback, the page
511 * could reclaim asap using PG_reclaim.
512 *
513 * 1. active, mapped page -> none
514 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
515 * 3. inactive, mapped page -> none
516 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
517 * 5. inactive, clean -> inactive, tail
518 * 6. Others -> none
519 *
520 * In 4, why it moves inactive's head, the VM expects the page would
521 * be write it out by flusher threads as this is much more effective
522 * than the single-page writeout from reclaim.
523 */
lru_deactivate_file_fn(struct page * page,struct lruvec * lruvec)524 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
525 {
526 bool active = PageActive(page);
527 int nr_pages = thp_nr_pages(page);
528
529 if (PageUnevictable(page))
530 return;
531
532 /* Some processes are using the page */
533 if (page_mapped(page))
534 return;
535
536 del_page_from_lru_list(page, lruvec);
537 ClearPageActive(page);
538 ClearPageReferenced(page);
539
540 if (PageWriteback(page) || PageDirty(page)) {
541 /*
542 * PG_reclaim could be raced with end_page_writeback
543 * It can make readahead confusing. But race window
544 * is _really_ small and it's non-critical problem.
545 */
546 add_page_to_lru_list(page, lruvec);
547 SetPageReclaim(page);
548 } else {
549 /*
550 * The page's writeback ends up during pagevec
551 * We move that page into tail of inactive.
552 */
553 add_page_to_lru_list_tail(page, lruvec);
554 __count_vm_events(PGROTATED, nr_pages);
555 }
556
557 if (active) {
558 __count_vm_events(PGDEACTIVATE, nr_pages);
559 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
560 nr_pages);
561 }
562 }
563
lru_deactivate_fn(struct page * page,struct lruvec * lruvec)564 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
565 {
566 if (PageActive(page) && !PageUnevictable(page)) {
567 int nr_pages = thp_nr_pages(page);
568
569 del_page_from_lru_list(page, lruvec);
570 ClearPageActive(page);
571 ClearPageReferenced(page);
572 add_page_to_lru_list(page, lruvec);
573
574 __count_vm_events(PGDEACTIVATE, nr_pages);
575 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
576 nr_pages);
577 }
578 }
579
lru_lazyfree_fn(struct page * page,struct lruvec * lruvec)580 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
581 {
582 if (PageAnon(page) && PageSwapBacked(page) &&
583 !PageSwapCache(page) && !PageUnevictable(page)) {
584 int nr_pages = thp_nr_pages(page);
585
586 del_page_from_lru_list(page, lruvec);
587 ClearPageActive(page);
588 ClearPageReferenced(page);
589 /*
590 * Lazyfree pages are clean anonymous pages. They have
591 * PG_swapbacked flag cleared, to distinguish them from normal
592 * anonymous pages
593 */
594 ClearPageSwapBacked(page);
595 add_page_to_lru_list(page, lruvec);
596
597 __count_vm_events(PGLAZYFREE, nr_pages);
598 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
599 nr_pages);
600 }
601 }
602
603 /*
604 * Drain pages out of the cpu's pagevecs.
605 * Either "cpu" is the current CPU, and preemption has already been
606 * disabled; or "cpu" is being hot-unplugged, and is already dead.
607 */
lru_add_drain_cpu(int cpu)608 void lru_add_drain_cpu(int cpu)
609 {
610 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
611
612 if (pagevec_count(pvec))
613 __pagevec_lru_add(pvec);
614
615 pvec = &per_cpu(lru_rotate.pvec, cpu);
616 /* Disabling interrupts below acts as a compiler barrier. */
617 if (data_race(pagevec_count(pvec))) {
618 unsigned long flags;
619
620 /* No harm done if a racing interrupt already did this */
621 local_lock_irqsave(&lru_rotate.lock, flags);
622 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
623 local_unlock_irqrestore(&lru_rotate.lock, flags);
624 }
625
626 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
627 if (pagevec_count(pvec))
628 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
629
630 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
631 if (pagevec_count(pvec))
632 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
633
634 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
635 if (pagevec_count(pvec))
636 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
637
638 activate_page_drain(cpu);
639 }
640
641 /**
642 * deactivate_file_page - forcefully deactivate a file page
643 * @page: page to deactivate
644 *
645 * This function hints the VM that @page is a good reclaim candidate,
646 * for example if its invalidation fails due to the page being dirty
647 * or under writeback.
