1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
setup_forced_irqthreads(char * arg)30 static int __init setup_forced_irqthreads(char *arg)
31 {
32 static_branch_enable(&force_irqthreads_key);
33 return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
__synchronize_hardirq(struct irq_desc * desc,bool sync_chip)38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40 struct irq_data *irqd = irq_desc_get_irq_data(desc);
41 bool inprogress;
42
43 do {
44 unsigned long flags;
45
46 /*
47 * Wait until we're out of the critical section. This might
48 * give the wrong answer due to the lack of memory barriers.
49 */
50 while (irqd_irq_inprogress(&desc->irq_data))
51 cpu_relax();
52
53 /* Ok, that indicated we're done: double-check carefully. */
54 raw_spin_lock_irqsave(&desc->lock, flags);
55 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57 /*
58 * If requested and supported, check at the chip whether it
59 * is in flight at the hardware level, i.e. already pending
60 * in a CPU and waiting for service and acknowledge.
61 */
62 if (!inprogress && sync_chip) {
63 /*
64 * Ignore the return code. inprogress is only updated
65 * when the chip supports it.
66 */
67 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68 &inprogress);
69 }
70 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72 /* Oops, that failed? */
73 } while (inprogress);
74 }
75
76 /**
77 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78 * @irq: interrupt number to wait for
79 *
80 * This function waits for any pending hard IRQ handlers for this
81 * interrupt to complete before returning. If you use this
82 * function while holding a resource the IRQ handler may need you
83 * will deadlock. It does not take associated threaded handlers
84 * into account.
85 *
86 * Do not use this for shutdown scenarios where you must be sure
87 * that all parts (hardirq and threaded handler) have completed.
88 *
89 * Returns: false if a threaded handler is active.
90 *
91 * This function may be called - with care - from IRQ context.
92 *
93 * It does not check whether there is an interrupt in flight at the
94 * hardware level, but not serviced yet, as this might deadlock when
95 * called with interrupts disabled and the target CPU of the interrupt
96 * is the current CPU.
97 */
synchronize_hardirq(unsigned int irq)98 bool synchronize_hardirq(unsigned int irq)
99 {
100 struct irq_desc *desc = irq_to_desc(irq);
101
102 if (desc) {
103 __synchronize_hardirq(desc, false);
104 return !atomic_read(&desc->threads_active);
105 }
106
107 return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
111 /**
112 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
113 * @irq: interrupt number to wait for
114 *
115 * This function waits for any pending IRQ handlers for this interrupt
116 * to complete before returning. If you use this function while
117 * holding a resource the IRQ handler may need you will deadlock.
118 *
119 * Can only be called from preemptible code as it might sleep when
120 * an interrupt thread is associated to @irq.
121 *
122 * It optionally makes sure (when the irq chip supports that method)
123 * that the interrupt is not pending in any CPU and waiting for
124 * service.
125 */
synchronize_irq(unsigned int irq)126 void synchronize_irq(unsigned int irq)
127 {
128 struct irq_desc *desc = irq_to_desc(irq);
129
130 if (desc) {
131 __synchronize_hardirq(desc, true);
132 /*
133 * We made sure that no hardirq handler is
134 * running. Now verify that no threaded handlers are
135 * active.
136 */
137 wait_event(desc->wait_for_threads,
138 !atomic_read(&desc->threads_active));
139 }
140 }
141 EXPORT_SYMBOL(synchronize_irq);
142
143 #ifdef CONFIG_SMP
144 cpumask_var_t irq_default_affinity;
145
__irq_can_set_affinity(struct irq_desc * desc)146 static bool __irq_can_set_affinity(struct irq_desc *desc)
147 {
148 if (!desc || !irqd_can_balance(&desc->irq_data) ||
149 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
150 return false;
151 return true;
152 }
153
154 /**
155 * irq_can_set_affinity - Check if the affinity of a given irq can be set
156 * @irq: Interrupt to check
157 *
158 */
irq_can_set_affinity(unsigned int irq)159 int irq_can_set_affinity(unsigned int irq)
160 {
161 return __irq_can_set_affinity(irq_to_desc(irq));
162 }
163
164 /**
165 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
166 * @irq: Interrupt to check
167 *
168 * Like irq_can_set_affinity() above, but additionally checks for the
169 * AFFINITY_MANAGED flag.
170 */
irq_can_set_affinity_usr(unsigned int irq)171 bool irq_can_set_affinity_usr(unsigned int irq)
172 {
173 struct irq_desc *desc = irq_to_desc(irq);
174
175 return __irq_can_set_affinity(desc) &&
176 !irqd_affinity_is_managed(&desc->irq_data);
177 }
178
179 /**
180 * irq_set_thread_affinity - Notify irq threads to adjust affinity
181 * @desc: irq descriptor which has affinity changed
182 *
183 * We just set IRQTF_AFFINITY and delegate the affinity setting
184 * to the interrupt thread itself. We can not call
185 * set_cpus_allowed_ptr() here as we hold desc->lock and this
186 * code can be called from hard interrupt context.
187 */
irq_set_thread_affinity(struct irq_desc * desc)188 void irq_set_thread_affinity(struct irq_desc *desc)
189 {
190 struct irqaction *action;
191
192 for_each_action_of_desc(desc, action)
193 if (action->thread)
194 set_bit(IRQTF_AFFINITY, &action->thread_flags);
195 }
196
197 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
irq_validate_effective_affinity(struct irq_data * data)198 static void irq_validate_effective_affinity(struct irq_data *data)
199 {
200 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
201 struct irq_chip *chip = irq_data_get_irq_chip(data);
202
203 if (!cpumask_empty(m))
204 return;
205 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
206 chip->name, data->irq);
207 }
208
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)209 static inline void irq_init_effective_affinity(struct irq_data *data,
210 const struct cpumask *mask)
211 {
212 cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
213 }
214 #else
irq_validate_effective_affinity(struct irq_data * data)215 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
irq_init_effective_affinity(struct irq_data * data,const struct cpumask * mask)216 static inline void irq_init_effective_affinity(struct irq_data *data,
217 const struct cpumask *mask) { }
218 #endif
219
irq_do_set_affinity(struct irq_data * data,const struct cpumask * mask,bool force)220 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
221 bool force)
222 {
223 struct irq_desc *desc = irq_data_to_desc(data);
224 struct irq_chip *chip = irq_data_get_irq_chip(data);
225 int ret;
226
227 if (!chip || !chip->irq_set_affinity)
228 return -EINVAL;
229
230 /*
231 * If this is a managed interrupt and housekeeping is enabled on
232 * it check whether the requested affinity mask intersects with
233 * a housekeeping CPU. If so, then remove the isolated CPUs from
234 * the mask and just keep the housekeeping CPU(s). This prevents
235 * the affinity setter from routing the interrupt to an isolated
236 * CPU to avoid that I/O submitted from a housekeeping CPU causes
237 * interrupts on an isolated one.
238 *
239 * If the masks do not intersect or include online CPU(s) then
240 * keep the requested mask. The isolated target CPUs are only
241 * receiving interrupts when the I/O operation was submitted
242 * directly from them.
243 *
244 * If all housekeeping CPUs in the affinity mask are offline, the
245 * interrupt will be migrated by the CPU hotplug code once a
246 * housekeeping CPU which belongs to the affinity mask comes
247 * online.
248 */
249 if (irqd_affinity_is_managed(data) &&
250 housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
251 const struct cpumask *hk_mask, *prog_mask;
252
253 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
254 static struct cpumask tmp_mask;
255
256 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
257
258 raw_spin_lock(&tmp_mask_lock);
259 cpumask_and(&tmp_mask, mask, hk_mask);
260 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
261 prog_mask = mask;
262 else
263 prog_mask = &tmp_mask;
264 ret = chip->irq_set_affinity(data, prog_mask, force);
265 raw_spin_unlock(&tmp_mask_lock);
266 } else {
267 ret = chip->irq_set_affinity(data, mask, force);
268 }
269 switch (ret) {
270 case IRQ_SET_MASK_OK:
271 case IRQ_SET_MASK_OK_DONE:
272 cpumask_copy(desc->irq_common_data.affinity, mask);
273 fallthrough;
274 case IRQ_SET_MASK_OK_NOCOPY:
275 irq_validate_effective_affinity(data);
276 irq_set_thread_affinity(desc);
277 ret = 0;
278 }
279
280 return ret;
281 }
282
283 #ifdef CONFIG_GENERIC_PENDING_IRQ
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)284 static inline int irq_set_affinity_pending(struct irq_data *data,
285 const struct cpumask *dest)
286 {
287 struct irq_desc *desc = irq_data_to_desc(data);
288
289 irqd_set_move_pending(data);
290 irq_copy_pending(desc, dest);
291 return 0;
292 }
293 #else
irq_set_affinity_pending(struct irq_data * data,const struct cpumask * dest)294 static inline int irq_set_affinity_pending(struct irq_data *data,
295 const struct cpumask *dest)
296 {
297 return -EBUSY;
298 }
299 #endif
300
irq_try_set_affinity(struct irq_data * data,const struct cpumask * dest,bool force)301 static int irq_try_set_affinity(struct irq_data *data,
302 const struct cpumask *dest, bool force)
303 {
304 int ret = irq_do_set_affinity(data, dest, force);
305
306 /*
307 * In case that the underlying vector management is busy and the
308 * architecture supports the generic pending mechanism then utilize
309 * this to avoid returning an error to user space.
310 */
311 if (ret == -EBUSY && !force)
312 ret = irq_set_affinity_pending(data, dest);
313 return ret;
314 }
315
irq_set_affinity_deactivated(struct irq_data * data,const struct cpumask * mask,bool force)316 static bool irq_set_affinity_deactivated(struct irq_data *data,
317 const struct cpumask *mask, bool force)
318 {
319 struct irq_desc *desc = irq_data_to_desc(data);
320
321 /*
322 * Handle irq chips which can handle affinity only in activated
323 * state correctly
324 *
325 * If the interrupt is not yet activated, just store the affinity
326 * mask and do not call the chip driver at all. On activation the
327 * driver has to make sure anyway that the interrupt is in a
328 * usable state so startup works.