648 */
deactivate_file_page(struct page * page)649 void deactivate_file_page(struct page *page)
650 {
651 /*
652 * In a workload with many unevictable page such as mprotect,
653 * unevictable page deactivation for accelerating reclaim is pointless.
654 */
655 if (PageUnevictable(page))
656 return;
657
658 if (likely(get_page_unless_zero(page))) {
659 struct pagevec *pvec;
660
661 local_lock(&lru_pvecs.lock);
662 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
663
664 if (pagevec_add_and_need_flush(pvec, page))
665 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
666 local_unlock(&lru_pvecs.lock);
667 }
668 }
669
670 /*
671 * deactivate_page - deactivate a page
672 * @page: page to deactivate
673 *
674 * deactivate_page() moves @page to the inactive list if @page was on the active
675 * list and was not an unevictable page. This is done to accelerate the reclaim
676 * of @page.
677 */
deactivate_page(struct page * page)678 void deactivate_page(struct page *page)
679 {
680 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
681 struct pagevec *pvec;
682
683 local_lock(&lru_pvecs.lock);
684 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
685 get_page(page);
686 if (pagevec_add_and_need_flush(pvec, page))
687 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
688 local_unlock(&lru_pvecs.lock);
689 }
690 }
691
692 /**
693 * mark_page_lazyfree - make an anon page lazyfree
694 * @page: page to deactivate
695 *
696 * mark_page_lazyfree() moves @page to the inactive file list.
697 * This is done to accelerate the reclaim of @page.
698 */
mark_page_lazyfree(struct page * page)699 void mark_page_lazyfree(struct page *page)
700 {
701 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
702 !PageSwapCache(page) && !PageUnevictable(page)) {
703 struct pagevec *pvec;
704
705 local_lock(&lru_pvecs.lock);
706 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
707 get_page(page);
708 if (pagevec_add_and_need_flush(pvec, page))
709 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
710 local_unlock(&lru_pvecs.lock);
711 }
712 }
713
lru_add_drain(void)714 void lru_add_drain(void)
715 {
716 local_lock(&lru_pvecs.lock);
717 lru_add_drain_cpu(smp_processor_id());
718 local_unlock(&lru_pvecs.lock);
719 }
720
721 /*
722 * It's called from per-cpu workqueue context in SMP case so
723 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
724 * the same cpu. It shouldn't be a problem in !SMP case since
725 * the core is only one and the locks will disable preemption.
726 */
lru_add_and_bh_lrus_drain(void)727 static void lru_add_and_bh_lrus_drain(void)
728 {
729 local_lock(&lru_pvecs.lock);
730 lru_add_drain_cpu(smp_processor_id());
731 local_unlock(&lru_pvecs.lock);
732 invalidate_bh_lrus_cpu();
733 }
734
lru_add_drain_cpu_zone(struct zone * zone)735 void lru_add_drain_cpu_zone(struct zone *zone)
736 {
737 local_lock(&lru_pvecs.lock);
738 lru_add_drain_cpu(smp_processor_id());
739 drain_local_pages(zone);
740 local_unlock(&lru_pvecs.lock);
741 }
742
743 #ifdef CONFIG_SMP
744
745 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
746
lru_add_drain_per_cpu(struct work_struct * dummy)747 static void lru_add_drain_per_cpu(struct work_struct *dummy)
748 {
749 lru_add_and_bh_lrus_drain();
750 }
751
752 /*
753 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
754 * kworkers being shut down before our page_alloc_cpu_dead callback is
755 * executed on the offlined cpu.
756 * Calling this function with cpu hotplug locks held can actually lead
757 * to obscure indirect dependencies via WQ context.
758 */
__lru_add_drain_all(bool force_all_cpus)759 inline void __lru_add_drain_all(bool force_all_cpus)
760 {
761 /*
762 * lru_drain_gen - Global pages generation number
763 *
764 * (A) Definition: global lru_drain_gen = x implies that all generations
765 * 0 < n <= x are already *scheduled* for draining.
766 *
767 * This is an optimization for the highly-contended use case where a
768 * user space workload keeps constantly generating a flow of pages for
769 * each CPU.
770 */
771 static unsigned int lru_drain_gen;
772 static struct cpumask has_work;
773 static DEFINE_MUTEX(lock);
774 unsigned cpu, this_gen;
775
776 /*
777 * Make sure nobody triggers this path before mm_percpu_wq is fully
778 * initialized.
779 */
780 if (WARN_ON(!mm_percpu_wq))
781 return;
782
783 /*
784 * Guarantee pagevec counter stores visible by this CPU are visible to
785 * other CPUs before loading the current drain generation.