329 */
330 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
331 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
332 return false;
333
334 cpumask_copy(desc->irq_common_data.affinity, mask);
335 irq_init_effective_affinity(data, mask);
336 irqd_set(data, IRQD_AFFINITY_SET);
337 return true;
338 }
339
irq_set_affinity_locked(struct irq_data * data,const struct cpumask * mask,bool force)340 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
341 bool force)
342 {
343 struct irq_chip *chip = irq_data_get_irq_chip(data);
344 struct irq_desc *desc = irq_data_to_desc(data);
345 int ret = 0;
346
347 if (!chip || !chip->irq_set_affinity)
348 return -EINVAL;
349
350 if (irq_set_affinity_deactivated(data, mask, force))
351 return 0;
352
353 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
354 ret = irq_try_set_affinity(data, mask, force);
355 } else {
356 irqd_set_move_pending(data);
357 irq_copy_pending(desc, mask);
358 }
359
360 if (desc->affinity_notify) {
361 kref_get(&desc->affinity_notify->kref);
362 if (!schedule_work(&desc->affinity_notify->work)) {
363 /* Work was already scheduled, drop our extra ref */
364 kref_put(&desc->affinity_notify->kref,
365 desc->affinity_notify->release);
366 }
367 }
368 irqd_set(data, IRQD_AFFINITY_SET);
369
370 return ret;
371 }
372
373 /**
374 * irq_update_affinity_desc - Update affinity management for an interrupt
375 * @irq: The interrupt number to update
376 * @affinity: Pointer to the affinity descriptor
377 *
378 * This interface can be used to configure the affinity management of
379 * interrupts which have been allocated already.
380 *
381 * There are certain limitations on when it may be used - attempts to use it
382 * for when the kernel is configured for generic IRQ reservation mode (in
383 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
384 * managed/non-managed interrupt accounting. In addition, attempts to use it on
385 * an interrupt which is already started or which has already been configured
386 * as managed will also fail, as these mean invalid init state or double init.
387 */
irq_update_affinity_desc(unsigned int irq,struct irq_affinity_desc * affinity)388 int irq_update_affinity_desc(unsigned int irq,
389 struct irq_affinity_desc *affinity)
390 {
391 struct irq_desc *desc;
392 unsigned long flags;
393 bool activated;
394 int ret = 0;
395
396 /*
397 * Supporting this with the reservation scheme used by x86 needs
398 * some more thought. Fail it for now.
399 */
400 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
401 return -EOPNOTSUPP;
402
403 desc = irq_get_desc_buslock(irq, &flags, 0);
404 if (!desc)
405 return -EINVAL;
406
407 /* Requires the interrupt to be shut down */
408 if (irqd_is_started(&desc->irq_data)) {
409 ret = -EBUSY;
410 goto out_unlock;
411 }
412
413 /* Interrupts which are already managed cannot be modified */
414 if (irqd_affinity_is_managed(&desc->irq_data)) {
415 ret = -EBUSY;
416 goto out_unlock;
417 }
418
419 /*
420 * Deactivate the interrupt. That's required to undo
421 * anything an earlier activation has established.
422 */
423 activated = irqd_is_activated(&desc->irq_data);
424 if (activated)
425 irq_domain_deactivate_irq(&desc->irq_data);
426
427 if (affinity->is_managed) {
428 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
429 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
430 }
431
432 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
433
434 /* Restore the activation state */
435 if (activated)
436 irq_domain_activate_irq(&desc->irq_data, false);
437
438 out_unlock:
439 irq_put_desc_busunlock(desc, flags);
440 return ret;
441 }
442
__irq_set_affinity(unsigned int irq,const struct cpumask * mask,bool force)443 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
444 bool force)
445 {
446 struct irq_desc *desc = irq_to_desc(irq);
447 unsigned long flags;
448 int ret;
449
450 if (!desc)
451 return -EINVAL;
452
453 raw_spin_lock_irqsave(&desc->lock, flags);
454 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
455 raw_spin_unlock_irqrestore(&desc->lock, flags);
456 return ret;
457 }
458
459 /**
460 * irq_set_affinity - Set the irq affinity of a given irq
461 * @irq: Interrupt to set affinity
462 * @cpumask: cpumask
463 *
464 * Fails if cpumask does not contain an online CPU
465 */
irq_set_affinity(unsigned int irq,const struct cpumask * cpumask)466 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
467 {
468 return __irq_set_affinity(irq, cpumask, false);
469 }
470 EXPORT_SYMBOL_GPL(irq_set_affinity);
471
472 /**
473 * irq_force_affinity - Force the irq affinity of a given irq
474 * @irq: Interrupt to set affinity
475 * @cpumask: cpumask
476 *
477 * Same as irq_set_affinity, but without checking the mask against
478 * online cpus.
479 *
480 * Solely for low level cpu hotplug code, where we need to make per
481 * cpu interrupts affine before the cpu becomes online.
482 */
irq_force_affinity(unsigned int irq,const struct cpumask * cpumask)483 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
484 {
485 return __irq_set_affinity(irq, cpumask, true);
486 }
487 EXPORT_SYMBOL_GPL(irq_force_affinity);
488
irq_set_affinity_hint(unsigned int irq,const struct cpumask * m)489 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
490 {
491 unsigned long flags;
492 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
493
494 if (!desc)
495 return -EINVAL;
496 desc->affinity_hint = m;
497 irq_put_desc_unlock(desc, flags);
498 /* set the initial affinity to prevent every interrupt being on CPU0 */
499 if (m)
500 __irq_set_affinity(irq, m, false);
501 return 0;
502 }
503 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
504
irq_affinity_notify(struct work_struct * work)505 static void irq_affinity_notify(struct work_struct *work)
506 {
507 struct irq_affinity_notify *notify =
508 container_of(work, struct irq_affinity_notify, work);
509 struct irq_desc *desc = irq_to_desc(notify->irq);
510 cpumask_var_t cpumask;
511 unsigned long flags;
512
513 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
514 goto out;
515
516 raw_spin_lock_irqsave(&desc->lock, flags);
517 if (irq_move_pending(&desc->irq_data))
518 irq_get_pending(cpumask, desc);
519 else
520 cpumask_copy(cpumask, desc->irq_common_data.affinity);
521 raw_spin_unlock_irqrestore(&desc->lock, flags);
522
523 notify->notify(notify, cpumask);
524
525 free_cpumask_var(cpumask);
526 out:
527 kref_put(¬ify->kref, notify->release);
528 }
529
530 /**
531 * irq_set_affinity_notifier - control notification of IRQ affinity changes
532 * @irq: Interrupt for which to enable/disable notification
533 * @notify: Context for notification, or %NULL to disable
534 * notification. Function pointers must be initialised;
535 * the other fields will be initialised by this function.
536 *
537 * Must be called in process context. Notification may only be enabled
538 * after the IRQ is allocated and must be disabled before the IRQ is
539 * freed using free_irq().
540 */
541 int
irq_set_affinity_notifier(unsigned int irq,struct irq_affinity_notify * notify)542 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
543 {
544 struct irq_desc *desc = irq_to_desc(irq);
545 struct irq_affinity_notify *old_notify;
546 unsigned long flags;
547
548 /* The release function is promised process context */
549 might_sleep();
550
551 if (!desc || desc->istate & IRQS_NMI)
552 return -EINVAL;
553
554 /* Complete initialisation of *notify */
555 if (notify) {
556 notify->irq = irq;
557 kref_init(¬ify->kref);
558 INIT_WORK(¬ify->work, irq_affinity_notify);
559 }
560
561 raw_spin_lock_irqsave(&desc->lock, flags);
562 old_notify = desc->affinity_notify;
563 desc->affinity_notify = notify;
564 raw_spin_unlock_irqrestore(&desc->lock, flags);
565
566 if (old_notify) {
567 if (cancel_work_sync(&old_notify->work)) {
568 /* Pending work had a ref, put that one too */
569 kref_put(&old_notify->kref, old_notify->release);
570 }
571 kref_put(&old_notify->kref, old_notify->release);
572 }
573
574 return 0;
575 }
576 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
577
578 #ifndef CONFIG_AUTO_IRQ_AFFINITY
579 /*
580 * Generic version of the affinity autoselector.
581 */
irq_setup_affinity(struct irq_desc * desc)582 int irq_setup_affinity(struct irq_desc *desc)
583 {
584 struct cpumask *set = irq_default_affinity;
585 int ret, node = irq_desc_get_node(desc);
586 static DEFINE_RAW_SPINLOCK(mask_lock);
587 static struct cpumask mask;
588
589 /* Excludes PER_CPU and NO_BALANCE interrupts */
590 if (!__irq_can_set_affinity(desc))
591 return 0;
592
593 raw_spin_lock(&mask_lock);
594 /*
595 * Preserve the managed affinity setting and a userspace affinity
596 * setup, but make sure that one of the targets is online.
597 */
598 if (irqd_affinity_is_managed(&desc->irq_data) ||
599 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
600 if (cpumask_intersects(desc->irq_common_data.affinity,
601 cpu_online_mask))
602 set = desc->irq_common_data.affinity;
603 else
604 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
605 }
606
607 cpumask_and(&mask, cpu_online_mask, set);
608 if (cpumask_empty(&mask))
609 cpumask_copy(&mask, cpu_online_mask);
610
611 if (node != NUMA_NO_NODE) {
612 const struct cpumask *nodemask = cpumask_of_node(node);
613
614 /* make sure at least one of the cpus in nodemask is online */
615 if (cpumask_intersects(&mask, nodemask))
616 cpumask_and(&mask, &mask, nodemask);
617 }
618 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
619 raw_spin_unlock(&mask_lock);
620 return ret;
621 }
622 #else
623 /* Wrapper for ALPHA specific affinity selector magic */
irq_setup_affinity(struct irq_desc * desc)624 int irq_setup_affinity(struct irq_desc *desc)
625 {
626 return irq_select_affinity(irq_desc_get_irq(desc));
627 }
628 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
629 #endif /* CONFIG_SMP */
630
631
632 /**
633 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
634 * @irq: interrupt number to set affinity
635 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
636 * specific data for percpu_devid interrupts
637 *
638 * This function uses the vCPU specific data to set the vCPU
639 * affinity for an irq. The vCPU specific data is passed from
640 * outside, such as KVM. One example code path is as below:
641 * KVM -> IOMMU -> irq_set_vcpu_affinity().
642 */
irq_set_vcpu_affinity(unsigned int irq,void * vcpu_info)643 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
644 {
645 unsigned long flags;
646 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
647 struct irq_data *data;
648 struct irq_chip *chip;
649 int ret = -ENOSYS;
650
651 if (!desc)
652 return -EINVAL;
653
654 data = irq_desc_get_irq_data(desc);
655 do {
656 chip = irq_data_get_irq_chip(data);
657 if (chip && chip->irq_set_vcpu_affinity)
658 break;
659 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
660 data = data->parent_data;
661 #else
662 data = NULL;
663 #endif
664 } while (data);
665
666 if (data)
667 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
668 irq_put_desc_unlock(desc, flags);
669
670 return ret;
671 }
672 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
673
__disable_irq(struct irq_desc * desc)674 void __disable_irq(struct irq_desc *desc)
675 {
676 if (!desc->depth++)
677 irq_disable(desc);
678 }
679
__disable_irq_nosync(unsigned int irq)680 static int __disable_irq_nosync(unsigned int irq)
681 {
682 unsigned long flags;
683 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
684
685 if (!desc)
686 return -EINVAL;
687 __disable_irq(desc);
688 irq_put_desc_busunlock(desc, flags);
689 return 0;
690 }
691
692 /**
693 * disable_irq_nosync - disable an irq without waiting
694 * @irq: Interrupt to disable
695 *
696 * Disable the selected interrupt line. Disables and Enables are
697 * nested.
698 * Unlike disable_irq(), this function does not ensure existing
699 * instances of the IRQ handler have completed before returning.
700 *
701 * This function may be called from IRQ context.
702 */
disable_irq_nosync(unsigned int irq)703 void disable_irq_nosync(unsigned int irq)
704 {
705 __disable_irq_nosync(irq);
706 }
707 EXPORT_SYMBOL(disable_irq_nosync);
708
709 /**
710 * disable_irq - disable an irq and wait for completion
711 * @irq: Interrupt to disable
712 *
713 * Disable the selected interrupt line. Enables and Disables are
714 * nested.
715 * This function waits for any pending IRQ handlers for this interrupt
716 * to complete before returning. If you use this function while
717 * holding a resource the IRQ handler may need you will deadlock.
718 *
719 * This function may be called - with care - from IRQ context.
720 */
disable_irq(unsigned int irq)721 void disable_irq(unsigned int irq)
722 {
723 if (!__disable_irq_nosync(irq))
724 synchronize_irq(irq);
725 }
726 EXPORT_SYMBOL(disable_irq);
727
728 /**
729 * disable_hardirq - disables an irq and waits for hardirq completion
730 * @irq: Interrupt to disable
731 *
732 * Disable the selected interrupt line. Enables and Disables are
733 * nested.
734 * This function waits for any pending hard IRQ handlers for this
735 * interrupt to complete before returning. If you use this function while
736 * holding a resource the hard IRQ handler may need you will deadlock.
737 *
738 * When used to optimistically disable an interrupt from atomic context
739 * the return value must be checked.
740 *
741 * Returns: false if a threaded handler is active.
742 *
743 * This function may be called - with care - from IRQ context.
744 */
disable_hardirq(unsigned int irq)745 bool disable_hardirq(unsigned int irq)
746 {
747 if (!__disable_irq_nosync(irq))
748 return synchronize_hardirq(irq);
749
750 return false;
751 }
752 EXPORT_SYMBOL_GPL(disable_hardirq);
753
754 /**
755 * disable_nmi_nosync - disable an nmi without waiting
756 * @irq: Interrupt to disable
757 *
758 * Disable the selected interrupt line. Disables and enables are
759 * nested.
760 * The interrupt to disable must have been requested through request_nmi.
761 * Unlike disable_nmi(), this function does not ensure existing
762 * instances of the IRQ handler have completed before returning.
763 */
disable_nmi_nosync(unsigned int irq)764 void disable_nmi_nosync(unsigned int irq)
765 {
766 disable_irq_nosync(irq);
767 }
768
__enable_irq(struct irq_desc * desc)769 void __enable_irq(struct irq_desc *desc)
770 {
771 switch (desc->depth) {
772 case 0:
773 err_out:
774 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
775 irq_desc_get_irq(desc));
776 break;
777 case 1: {
778 if (desc->istate & IRQS_SUSPENDED)
779 goto err_out;
780 /* Prevent probing on this irq: */
781 irq_settings_set_noprobe(desc);
782 /*
783 * Call irq_startup() not irq_enable() here because the
784 * interrupt might be marked NOAUTOEN. So irq_startup()
785 * needs to be invoked when it gets enabled the first
786 * time. If it was already started up, then irq_startup()
787 * will invoke irq_enable() under the hood.
788 */
789 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
790 break;
791 }
792 default:
793 desc->depth--;
794 }
795 }
796
797 /**
798 * enable_irq - enable handling of an irq
799 * @irq: Interrupt to enable
800 *
801 * Undoes the effect of one call to disable_irq(). If this
802 * matches the last disable, processing of interrupts on this
803 * IRQ line is re-enabled.
804 *
805 * This function may be called from IRQ context only when
806 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
807 */
enable_irq(unsigned int irq)808 void enable_irq(unsigned int irq)
809 {
810 unsigned long flags;
811 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
812
813 if (!desc)
814 return;
815 if (WARN(!desc->irq_data.chip,
816 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
817 goto out;
818
819 __enable_irq(desc);
820 out:
821 irq_put_desc_busunlock(desc, flags);
822 }
823 EXPORT_SYMBOL(enable_irq);
824
825 /**
826 * enable_nmi - enable handling of an nmi
827 * @irq: Interrupt to enable
828 *
829 * The interrupt to enable must have been requested through request_nmi.
830 * Undoes the effect of one call to disable_nmi(). If this
831 * matches the last disable, processing of interrupts on this
832 * IRQ line is re-enabled.
833 */
enable_nmi(unsigned int irq)834 void enable_nmi(unsigned int irq)
835 {
836 enable_irq(irq);
837 }
838
set_irq_wake_real(unsigned int irq,unsigned int on)839 static int set_irq_wake_real(unsigned int irq, unsigned int on)
840 {
841 struct irq_desc *desc = irq_to_desc(irq);
842 int ret = -ENXIO;
843
844 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
845 return 0;
846
847 if (desc->irq_data.chip->irq_set_wake)
848 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
849
850 return ret;
851 }
852
853 /**
854 * irq_set_irq_wake - control irq power management wakeup
855 * @irq: interrupt to control
856 * @on: enable/disable power management wakeup
857 *
858 * Enable/disable power management wakeup mode, which is
859 * disabled by default. Enables and disables must match,
860 * just as they match for non-wakeup mode support.
861 *
862 * Wakeup mode lets this IRQ wake the system from sleep
863 * states like "suspend to RAM".
864 *
865 * Note: irq enable/disable state is completely orthogonal
866 * to the enable/disable state of irq wake. An irq can be
867 * disabled with disable_irq() and still wake the system as
868 * long as the irq has wake enabled. If this does not hold,
869 * then the underlying irq chip and the related driver need
870 * to be investigated.
871 */
irq_set_irq_wake(unsigned int irq,unsigned int on)872 int irq_set_irq_wake(unsigned int irq, unsigned int on)
873 {
874 unsigned long flags;
875 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
876 int ret = 0;
877
878 if (!desc)
879 return -EINVAL;
880
881 /* Don't use NMIs as wake up interrupts please */
882 if (desc->istate & IRQS_NMI) {
883 ret = -EINVAL;
884 goto out_unlock;
885 }
886
887 /* wakeup-capable irqs can be shared between drivers that
888 * don't need to have the same sleep mode behaviors.
889 */
890 if (on) {
891 if (desc->wake_depth++ == 0) {
892 ret = set_irq_wake_real(irq, on);
893 if (ret)
894 desc->wake_depth = 0;
895 else
896 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
897 }
898 } else {
899 if (desc->wake_depth == 0) {
900 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
901 } else if (--desc->wake_depth == 0) {
902 ret = set_irq_wake_real(irq, on);
903 if (ret)
904 desc->wake_depth = 1;
905 else
906 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
907 }
908 }
909
910 out_unlock:
911 irq_put_desc_busunlock(desc, flags);
912 return ret;
913 }
914 EXPORT_SYMBOL(irq_set_irq_wake);
915
916 /*
917 * Internal function that tells the architecture code whether a
918 * particular irq has been exclusively allocated or is available
919 * for driver use.
920 */
can_request_irq(unsigned int irq,unsigned long irqflags)921 int can_request_irq(unsigned int irq, unsigned long irqflags)
922 {
923 unsigned long flags;
924 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
925 int canrequest = 0;
926
927 if (!desc)
928 return 0;
929
930 if (irq_settings_can_request(desc)) {
931 if (!desc->action ||
932 irqflags & desc->action->flags & IRQF_SHARED)
933 canrequest = 1;
934 }
935 irq_put_desc_unlock(desc, flags);
936 return canrequest;
937 }
938
__irq_set_trigger(struct irq_desc * desc,unsigned long flags)939 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
940 {
941 struct irq_chip *chip = desc->irq_data.chip;
942 int ret, unmask = 0;
943
944 if (!chip || !chip->irq_set_type) {
945 /*
946 * IRQF_TRIGGER_* but the PIC does not support multiple
947 * flow-types?
948 */
949 pr_debug("No set_type function for IRQ %d (%s)\n",
950 irq_desc_get_irq(desc),
951 chip ? (chip->name ? : "unknown") : "unknown");
952 return 0;
953 }
954
955 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
956 if (!irqd_irq_masked(&desc->irq_data))
957 mask_irq(desc);
958 if (!irqd_irq_disabled(&desc->irq_data))
959 unmask = 1;
960 }
961
962 /* Mask all flags except trigger mode */
963 flags &= IRQ_TYPE_SENSE_MASK;
964 ret = chip->irq_set_type(&desc->irq_data, flags);
965
966 switch (ret) {
967 case IRQ_SET_MASK_OK:
968 case IRQ_SET_MASK_OK_DONE:
969 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
970 irqd_set(&desc->irq_data, flags);
971 fallthrough;
972
973 case IRQ_SET_MASK_OK_NOCOPY:
974 flags = irqd_get_trigger_type(&desc->irq_data);
975 irq_settings_set_trigger_mask(desc, flags);
976 irqd_clear(&desc->irq_data, IRQD_LEVEL);
977 irq_settings_clr_level(desc);
978 if (flags & IRQ_TYPE_LEVEL_MASK) {
979 irq_settings_set_level(desc);
980 irqd_set(&desc->irq_data, IRQD_LEVEL);
981 }
982
983 ret = 0;
984 break;
985 default:
986 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
987 flags, irq_desc_get_irq(desc), chip->irq_set_type);
988 }
989 if (unmask)
990 unmask_irq(desc);
991 return ret;
992 }
993
994 #ifdef CONFIG_HARDIRQS_SW_RESEND
irq_set_parent(int irq,int parent_irq)995 int irq_set_parent(int irq, int parent_irq)
996 {
997 unsigned long flags;
998 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
999
1000 if (!desc)
1001 return -EINVAL;
1002
1003 desc->parent_irq = parent_irq;
1004
1005 irq_put_desc_unlock(desc, flags);
1006 return 0;
1007 }
1008 EXPORT_SYMBOL_GPL(irq_set_parent);
1009 #endif
1010
1011 /*
1012 * Default primary interrupt handler for threaded interrupts. Is
1013 * assigned as primary handler when request_threaded_irq is called
1014 * with handler == NULL. Useful for oneshot interrupts.