786 */
787 smp_mb();
788
789 /*
790 * (B) Locally cache global LRU draining generation number
791 *
792 * The read barrier ensures that the counter is loaded before the mutex
793 * is taken. It pairs with smp_mb() inside the mutex critical section
794 * at (D).
795 */
796 this_gen = smp_load_acquire(&lru_drain_gen);
797
798 mutex_lock(&lock);
799
800 /*
801 * (C) Exit the draining operation if a newer generation, from another
802 * lru_add_drain_all(), was already scheduled for draining. Check (A).
803 */
804 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
805 goto done;
806
807 /*
808 * (D) Increment global generation number
809 *
810 * Pairs with smp_load_acquire() at (B), outside of the critical
811 * section. Use a full memory barrier to guarantee that the new global
812 * drain generation number is stored before loading pagevec counters.
813 *
814 * This pairing must be done here, before the for_each_online_cpu loop
815 * below which drains the page vectors.
816 *
817 * Let x, y, and z represent some system CPU numbers, where x < y < z.
818 * Assume CPU #z is in the middle of the for_each_online_cpu loop
819 * below and has already reached CPU #y's per-cpu data. CPU #x comes
820 * along, adds some pages to its per-cpu vectors, then calls
821 * lru_add_drain_all().
822 *
823 * If the paired barrier is done at any later step, e.g. after the
824 * loop, CPU #x will just exit at (C) and miss flushing out all of its
825 * added pages.
826 */
827 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
828 smp_mb();
829
830 cpumask_clear(&has_work);
831 for_each_online_cpu(cpu) {
832 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
833
834 if (force_all_cpus ||
835 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
836 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
837 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
838 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
839 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
840 need_activate_page_drain(cpu) ||
841 has_bh_in_lru(cpu, NULL)) {
842 INIT_WORK(work, lru_add_drain_per_cpu);
843 queue_work_on(cpu, mm_percpu_wq, work);
844 __cpumask_set_cpu(cpu, &has_work);
845 }
846 }
847
848 for_each_cpu(cpu, &has_work)
849 flush_work(&per_cpu(lru_add_drain_work, cpu));
850
851 done:
852 mutex_unlock(&lock);
853 }
854
lru_add_drain_all(void)855 void lru_add_drain_all(void)
856 {
857 __lru_add_drain_all(false);
858 }
859 #else
lru_add_drain_all(void)860 void lru_add_drain_all(void)
861 {
862 lru_add_drain();
863 }
864 #endif /* CONFIG_SMP */
865
866 atomic_t lru_disable_count = ATOMIC_INIT(0);
867
868 /*
869 * lru_cache_disable() needs to be called before we start compiling
870 * a list of pages to be migrated using isolate_lru_page().
871 * It drains pages on LRU cache and then disable on all cpus until
872 * lru_cache_enable is called.
873 *
874 * Must be paired with a call to lru_cache_enable().
875 */
lru_cache_disable(void)876 void lru_cache_disable(void)
877 {
878 atomic_inc(&lru_disable_count);
879 #ifdef CONFIG_SMP
880 /*
881 * lru_add_drain_all in the force mode will schedule draining on
882 * all online CPUs so any calls of lru_cache_disabled wrapped by
883 * local_lock or preemption disabled would be ordered by that.
884 * The atomic operation doesn't need to have stronger ordering
885 * requirements because that is enforeced by the scheduling
886 * guarantees.
887 */
888 __lru_add_drain_all(true);
889 #else
890 lru_add_and_bh_lrus_drain();
891 #endif
892 }
893
894 /**
895 * release_pages - batched put_page()
896 * @pages: array of pages to release
897 * @nr: number of pages
898 *
899 * Decrement the reference count on all the pages in @pages. If it
900 * fell to zero, remove the page from the LRU and free it.
901 */
release_pages(struct page ** pages,int nr)902 void release_pages(struct page **pages, int nr)
903 {
904 int i;
905 LIST_HEAD(pages_to_free);
906 struct lruvec *lruvec = NULL;
907 unsigned long flags = 0;
908 unsigned int lock_batch;
909
910 for (i = 0; i < nr; i++) {
911 struct page *page = pages[i];
912 struct folio *folio = page_folio(page);
913
914 /*
915 * Make sure the IRQ-safe lock-holding time does not get
916 * excessive with a continuous string of pages from the
917 * same lruvec. The lock is held only if lruvec != NULL.