1015 */
irq_default_primary_handler(int irq,void * dev_id)1016 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1017 {
1018 return IRQ_WAKE_THREAD;
1019 }
1020
1021 /*
1022 * Primary handler for nested threaded interrupts. Should never be
1023 * called.
1024 */
irq_nested_primary_handler(int irq,void * dev_id)1025 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1026 {
1027 WARN(1, "Primary handler called for nested irq %d\n", irq);
1028 return IRQ_NONE;
1029 }
1030
irq_forced_secondary_handler(int irq,void * dev_id)1031 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1032 {
1033 WARN(1, "Secondary action handler called for irq %d\n", irq);
1034 return IRQ_NONE;
1035 }
1036
irq_wait_for_interrupt(struct irqaction * action)1037 static int irq_wait_for_interrupt(struct irqaction *action)
1038 {
1039 for (;;) {
1040 set_current_state(TASK_INTERRUPTIBLE);
1041
1042 if (kthread_should_stop()) {
1043 /* may need to run one last time */
1044 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1045 &action->thread_flags)) {
1046 __set_current_state(TASK_RUNNING);
1047 return 0;
1048 }
1049 __set_current_state(TASK_RUNNING);
1050 return -1;
1051 }
1052
1053 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1054 &action->thread_flags)) {
1055 __set_current_state(TASK_RUNNING);
1056 return 0;
1057 }
1058 schedule();
1059 }
1060 }
1061
1062 /*
1063 * Oneshot interrupts keep the irq line masked until the threaded
1064 * handler finished. unmask if the interrupt has not been disabled and
1065 * is marked MASKED.
1066 */
irq_finalize_oneshot(struct irq_desc * desc,struct irqaction * action)1067 static void irq_finalize_oneshot(struct irq_desc *desc,
1068 struct irqaction *action)
1069 {
1070 if (!(desc->istate & IRQS_ONESHOT) ||
1071 action->handler == irq_forced_secondary_handler)
1072 return;
1073 again:
1074 chip_bus_lock(desc);
1075 raw_spin_lock_irq(&desc->lock);
1076
1077 /*
1078 * Implausible though it may be we need to protect us against
1079 * the following scenario:
1080 *
1081 * The thread is faster done than the hard interrupt handler
1082 * on the other CPU. If we unmask the irq line then the
1083 * interrupt can come in again and masks the line, leaves due
1084 * to IRQS_INPROGRESS and the irq line is masked forever.
1085 *
1086 * This also serializes the state of shared oneshot handlers
1087 * versus "desc->threads_oneshot |= action->thread_mask;" in
1088 * irq_wake_thread(). See the comment there which explains the
1089 * serialization.
1090 */
1091 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1092 raw_spin_unlock_irq(&desc->lock);
1093 chip_bus_sync_unlock(desc);
1094 cpu_relax();
1095 goto again;
1096 }
1097
1098 /*
1099 * Now check again, whether the thread should run. Otherwise
1100 * we would clear the threads_oneshot bit of this thread which
1101 * was just set.
1102 */
1103 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1104 goto out_unlock;
1105
1106 desc->threads_oneshot &= ~action->thread_mask;
1107
1108 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1109 irqd_irq_masked(&desc->irq_data))
1110 unmask_threaded_irq(desc);
1111
1112 out_unlock:
1113 raw_spin_unlock_irq(&desc->lock);
1114 chip_bus_sync_unlock(desc);
1115 }
1116
1117 #ifdef CONFIG_SMP
1118 /*
1119 * Check whether we need to change the affinity of the interrupt thread.
1120 */
1121 static void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1122 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1123 {
1124 cpumask_var_t mask;
1125 bool valid = true;
1126
1127 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1128 return;
1129
1130 /*
1131 * In case we are out of memory we set IRQTF_AFFINITY again and
1132 * try again next time
1133 */
1134 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1135 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1136 return;
1137 }
1138
1139 raw_spin_lock_irq(&desc->lock);
1140 /*
1141 * This code is triggered unconditionally. Check the affinity
1142 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1143 */
1144 if (cpumask_available(desc->irq_common_data.affinity)) {
1145 const struct cpumask *m;
1146
1147 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1148 cpumask_copy(mask, m);
1149 } else {
1150 valid = false;
1151 }
1152 raw_spin_unlock_irq(&desc->lock);
1153
1154 if (valid)
1155 set_cpus_allowed_ptr(current, mask);
1156 free_cpumask_var(mask);
1157 }
1158 #else
1159 static inline void
irq_thread_check_affinity(struct irq_desc * desc,struct irqaction * action)1160 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1161 #endif
1162
1163 /*
1164 * Interrupts which are not explicitly requested as threaded
1165 * interrupts rely on the implicit bh/preempt disable of the hard irq
1166 * context. So we need to disable bh here to avoid deadlocks and other
1167 * side effects.
1168 */
1169 static irqreturn_t
irq_forced_thread_fn(struct irq_desc * desc,struct irqaction * action)1170 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1171 {
1172 irqreturn_t ret;
1173
1174 local_bh_disable();
1175 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1176 local_irq_disable();
1177 ret = action->thread_fn(action->irq, action->dev_id);
1178 if (ret == IRQ_HANDLED)
1179 atomic_inc(&desc->threads_handled);
1180
1181 irq_finalize_oneshot(desc, action);
1182 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1183 local_irq_enable();
1184 local_bh_enable();
1185 return ret;
1186 }
1187
1188 /*
1189 * Interrupts explicitly requested as threaded interrupts want to be
1190 * preemptible - many of them need to sleep and wait for slow busses to
1191 * complete.
1192 */
irq_thread_fn(struct irq_desc * desc,struct irqaction * action)1193 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1194 struct irqaction *action)
1195 {
1196 irqreturn_t ret;
1197
1198 ret = action->thread_fn(action->irq, action->dev_id);
1199 if (ret == IRQ_HANDLED)
1200 atomic_inc(&desc->threads_handled);
1201
1202 irq_finalize_oneshot(desc, action);
1203 return ret;
1204 }
1205
wake_threads_waitq(struct irq_desc * desc)1206 static void wake_threads_waitq(struct irq_desc *desc)
1207 {
1208 if (atomic_dec_and_test(&desc->threads_active))
1209 wake_up(&desc->wait_for_threads);
1210 }
1211
irq_thread_dtor(struct callback_head * unused)1212 static void irq_thread_dtor(struct callback_head *unused)
1213 {
1214 struct task_struct *tsk = current;
1215 struct irq_desc *desc;
1216 struct irqaction *action;
1217
1218 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1219 return;
1220
1221 action = kthread_data(tsk);
1222
1223 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1224 tsk->comm, tsk->pid, action->irq);
1225
1226
1227 desc = irq_to_desc(action->irq);
1228 /*
1229 * If IRQTF_RUNTHREAD is set, we need to decrement
1230 * desc->threads_active and wake possible waiters.
1231 */
1232 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1233 wake_threads_waitq(desc);
1234
1235 /* Prevent a stale desc->threads_oneshot */
1236 irq_finalize_oneshot(desc, action);
1237 }
1238
irq_wake_secondary(struct irq_desc * desc,struct irqaction * action)1239 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1240 {
1241 struct irqaction *secondary = action->secondary;
1242
1243 if (WARN_ON_ONCE(!secondary))
1244 return;
1245
1246 raw_spin_lock_irq(&desc->lock);
1247 __irq_wake_thread(desc, secondary);
1248 raw_spin_unlock_irq(&desc->lock);
1249 }
1250
1251 /*
1252 * Interrupt handler thread
1253 */
irq_thread(void * data)1254 static int irq_thread(void *data)
1255 {
1256 struct callback_head on_exit_work;
1257 struct irqaction *action = data;
1258 struct irq_desc *desc = irq_to_desc(action->irq);
1259 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1260 struct irqaction *action);
1261
1262 sched_set_fifo(current);
1263
1264 if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1265 &action->thread_flags))
1266 handler_fn = irq_forced_thread_fn;
1267 else
1268 handler_fn = irq_thread_fn;
1269
1270 init_task_work(&on_exit_work, irq_thread_dtor);
1271 task_work_add(current, &on_exit_work, TWA_NONE);
1272
1273 irq_thread_check_affinity(desc, action);
1274
1275 while (!irq_wait_for_interrupt(action)) {
1276 irqreturn_t action_ret;
1277
1278 irq_thread_check_affinity(desc, action);
1279
1280 action_ret = handler_fn(desc, action);
1281 if (action_ret == IRQ_WAKE_THREAD)
1282 irq_wake_secondary(desc, action);
1283
1284 wake_threads_waitq(desc);
1285 }
1286
1287 /*
1288 * This is the regular exit path. __free_irq() is stopping the
1289 * thread via kthread_stop() after calling
1290 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1291 * oneshot mask bit can be set.
1292 */
1293 task_work_cancel(current, irq_thread_dtor);
1294 return 0;
1295 }
1296
1297 /**
1298 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1299 * @irq: Interrupt line
1300 * @dev_id: Device identity for which the thread should be woken
1301 *
1302 */
irq_wake_thread(unsigned int irq,void * dev_id)1303 void irq_wake_thread(unsigned int irq, void *dev_id)
1304 {
1305 struct irq_desc *desc = irq_to_desc(irq);
1306 struct irqaction *action;
1307 unsigned long flags;
1308
1309 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1310 return;
1311
1312 raw_spin_lock_irqsave(&desc->lock, flags);
1313 for_each_action_of_desc(desc, action) {
1314 if (action->dev_id == dev_id) {
1315 if (action->thread)
1316 __irq_wake_thread(desc, action);
1317 break;
1318 }
1319 }
1320 raw_spin_unlock_irqrestore(&desc->lock, flags);
1321 }
1322 EXPORT_SYMBOL_GPL(irq_wake_thread);
1323
irq_setup_forced_threading(struct irqaction * new)1324 static int irq_setup_forced_threading(struct irqaction *new)
1325 {
1326 if (!force_irqthreads())
1327 return 0;
1328 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1329 return 0;
1330
1331 /*
1332 * No further action required for interrupts which are requested as
1333 * threaded interrupts already
1334 */
1335 if (new->handler == irq_default_primary_handler)
1336 return 0;
1337
1338 new->flags |= IRQF_ONESHOT;
1339
1340 /*
1341 * Handle the case where we have a real primary handler and a
1342 * thread handler. We force thread them as well by creating a
1343 * secondary action.
1344 */
1345 if (new->handler && new->thread_fn) {
1346 /* Allocate the secondary action */
1347 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1348 if (!new->secondary)
1349 return -ENOMEM;
1350 new->secondary->handler = irq_forced_secondary_handler;
1351 new->secondary->thread_fn = new->thread_fn;
1352 new->secondary->dev_id = new->dev_id;
1353 new->secondary->irq = new->irq;
1354 new->secondary->name = new->name;
1355 }
1356 /* Deal with the primary handler */
1357 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1358 new->thread_fn = new->handler;
1359 new->handler = irq_default_primary_handler;
1360 return 0;
1361 }
1362
irq_request_resources(struct irq_desc * desc)1363 static int irq_request_resources(struct irq_desc *desc)
1364 {
1365 struct irq_data *d = &desc->irq_data;
1366 struct irq_chip *c = d->chip;
1367
1368 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1369 }
1370
irq_release_resources(struct irq_desc * desc)1371 static void irq_release_resources(struct irq_desc *desc)
1372 {
1373 struct irq_data *d = &desc->irq_data;
1374 struct irq_chip *c = d->chip;
1375
1376 if (c->irq_release_resources)
1377 c->irq_release_resources(d);
1378 }
1379
irq_supports_nmi(struct irq_desc * desc)1380 static bool irq_supports_nmi(struct irq_desc *desc)
1381 {
1382 struct irq_data *d = irq_desc_get_irq_data(desc);
1383
1384 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1385 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1386 if (d->parent_data)
1387 return false;
1388 #endif
1389 /* Don't support NMIs for chips behind a slow bus */
1390 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1391 return false;
1392
1393 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1394 }
1395
irq_nmi_setup(struct irq_desc * desc)1396 static int irq_nmi_setup(struct irq_desc *desc)
1397 {
1398 struct irq_data *d = irq_desc_get_irq_data(desc);
1399 struct irq_chip *c = d->chip;
1400
1401 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1402 }
1403
irq_nmi_teardown(struct irq_desc * desc)1404 static void irq_nmi_teardown(struct irq_desc *desc)
1405 {
1406 struct irq_data *d = irq_desc_get_irq_data(desc);
1407 struct irq_chip *c = d->chip;
1408
1409 if (c->irq_nmi_teardown)
1410 c->irq_nmi_teardown(d);
1411 }
1412
1413 static int
setup_irq_thread(struct irqaction * new,unsigned int irq,bool secondary)1414 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1415 {
1416 struct task_struct *t;
1417
1418 if (!secondary) {
1419 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1420 new->name);
1421 } else {
1422 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1423 new->name);
1424 }
1425
1426 if (IS_ERR(t))
1427 return PTR_ERR(t);
1428
1429 /*
1430 * We keep the reference to the task struct even if
1431 * the thread dies to avoid that the interrupt code
1432 * references an already freed task_struct.
1433 */
1434 new->thread = get_task_struct(t);
1435 /*
1436 * Tell the thread to set its affinity. This is
1437 * important for shared interrupt handlers as we do
1438 * not invoke setup_affinity() for the secondary
1439 * handlers as everything is already set up. Even for
1440 * interrupts marked with IRQF_NO_BALANCE this is
1441 * correct as we want the thread to move to the cpu(s)
1442 * on which the requesting code placed the interrupt.
1443 */
1444 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1445 return 0;
1446 }
1447
1448 /*
1449 * Internal function to register an irqaction - typically used to
1450 * allocate special interrupts that are part of the architecture.
1451 *
1452 * Locking rules:
1453 *
1454 * desc->request_mutex Provides serialization against a concurrent free_irq()
1455 * chip_bus_lock Provides serialization for slow bus operations
1456 * desc->lock Provides serialization against hard interrupts
1457 *
1458 * chip_bus_lock and desc->lock are sufficient for all other management and
1459 * interrupt related functions. desc->request_mutex solely serializes
1460 * request/free_irq().
1461 */
1462 static int
__setup_irq(unsigned int irq,struct irq_desc * desc,struct irqaction * new)1463 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1464 {
1465 struct irqaction *old, **old_ptr;
1466 unsigned long flags, thread_mask = 0;
1467 int ret, nested, shared = 0;
1468
1469 if (!desc)
1470 return -EINVAL;
1471
1472 if (desc->irq_data.chip == &no_irq_chip)
1473 return -ENOSYS;
1474 if (!try_module_get(desc->owner))
1475 return -ENODEV;
1476
1477 new->irq = irq;
1478
1479 /*
1480 * If the trigger type is not specified by the caller,
1481 * then use the default for this interrupt.
1482 */
1483 if (!(new->flags & IRQF_TRIGGER_MASK))
1484 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1485
1486 /*
1487 * Check whether the interrupt nests into another interrupt
1488 * thread.
1489 */
1490 nested = irq_settings_is_nested_thread(desc);
1491 if (nested) {
1492 if (!new->thread_fn) {
1493 ret = -EINVAL;
1494 goto out_mput;
1495 }
1496 /*
1497 * Replace the primary handler which was provided from
1498 * the driver for non nested interrupt handling by the
1499 * dummy function which warns when called.
1500 */
1501 new->handler = irq_nested_primary_handler;
1502 } else {
1503 if (irq_settings_can_thread(desc)) {
1504 ret = irq_setup_forced_threading(new);
1505 if (ret)
1506 goto out_mput;
1507 }
1508 }
1509
1510 /*
1511 * Create a handler thread when a thread function is supplied
1512 * and the interrupt does not nest into another interrupt
1513 * thread.
1514 */
1515 if (new->thread_fn && !nested) {
1516 ret = setup_irq_thread(new, irq, false);
1517 if (ret)
1518 goto out_mput;
1519 if (new->secondary) {
1520 ret = setup_irq_thread(new->secondary, irq, true);
1521 if (ret)
1522 goto out_thread;
1523 }
1524 }
1525
1526 /*
1527 * Drivers are often written to work w/o knowledge about the
1528 * underlying irq chip implementation, so a request for a
1529 * threaded irq without a primary hard irq context handler
1530 * requires the ONESHOT flag to be set. Some irq chips like
1531 * MSI based interrupts are per se one shot safe. Check the
1532 * chip flags, so we can avoid the unmask dance at the end of
1533 * the threaded handler for those.
1534 */
1535 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1536 new->flags &= ~IRQF_ONESHOT;
1537
1538 /*
1539 * Protects against a concurrent __free_irq() call which might wait
1540 * for synchronize_hardirq() to complete without holding the optional
1541 * chip bus lock and desc->lock. Also protects against handing out
1542 * a recycled oneshot thread_mask bit while it's still in use by
1543 * its previous owner.
1544 */
1545 mutex_lock(&desc->request_mutex);
1546
1547 /*
1548 * Acquire bus lock as the irq_request_resources() callback below
1549 * might rely on the serialization or the magic power management
1550 * functions which are abusing the irq_bus_lock() callback,
1551 */
1552 chip_bus_lock(desc);
1553
1554 /* First installed action requests resources. */
1555 if (!desc->action) {
1556 ret = irq_request_resources(desc);
1557 if (ret) {
1558 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1559 new->name, irq, desc->irq_data.chip->name);
1560 goto out_bus_unlock;
1561 }
1562 }
1563
1564 /*
1565 * The following block of code has to be executed atomically
1566 * protected against a concurrent interrupt and any of the other
1567 * management calls which are not serialized via
1568 * desc->request_mutex or the optional bus lock.
1569 */
1570 raw_spin_lock_irqsave(&desc->lock, flags);
1571 old_ptr = &desc->action;
1572 old = *old_ptr;
1573 if (old) {
1574 /*
1575 * Can't share interrupts unless both agree to and are
1576 * the same type (level, edge, polarity). So both flag
1577 * fields must have IRQF_SHARED set and the bits which
1578 * set the trigger type must match. Also all must
1579 * agree on ONESHOT.
1580 * Interrupt lines used for NMIs cannot be shared.
1581 */
1582 unsigned int oldtype;
1583
1584 if (desc->istate & IRQS_NMI) {
1585 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1586 new->name, irq, desc->irq_data.chip->name);
1587 ret = -EINVAL;
1588 goto out_unlock;
1589 }
1590
1591 /*
1592 * If nobody did set the configuration before, inherit
1593 * the one provided by the requester.
1594 */
1595 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1596 oldtype = irqd_get_trigger_type(&desc->irq_data);
1597 } else {
1598 oldtype = new->flags & IRQF_TRIGGER_MASK;
1599 irqd_set_trigger_type(&desc->irq_data, oldtype);
1600 }
1601
1602 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1603 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1604 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1605 goto mismatch;
1606
1607 /* All handlers must agree on per-cpuness */
1608 if ((old->flags & IRQF_PERCPU) !=
1609 (new->flags & IRQF_PERCPU))
1610 goto mismatch;
1611
1612 /* add new interrupt at end of irq queue */
1613 do {
1614 /*
1615 * Or all existing action->thread_mask bits,
1616 * so we can find the next zero bit for this
1617 * new action.
1618 */
1619 thread_mask |= old->thread_mask;
1620 old_ptr = &old->next;
1621 old = *old_ptr;
1622 } while (old);
1623 shared = 1;
1624 }
1625
1626 /*
1627 * Setup the thread mask for this irqaction for ONESHOT. For
1628 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1629 * conditional in irq_wake_thread().
1630 */
1631 if (new->flags & IRQF_ONESHOT) {
1632 /*
1633 * Unlikely to have 32 resp 64 irqs sharing one line,
1634 * but who knows.
1635 */
1636 if (thread_mask == ~0UL) {
1637 ret = -EBUSY;
1638 goto out_unlock;
1639 }
1640 /*
1641 * The thread_mask for the action is or'ed to
1642 * desc->thread_active to indicate that the
1643 * IRQF_ONESHOT thread handler has been woken, but not
1644 * yet finished. The bit is cleared when a thread
1645 * completes. When all threads of a shared interrupt
1646 * line have completed desc->threads_active becomes
1647 * zero and the interrupt line is unmasked. See
1648 * handle.c:irq_wake_thread() for further information.