918 */
919 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
920 unlock_page_lruvec_irqrestore(lruvec, flags);
921 lruvec = NULL;
922 }
923
924 page = &folio->page;
925 if (is_huge_zero_page(page))
926 continue;
927
928 if (is_zone_device_page(page)) {
929 if (lruvec) {
930 unlock_page_lruvec_irqrestore(lruvec, flags);
931 lruvec = NULL;
932 }
933 /*
934 * ZONE_DEVICE pages that return 'false' from
935 * page_is_devmap_managed() do not require special
936 * processing, and instead, expect a call to
937 * put_page_testzero().
938 */
939 if (page_is_devmap_managed(page)) {
940 put_devmap_managed_page(page);
941 continue;
942 }
943 if (put_page_testzero(page))
944 put_dev_pagemap(page->pgmap);
945 continue;
946 }
947
948 if (!put_page_testzero(page))
949 continue;
950
951 if (PageCompound(page)) {
952 if (lruvec) {
953 unlock_page_lruvec_irqrestore(lruvec, flags);
954 lruvec = NULL;
955 }
956 __put_compound_page(page);
957 continue;
958 }
959
960 if (PageLRU(page)) {
961 struct lruvec *prev_lruvec = lruvec;
962
963 lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
964 &flags);
965 if (prev_lruvec != lruvec)
966 lock_batch = 0;
967
968 del_page_from_lru_list(page, lruvec);
969 __clear_page_lru_flags(page);
970 }
971
972 __ClearPageWaiters(page);
973
974 list_add(&page->lru, &pages_to_free);
975 }
976 if (lruvec)
977 unlock_page_lruvec_irqrestore(lruvec, flags);
978
979 mem_cgroup_uncharge_list(&pages_to_free);
980 free_unref_page_list(&pages_to_free);
981 }
982 EXPORT_SYMBOL(release_pages);
983
984 /*
985 * The pages which we're about to release may be in the deferred lru-addition
986 * queues. That would prevent them from really being freed right now. That's
987 * OK from a correctness point of view but is inefficient - those pages may be
988 * cache-warm and we want to give them back to the page allocator ASAP.
989 *
990 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
991 * and __pagevec_lru_add_active() call release_pages() directly to avoid
992 * mutual recursion.
993 */
__pagevec_release(struct pagevec * pvec)994 void __pagevec_release(struct pagevec *pvec)
995 {
996 if (!pvec->percpu_pvec_drained) {
997 lru_add_drain();
998 pvec->percpu_pvec_drained = true;
999 }
1000 release_pages(pvec->pages, pagevec_count(pvec));
1001 pagevec_reinit(pvec);
1002 }
1003 EXPORT_SYMBOL(__pagevec_release);
1004
__pagevec_lru_add_fn(struct folio * folio,struct lruvec * lruvec)1005 static void __pagevec_lru_add_fn(struct folio *folio, struct lruvec *lruvec)
1006 {
1007 int was_unevictable = folio_test_clear_unevictable(folio);
1008 long nr_pages = folio_nr_pages(folio);
1009
1010 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1011
1012 /*
1013 * A folio becomes evictable in two ways:
1014 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1015 * 2) Before acquiring LRU lock to put the folio on the correct LRU
1016 * and then
1017 * a) do PageLRU check with lock [check_move_unevictable_pages]
1018 * b) do PageLRU check before lock [clear_page_mlock]
1019 *
1020 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1021 * following strict ordering:
1022 *
1023 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
1024 *
1025 * folio_set_lru() folio_test_clear_mlocked()
1026 * smp_mb() // explicit ordering // above provides strict
1027 * // ordering
1028 * folio_test_mlocked() folio_test_lru()
1029 *
1030 *
1031 * if '#1' does not observe setting of PG_lru by '#0' and
1032 * fails isolation, the explicit barrier will make sure that
1033 * folio_evictable check will put the folio on the correct
1034 * LRU. Without smp_mb(), folio_set_lru() can be reordered
1035 * after folio_test_mlocked() check and can make '#1' fail the
1036 * isolation of the folio whose mlocked bit is cleared (#0 is
1037 * also looking at the same folio) and the evictable folio will
1038 * be stranded on an unevictable LRU.