1649 *
1650 * If no thread is woken by primary (hard irq context)
1651 * interrupt handlers, then desc->threads_active is
1652 * also checked for zero to unmask the irq line in the
1653 * affected hard irq flow handlers
1654 * (handle_[fasteoi|level]_irq).
1655 *
1656 * The new action gets the first zero bit of
1657 * thread_mask assigned. See the loop above which or's
1658 * all existing action->thread_mask bits.
1659 */
1660 new->thread_mask = 1UL << ffz(thread_mask);
1661
1662 } else if (new->handler == irq_default_primary_handler &&
1663 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1664 /*
1665 * The interrupt was requested with handler = NULL, so
1666 * we use the default primary handler for it. But it
1667 * does not have the oneshot flag set. In combination
1668 * with level interrupts this is deadly, because the
1669 * default primary handler just wakes the thread, then
1670 * the irq lines is reenabled, but the device still
1671 * has the level irq asserted. Rinse and repeat....
1672 *
1673 * While this works for edge type interrupts, we play
1674 * it safe and reject unconditionally because we can't
1675 * say for sure which type this interrupt really
1676 * has. The type flags are unreliable as the
1677 * underlying chip implementation can override them.
1678 */
1679 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1680 new->name, irq);
1681 ret = -EINVAL;
1682 goto out_unlock;
1683 }
1684
1685 if (!shared) {
1686 init_waitqueue_head(&desc->wait_for_threads);
1687
1688 /* Setup the type (level, edge polarity) if configured: */
1689 if (new->flags & IRQF_TRIGGER_MASK) {
1690 ret = __irq_set_trigger(desc,
1691 new->flags & IRQF_TRIGGER_MASK);
1692
1693 if (ret)
1694 goto out_unlock;
1695 }
1696
1697 /*
1698 * Activate the interrupt. That activation must happen
1699 * independently of IRQ_NOAUTOEN. request_irq() can fail
1700 * and the callers are supposed to handle
1701 * that. enable_irq() of an interrupt requested with
1702 * IRQ_NOAUTOEN is not supposed to fail. The activation
1703 * keeps it in shutdown mode, it merily associates
1704 * resources if necessary and if that's not possible it
1705 * fails. Interrupts which are in managed shutdown mode
1706 * will simply ignore that activation request.
1707 */
1708 ret = irq_activate(desc);
1709 if (ret)
1710 goto out_unlock;
1711
1712 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1713 IRQS_ONESHOT | IRQS_WAITING);
1714 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1715
1716 if (new->flags & IRQF_PERCPU) {
1717 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1718 irq_settings_set_per_cpu(desc);
1719 if (new->flags & IRQF_NO_DEBUG)
1720 irq_settings_set_no_debug(desc);
1721 }
1722
1723 if (noirqdebug)
1724 irq_settings_set_no_debug(desc);
1725
1726 if (new->flags & IRQF_ONESHOT)
1727 desc->istate |= IRQS_ONESHOT;
1728
1729 /* Exclude IRQ from balancing if requested */
1730 if (new->flags & IRQF_NOBALANCING) {
1731 irq_settings_set_no_balancing(desc);
1732 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1733 }
1734
1735 if (!(new->flags & IRQF_NO_AUTOEN) &&
1736 irq_settings_can_autoenable(desc)) {
1737 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1738 } else {
1739 /*
1740 * Shared interrupts do not go well with disabling
1741 * auto enable. The sharing interrupt might request
1742 * it while it's still disabled and then wait for
1743 * interrupts forever.
1744 */
1745 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1746 /* Undo nested disables: */
1747 desc->depth = 1;
1748 }
1749
1750 } else if (new->flags & IRQF_TRIGGER_MASK) {
1751 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1752 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1753
1754 if (nmsk != omsk)
1755 /* hope the handler works with current trigger mode */
1756 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1757 irq, omsk, nmsk);
1758 }
1759
1760 *old_ptr = new;
1761
1762 irq_pm_install_action(desc, new);
1763
1764 /* Reset broken irq detection when installing new handler */
1765 desc->irq_count = 0;
1766 desc->irqs_unhandled = 0;
1767
1768 /*
1769 * Check whether we disabled the irq via the spurious handler
1770 * before. Reenable it and give it another chance.
1771 */
1772 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1773 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1774 __enable_irq(desc);
1775 }
1776
1777 raw_spin_unlock_irqrestore(&desc->lock, flags);
1778 chip_bus_sync_unlock(desc);
1779 mutex_unlock(&desc->request_mutex);
1780
1781 irq_setup_timings(desc, new);
1782
1783 /*
1784 * Strictly no need to wake it up, but hung_task complains
1785 * when no hard interrupt wakes the thread up.
1786 */
1787 if (new->thread)
1788 wake_up_process(new->thread);
1789 if (new->secondary)
1790 wake_up_process(new->secondary->thread);
1791
1792 register_irq_proc(irq, desc);
1793 new->dir = NULL;
1794 register_handler_proc(irq, new);
1795 return 0;
1796
1797 mismatch:
1798 if (!(new->flags & IRQF_PROBE_SHARED)) {
1799 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1800 irq, new->flags, new->name, old->flags, old->name);
1801 #ifdef CONFIG_DEBUG_SHIRQ
1802 dump_stack();
1803 #endif
1804 }
1805 ret = -EBUSY;
1806
1807 out_unlock:
1808 raw_spin_unlock_irqrestore(&desc->lock, flags);
1809
1810 if (!desc->action)
1811 irq_release_resources(desc);
1812 out_bus_unlock:
1813 chip_bus_sync_unlock(desc);
1814 mutex_unlock(&desc->request_mutex);
1815
1816 out_thread:
1817 if (new->thread) {
1818 struct task_struct *t = new->thread;
1819
1820 new->thread = NULL;
1821 kthread_stop(t);
1822 put_task_struct(t);
1823 }
1824 if (new->secondary && new->secondary->thread) {
1825 struct task_struct *t = new->secondary->thread;
1826
1827 new->secondary->thread = NULL;
1828 kthread_stop(t);
1829 put_task_struct(t);
1830 }
1831 out_mput:
1832 module_put(desc->owner);
1833 return ret;
1834 }
1835
1836 /*
1837 * Internal function to unregister an irqaction - used to free
1838 * regular and special interrupts that are part of the architecture.
1839 */
__free_irq(struct irq_desc * desc,void * dev_id)1840 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1841 {
1842 unsigned irq = desc->irq_data.irq;
1843 struct irqaction *action, **action_ptr;
1844 unsigned long flags;
1845
1846 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1847
1848 mutex_lock(&desc->request_mutex);
1849 chip_bus_lock(desc);
1850 raw_spin_lock_irqsave(&desc->lock, flags);
1851
1852 /*
1853 * There can be multiple actions per IRQ descriptor, find the right
1854 * one based on the dev_id:
1855 */
1856 action_ptr = &desc->action;
1857 for (;;) {
1858 action = *action_ptr;
1859
1860 if (!action) {
1861 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1862 raw_spin_unlock_irqrestore(&desc->lock, flags);
1863 chip_bus_sync_unlock(desc);
1864 mutex_unlock(&desc->request_mutex);
1865 return NULL;
1866 }
1867
1868 if (action->dev_id == dev_id)
1869 break;
1870 action_ptr = &action->next;
1871 }
1872
1873 /* Found it - now remove it from the list of entries: */
1874 *action_ptr = action->next;
1875
1876 irq_pm_remove_action(desc, action);
1877
1878 /* If this was the last handler, shut down the IRQ line: */
1879 if (!desc->action) {
1880 irq_settings_clr_disable_unlazy(desc);
1881 /* Only shutdown. Deactivate after synchronize_hardirq() */
1882 irq_shutdown(desc);
1883 }
1884
1885 #ifdef CONFIG_SMP
1886 /* make sure affinity_hint is cleaned up */
1887 if (WARN_ON_ONCE(desc->affinity_hint))
1888 desc->affinity_hint = NULL;
1889 #endif
1890
1891 raw_spin_unlock_irqrestore(&desc->lock, flags);
1892 /*
1893 * Drop bus_lock here so the changes which were done in the chip
1894 * callbacks above are synced out to the irq chips which hang
1895 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1896 *
1897 * Aside of that the bus_lock can also be taken from the threaded
1898 * handler in irq_finalize_oneshot() which results in a deadlock
1899 * because kthread_stop() would wait forever for the thread to
1900 * complete, which is blocked on the bus lock.
1901 *
1902 * The still held desc->request_mutex() protects against a
1903 * concurrent request_irq() of this irq so the release of resources
1904 * and timing data is properly serialized.
1905 */
1906 chip_bus_sync_unlock(desc);
1907
1908 unregister_handler_proc(irq, action);
1909
1910 /*
1911 * Make sure it's not being used on another CPU and if the chip
1912 * supports it also make sure that there is no (not yet serviced)
1913 * interrupt in flight at the hardware level.
1914 */
1915 __synchronize_hardirq(desc, true);
1916
1917 #ifdef CONFIG_DEBUG_SHIRQ
1918 /*
1919 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1920 * event to happen even now it's being freed, so let's make sure that
1921 * is so by doing an extra call to the handler ....
1922 *
1923 * ( We do this after actually deregistering it, to make sure that a
1924 * 'real' IRQ doesn't run in parallel with our fake. )
1925 */
1926 if (action->flags & IRQF_SHARED) {
1927 local_irq_save(flags);
1928 action->handler(irq, dev_id);
1929 local_irq_restore(flags);
1930 }
1931 #endif
1932
1933 /*
1934 * The action has already been removed above, but the thread writes
1935 * its oneshot mask bit when it completes. Though request_mutex is
1936 * held across this which prevents __setup_irq() from handing out
1937 * the same bit to a newly requested action.
1938 */
1939 if (action->thread) {
1940 kthread_stop(action->thread);
1941 put_task_struct(action->thread);
1942 if (action->secondary && action->secondary->thread) {
1943 kthread_stop(action->secondary->thread);
1944 put_task_struct(action->secondary->thread);
1945 }
1946 }
1947
1948 /* Last action releases resources */
1949 if (!desc->action) {
1950 /*
1951 * Reacquire bus lock as irq_release_resources() might
1952 * require it to deallocate resources over the slow bus.
1953 */
1954 chip_bus_lock(desc);
1955 /*
1956 * There is no interrupt on the fly anymore. Deactivate it
1957 * completely.
1958 */
1959 raw_spin_lock_irqsave(&desc->lock, flags);
1960 irq_domain_deactivate_irq(&desc->irq_data);
1961 raw_spin_unlock_irqrestore(&desc->lock, flags);
1962
1963 irq_release_resources(desc);
1964 chip_bus_sync_unlock(desc);
1965 irq_remove_timings(desc);
1966 }
1967
1968 mutex_unlock(&desc->request_mutex);
1969
1970 irq_chip_pm_put(&desc->irq_data);
1971 module_put(desc->owner);
1972 kfree(action->secondary);
1973 return action;
1974 }
1975
1976 /**
1977 * free_irq - free an interrupt allocated with request_irq
1978 * @irq: Interrupt line to free
1979 * @dev_id: Device identity to free
1980 *
1981 * Remove an interrupt handler. The handler is removed and if the
1982 * interrupt line is no longer in use by any driver it is disabled.
1983 * On a shared IRQ the caller must ensure the interrupt is disabled
1984 * on the card it drives before calling this function. The function
1985 * does not return until any executing interrupts for this IRQ
1986 * have completed.
1987 *
1988 * This function must not be called from interrupt context.
1989 *
1990 * Returns the devname argument passed to request_irq.
1991 */
free_irq(unsigned int irq,void * dev_id)1992 const void *free_irq(unsigned int irq, void *dev_id)
1993 {
1994 struct irq_desc *desc = irq_to_desc(irq);
1995 struct irqaction *action;
1996 const char *devname;
1997
1998 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1999 return NULL;
2000
2001 #ifdef CONFIG_SMP
2002 if (WARN_ON(desc->affinity_notify))
2003 desc->affinity_notify = NULL;
2004 #endif
2005
2006 action = __free_irq(desc, dev_id);
2007
2008 if (!action)
2009 return NULL;
2010
2011 devname = action->name;
2012 kfree(action);
2013 return devname;
2014 }
2015 EXPORT_SYMBOL(free_irq);
2016
2017 /* This function must be called with desc->lock held */
__cleanup_nmi(unsigned int irq,struct irq_desc * desc)2018 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2019 {
2020 const char *devname = NULL;
2021
2022 desc->istate &= ~IRQS_NMI;
2023
2024 if (!WARN_ON(desc->action == NULL)) {
2025 irq_pm_remove_action(desc, desc->action);
2026 devname = desc->action->name;
2027 unregister_handler_proc(irq, desc->action);
2028
2029 kfree(desc->action);
2030 desc->action = NULL;
2031 }
2032
2033 irq_settings_clr_disable_unlazy(desc);
2034 irq_shutdown_and_deactivate(desc);
2035
2036 irq_release_resources(desc);
2037
2038 irq_chip_pm_put(&desc->irq_data);
2039 module_put(desc->owner);
2040
2041 return devname;
2042 }
2043
free_nmi(unsigned int irq,void * dev_id)2044 const void *free_nmi(unsigned int irq, void *dev_id)
2045 {
2046 struct irq_desc *desc = irq_to_desc(irq);
2047 unsigned long flags;
2048 const void *devname;
2049
2050 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2051 return NULL;
2052
2053 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2054 return NULL;
2055
2056 /* NMI still enabled */
2057 if (WARN_ON(desc->depth == 0))
2058 disable_nmi_nosync(irq);
2059
2060 raw_spin_lock_irqsave(&desc->lock, flags);
2061
2062 irq_nmi_teardown(desc);
2063 devname = __cleanup_nmi(irq, desc);
2064
2065 raw_spin_unlock_irqrestore(&desc->lock, flags);
2066
2067 return devname;
2068 }
2069
2070 /**
2071 * request_threaded_irq - allocate an interrupt line
2072 * @irq: Interrupt line to allocate
2073 * @handler: Function to be called when the IRQ occurs.
2074 * Primary handler for threaded interrupts.
2075 * If handler is NULL and thread_fn != NULL
2076 * the default primary handler is installed.
2077 * @thread_fn: Function called from the irq handler thread
2078 * If NULL, no irq thread is created
2079 * @irqflags: Interrupt type flags
2080 * @devname: An ascii name for the claiming device
2081 * @dev_id: A cookie passed back to the handler function
2082 *
2083 * This call allocates interrupt resources and enables the
2084 * interrupt line and IRQ handling. From the point this
2085 * call is made your handler function may be invoked. Since
2086 * your handler function must clear any interrupt the board
2087 * raises, you must take care both to initialise your hardware
2088 * and to set up the interrupt handler in the right order.
2089 *
2090 * If you want to set up a threaded irq handler for your device
2091 * then you need to supply @handler and @thread_fn. @handler is
2092 * still called in hard interrupt context and has to check
2093 * whether the interrupt originates from the device. If yes it
2094 * needs to disable the interrupt on the device and return
2095 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2096 * @thread_fn. This split handler design is necessary to support
2097 * shared interrupts.
2098 *
2099 * Dev_id must be globally unique. Normally the address of the
2100 * device data structure is used as the cookie. Since the handler
2101 * receives this value it makes sense to use it.
2102 *
2103 * If your interrupt is shared you must pass a non NULL dev_id
2104 * as this is required when freeing the interrupt.
2105 *
2106 * Flags:
2107 *
2108 * IRQF_SHARED Interrupt is shared
2109 * IRQF_TRIGGER_* Specify active edge(s) or level
2110 * IRQF_ONESHOT Run thread_fn with interrupt line masked
2111 */
request_threaded_irq(unsigned int irq,irq_handler_t handler,irq_handler_t thread_fn,unsigned long irqflags,const char * devname,void * dev_id)2112 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2113 irq_handler_t thread_fn, unsigned long irqflags,
2114 const char *devname, void *dev_id)
2115 {
2116 struct irqaction *action;
2117 struct irq_desc *desc;
2118 int retval;
2119
2120 if (irq == IRQ_NOTCONNECTED)
2121 return -ENOTCONN;
2122
2123 /*
2124 * Sanity-check: shared interrupts must pass in a real dev-ID,
2125 * otherwise we'll have trouble later trying to figure out
2126 * which interrupt is which (messes up the interrupt freeing
2127 * logic etc).
2128 *
2129 * Also shared interrupts do not go well with disabling auto enable.
2130 * The sharing interrupt might request it while it's still disabled
2131 * and then wait for interrupts forever.
2132 *
2133 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2134 * it cannot be set along with IRQF_NO_SUSPEND.
2135 */
2136 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2137 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2138 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2139 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2140 return -EINVAL;
2141
2142 desc = irq_to_desc(irq);
2143 if (!desc)
2144 return -EINVAL;
2145
2146 if (!irq_settings_can_request(desc) ||
2147 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2148 return -EINVAL;
2149
2150 if (!handler) {
2151 if (!thread_fn)
2152 return -EINVAL;
2153 handler = irq_default_primary_handler;
2154 }
2155
2156 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2157 if (!action)
2158 return -ENOMEM;
2159
2160 action->handler = handler;
2161 action->thread_fn = thread_fn;
2162 action->flags = irqflags;
2163 action->name = devname;
2164 action->dev_id = dev_id;
2165
2166 retval = irq_chip_pm_get(&desc->irq_data);
2167 if (retval < 0) {
2168 kfree(action);
2169 return retval;
2170 }
2171
2172 retval = __setup_irq(irq, desc, action);
2173
2174 if (retval) {
2175 irq_chip_pm_put(&desc->irq_data);
2176 kfree(action->secondary);
2177 kfree(action);
2178 }
2179
2180 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2181 if (!retval && (irqflags & IRQF_SHARED)) {
2182 /*
2183 * It's a shared IRQ -- the driver ought to be prepared for it
2184 * to happen immediately, so let's make sure....
2185 * We disable the irq to make sure that a 'real' IRQ doesn't
2186 * run in parallel with our fake.
2187 */
2188 unsigned long flags;
2189
2190 disable_irq(irq);
2191 local_irq_save(flags);
2192
2193 handler(irq, dev_id);
2194
2195 local_irq_restore(flags);
2196 enable_irq(irq);
2197 }
2198 #endif
2199 return retval;
2200 }
2201 EXPORT_SYMBOL(request_threaded_irq);
2202
2203 /**
2204 * request_any_context_irq - allocate an interrupt line
2205 * @irq: Interrupt line to allocate
2206 * @handler: Function to be called when the IRQ occurs.
2207 * Threaded handler for threaded interrupts.
2208 * @flags: Interrupt type flags
2209 * @name: An ascii name for the claiming device
2210 * @dev_id: A cookie passed back to the handler function
2211 *
2212 * This call allocates interrupt resources and enables the
2213 * interrupt line and IRQ handling. It selects either a
2214 * hardirq or threaded handling method depending on the
2215 * context.
2216 *
2217 * On failure, it returns a negative value. On success,
2218 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2219 */
request_any_context_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * name,void * dev_id)2220 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2221 unsigned long flags, const char *name, void *dev_id)
2222 {
2223 struct irq_desc *desc;
2224 int ret;
2225
2226 if (irq == IRQ_NOTCONNECTED)
2227 return -ENOTCONN;
2228
2229 desc = irq_to_desc(irq);
2230 if (!desc)
2231 return -EINVAL;
2232
2233 if (irq_settings_is_nested_thread(desc)) {
2234 ret = request_threaded_irq(irq, NULL, handler,
2235 flags, name, dev_id);
2236 return !ret ? IRQC_IS_NESTED : ret;
2237 }
2238
2239 ret = request_irq(irq, handler, flags, name, dev_id);
2240 return !ret ? IRQC_IS_HARDIRQ : ret;
2241 }
2242 EXPORT_SYMBOL_GPL(request_any_context_irq);
2243
2244 /**
2245 * request_nmi - allocate an interrupt line for NMI delivery
2246 * @irq: Interrupt line to allocate
2247 * @handler: Function to be called when the IRQ occurs.
2248 * Threaded handler for threaded interrupts.
2249 * @irqflags: Interrupt type flags
2250 * @name: An ascii name for the claiming device
2251 * @dev_id: A cookie passed back to the handler function
2252 *
2253 * This call allocates interrupt resources and enables the
2254 * interrupt line and IRQ handling. It sets up the IRQ line
2255 * to be handled as an NMI.
2256 *
2257 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2258 * cannot be threaded.
2259 *
2260 * Interrupt lines requested for NMI delivering must produce per cpu
2261 * interrupts and have auto enabling setting disabled.
2262 *
2263 * Dev_id must be globally unique. Normally the address of the
2264 * device data structure is used as the cookie. Since the handler
2265 * receives this value it makes sense to use it.