1039 */
1040 folio_set_lru(folio);
1041 smp_mb__after_atomic();
1042
1043 if (folio_evictable(folio)) {
1044 if (was_unevictable)
1045 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1046 } else {
1047 folio_clear_active(folio);
1048 folio_set_unevictable(folio);
1049 if (!was_unevictable)
1050 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1051 }
1052
1053 lruvec_add_folio(lruvec, folio);
1054 trace_mm_lru_insertion(folio);
1055 }
1056
1057 /*
1058 * Add the passed pages to the LRU, then drop the caller's refcount
1059 * on them. Reinitialises the caller's pagevec.
1060 */
__pagevec_lru_add(struct pagevec * pvec)1061 void __pagevec_lru_add(struct pagevec *pvec)
1062 {
1063 int i;
1064 struct lruvec *lruvec = NULL;
1065 unsigned long flags = 0;
1066
1067 for (i = 0; i < pagevec_count(pvec); i++) {
1068 struct folio *folio = page_folio(pvec->pages[i]);
1069
1070 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
1071 __pagevec_lru_add_fn(folio, lruvec);
1072 }
1073 if (lruvec)
1074 unlock_page_lruvec_irqrestore(lruvec, flags);
1075 release_pages(pvec->pages, pvec->nr);
1076 pagevec_reinit(pvec);
1077 }
1078
1079 /**
1080 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1081 * @pvec: The pagevec to prune
1082 *
1083 * find_get_entries() fills both pages and XArray value entries (aka
1084 * exceptional entries) into the pagevec. This function prunes all
1085 * exceptionals from @pvec without leaving holes, so that it can be
1086 * passed on to page-only pagevec operations.
1087 */
pagevec_remove_exceptionals(struct pagevec * pvec)1088 void pagevec_remove_exceptionals(struct pagevec *pvec)
1089 {
1090 int i, j;
1091
1092 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1093 struct page *page = pvec->pages[i];
1094 if (!xa_is_value(page))
1095 pvec->pages[j++] = page;
1096 }
1097 pvec->nr = j;
1098 }
1099
1100 /**
1101 * pagevec_lookup_range - gang pagecache lookup
1102 * @pvec: Where the resulting pages are placed
1103 * @mapping: The address_space to search
1104 * @start: The starting page index
1105 * @end: The final page index
1106 *
1107 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1108 * pages in the mapping starting from index @start and upto index @end
1109 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1110 * reference against the pages in @pvec.
1111 *
1112 * The search returns a group of mapping-contiguous pages with ascending
1113 * indexes. There may be holes in the indices due to not-present pages. We
1114 * also update @start to index the next page for the traversal.
1115 *
1116 * pagevec_lookup_range() returns the number of pages which were found. If this
1117 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1118 * reached.
1119 */
pagevec_lookup_range(struct pagevec * pvec,struct address_space * mapping,pgoff_t * start,pgoff_t end)1120 unsigned pagevec_lookup_range(struct pagevec *pvec,
1121 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1122 {
1123 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1124 pvec->pages);
1125 return pagevec_count(pvec);
1126 }
1127 EXPORT_SYMBOL(pagevec_lookup_range);
1128
pagevec_lookup_range_tag(struct pagevec * pvec,struct address_space * mapping,pgoff_t * index,pgoff_t end,xa_mark_t tag)1129 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1130 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1131 xa_mark_t tag)
1132 {
1133 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1134 PAGEVEC_SIZE, pvec->pages);
1135 return pagevec_count(pvec);
1136 }
1137 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1138
1139 /*
1140 * Perform any setup for the swap system
1141 */
swap_setup(void)1142 void __init swap_setup(void)
1143 {
1144 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1145
1146 /* Use a smaller cluster for small-memory machines */
1147 if (megs < 16)
1148 page_cluster = 2;
1149 else
1150 page_cluster = 3;
1151 /*
1152 * Right now other parts of the system means that we
1153 * _really_ don't want to cluster much more
1154 */
1155 }
1156
1157 #ifdef CONFIG_DEV_PAGEMAP_OPS
put_devmap_managed_page(struct page * page)1158 void put_devmap_managed_page(struct page *page)
1159 {
1160 int count;
1161
1162 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1163 return;
1164
1165 count = page_ref_dec_return(page);
1166
1167 /*
1168 * devmap page refcounts are 1-based, rather than 0-based: if
1169 * refcount is 1, then the page is free and the refcount is
1170 * stable because nobody holds a reference on the page.
1171 */
1172 if (count == 1)
1173 free_devmap_managed_page(page);
1174 else if (!count)
1175 __put_page(page);
1176 }
1177 EXPORT_SYMBOL(put_devmap_managed_page);
1178 #endif
1179