2266 *
2267 * If the interrupt line cannot be used to deliver NMIs, function
2268 * will fail and return a negative value.
2269 */
request_nmi(unsigned int irq,irq_handler_t handler,unsigned long irqflags,const char * name,void * dev_id)2270 int request_nmi(unsigned int irq, irq_handler_t handler,
2271 unsigned long irqflags, const char *name, void *dev_id)
2272 {
2273 struct irqaction *action;
2274 struct irq_desc *desc;
2275 unsigned long flags;
2276 int retval;
2277
2278 if (irq == IRQ_NOTCONNECTED)
2279 return -ENOTCONN;
2280
2281 /* NMI cannot be shared, used for Polling */
2282 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2283 return -EINVAL;
2284
2285 if (!(irqflags & IRQF_PERCPU))
2286 return -EINVAL;
2287
2288 if (!handler)
2289 return -EINVAL;
2290
2291 desc = irq_to_desc(irq);
2292
2293 if (!desc || (irq_settings_can_autoenable(desc) &&
2294 !(irqflags & IRQF_NO_AUTOEN)) ||
2295 !irq_settings_can_request(desc) ||
2296 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2297 !irq_supports_nmi(desc))
2298 return -EINVAL;
2299
2300 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2301 if (!action)
2302 return -ENOMEM;
2303
2304 action->handler = handler;
2305 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2306 action->name = name;
2307 action->dev_id = dev_id;
2308
2309 retval = irq_chip_pm_get(&desc->irq_data);
2310 if (retval < 0)
2311 goto err_out;
2312
2313 retval = __setup_irq(irq, desc, action);
2314 if (retval)
2315 goto err_irq_setup;
2316
2317 raw_spin_lock_irqsave(&desc->lock, flags);
2318
2319 /* Setup NMI state */
2320 desc->istate |= IRQS_NMI;
2321 retval = irq_nmi_setup(desc);
2322 if (retval) {
2323 __cleanup_nmi(irq, desc);
2324 raw_spin_unlock_irqrestore(&desc->lock, flags);
2325 return -EINVAL;
2326 }
2327
2328 raw_spin_unlock_irqrestore(&desc->lock, flags);
2329
2330 return 0;
2331
2332 err_irq_setup:
2333 irq_chip_pm_put(&desc->irq_data);
2334 err_out:
2335 kfree(action);
2336
2337 return retval;
2338 }
2339
enable_percpu_irq(unsigned int irq,unsigned int type)2340 void enable_percpu_irq(unsigned int irq, unsigned int type)
2341 {
2342 unsigned int cpu = smp_processor_id();
2343 unsigned long flags;
2344 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2345
2346 if (!desc)
2347 return;
2348
2349 /*
2350 * If the trigger type is not specified by the caller, then
2351 * use the default for this interrupt.
2352 */
2353 type &= IRQ_TYPE_SENSE_MASK;
2354 if (type == IRQ_TYPE_NONE)
2355 type = irqd_get_trigger_type(&desc->irq_data);
2356
2357 if (type != IRQ_TYPE_NONE) {
2358 int ret;
2359
2360 ret = __irq_set_trigger(desc, type);
2361
2362 if (ret) {
2363 WARN(1, "failed to set type for IRQ%d\n", irq);
2364 goto out;
2365 }
2366 }
2367
2368 irq_percpu_enable(desc, cpu);
2369 out:
2370 irq_put_desc_unlock(desc, flags);
2371 }
2372 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2373
enable_percpu_nmi(unsigned int irq,unsigned int type)2374 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2375 {
2376 enable_percpu_irq(irq, type);
2377 }
2378
2379 /**
2380 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2381 * @irq: Linux irq number to check for
2382 *
2383 * Must be called from a non migratable context. Returns the enable
2384 * state of a per cpu interrupt on the current cpu.
2385 */
irq_percpu_is_enabled(unsigned int irq)2386 bool irq_percpu_is_enabled(unsigned int irq)
2387 {
2388 unsigned int cpu = smp_processor_id();
2389 struct irq_desc *desc;
2390 unsigned long flags;
2391 bool is_enabled;
2392
2393 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2394 if (!desc)
2395 return false;
2396
2397 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2398 irq_put_desc_unlock(desc, flags);
2399
2400 return is_enabled;
2401 }
2402 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2403
disable_percpu_irq(unsigned int irq)2404 void disable_percpu_irq(unsigned int irq)
2405 {
2406 unsigned int cpu = smp_processor_id();
2407 unsigned long flags;
2408 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2409
2410 if (!desc)
2411 return;
2412
2413 irq_percpu_disable(desc, cpu);
2414 irq_put_desc_unlock(desc, flags);
2415 }
2416 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2417
disable_percpu_nmi(unsigned int irq)2418 void disable_percpu_nmi(unsigned int irq)
2419 {
2420 disable_percpu_irq(irq);
2421 }
2422
2423 /*
2424 * Internal function to unregister a percpu irqaction.
2425 */
__free_percpu_irq(unsigned int irq,void __percpu * dev_id)2426 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2427 {
2428 struct irq_desc *desc = irq_to_desc(irq);
2429 struct irqaction *action;
2430 unsigned long flags;
2431
2432 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2433
2434 if (!desc)
2435 return NULL;
2436
2437 raw_spin_lock_irqsave(&desc->lock, flags);
2438
2439 action = desc->action;
2440 if (!action || action->percpu_dev_id != dev_id) {
2441 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2442 goto bad;
2443 }
2444
2445 if (!cpumask_empty(desc->percpu_enabled)) {
2446 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2447 irq, cpumask_first(desc->percpu_enabled));
2448 goto bad;
2449 }
2450
2451 /* Found it - now remove it from the list of entries: */
2452 desc->action = NULL;
2453
2454 desc->istate &= ~IRQS_NMI;
2455
2456 raw_spin_unlock_irqrestore(&desc->lock, flags);
2457
2458 unregister_handler_proc(irq, action);
2459
2460 irq_chip_pm_put(&desc->irq_data);
2461 module_put(desc->owner);
2462 return action;
2463
2464 bad:
2465 raw_spin_unlock_irqrestore(&desc->lock, flags);
2466 return NULL;
2467 }
2468
2469 /**
2470 * remove_percpu_irq - free a per-cpu interrupt
2471 * @irq: Interrupt line to free
2472 * @act: irqaction for the interrupt
2473 *
2474 * Used to remove interrupts statically setup by the early boot process.
2475 */
remove_percpu_irq(unsigned int irq,struct irqaction * act)2476 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2477 {
2478 struct irq_desc *desc = irq_to_desc(irq);
2479
2480 if (desc && irq_settings_is_per_cpu_devid(desc))
2481 __free_percpu_irq(irq, act->percpu_dev_id);
2482 }
2483
2484 /**
2485 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2486 * @irq: Interrupt line to free
2487 * @dev_id: Device identity to free
2488 *
2489 * Remove a percpu interrupt handler. The handler is removed, but
2490 * the interrupt line is not disabled. This must be done on each
2491 * CPU before calling this function. The function does not return
2492 * until any executing interrupts for this IRQ have completed.
2493 *
2494 * This function must not be called from interrupt context.
2495 */
free_percpu_irq(unsigned int irq,void __percpu * dev_id)2496 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2497 {
2498 struct irq_desc *desc = irq_to_desc(irq);
2499
2500 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2501 return;
2502
2503 chip_bus_lock(desc);
2504 kfree(__free_percpu_irq(irq, dev_id));
2505 chip_bus_sync_unlock(desc);
2506 }
2507 EXPORT_SYMBOL_GPL(free_percpu_irq);
2508
free_percpu_nmi(unsigned int irq,void __percpu * dev_id)2509 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2510 {
2511 struct irq_desc *desc = irq_to_desc(irq);
2512
2513 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2514 return;
2515
2516 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2517 return;
2518
2519 kfree(__free_percpu_irq(irq, dev_id));
2520 }
2521
2522 /**
2523 * setup_percpu_irq - setup a per-cpu interrupt
2524 * @irq: Interrupt line to setup
2525 * @act: irqaction for the interrupt
2526 *
2527 * Used to statically setup per-cpu interrupts in the early boot process.
2528 */
setup_percpu_irq(unsigned int irq,struct irqaction * act)2529 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2530 {
2531 struct irq_desc *desc = irq_to_desc(irq);
2532 int retval;
2533
2534 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2535 return -EINVAL;
2536
2537 retval = irq_chip_pm_get(&desc->irq_data);
2538 if (retval < 0)
2539 return retval;
2540
2541 retval = __setup_irq(irq, desc, act);
2542
2543 if (retval)
2544 irq_chip_pm_put(&desc->irq_data);
2545
2546 return retval;
2547 }
2548
2549 /**
2550 * __request_percpu_irq - allocate a percpu interrupt line
2551 * @irq: Interrupt line to allocate
2552 * @handler: Function to be called when the IRQ occurs.
2553 * @flags: Interrupt type flags (IRQF_TIMER only)
2554 * @devname: An ascii name for the claiming device
2555 * @dev_id: A percpu cookie passed back to the handler function
2556 *
2557 * This call allocates interrupt resources and enables the
2558 * interrupt on the local CPU. If the interrupt is supposed to be
2559 * enabled on other CPUs, it has to be done on each CPU using
2560 * enable_percpu_irq().
2561 *
2562 * Dev_id must be globally unique. It is a per-cpu variable, and
2563 * the handler gets called with the interrupted CPU's instance of
2564 * that variable.
2565 */
__request_percpu_irq(unsigned int irq,irq_handler_t handler,unsigned long flags,const char * devname,void __percpu * dev_id)2566 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2567 unsigned long flags, const char *devname,
2568 void __percpu *dev_id)
2569 {
2570 struct irqaction *action;
2571 struct irq_desc *desc;
2572 int retval;
2573
2574 if (!dev_id)
2575 return -EINVAL;
2576
2577 desc = irq_to_desc(irq);
2578 if (!desc || !irq_settings_can_request(desc) ||
2579 !irq_settings_is_per_cpu_devid(desc))
2580 return -EINVAL;
2581
2582 if (flags && flags != IRQF_TIMER)
2583 return -EINVAL;
2584
2585 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2586 if (!action)
2587 return -ENOMEM;
2588
2589 action->handler = handler;
2590 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2591 action->name = devname;
2592 action->percpu_dev_id = dev_id;
2593
2594 retval = irq_chip_pm_get(&desc->irq_data);
2595 if (retval < 0) {
2596 kfree(action);
2597 return retval;
2598 }
2599
2600 retval = __setup_irq(irq, desc, action);
2601
2602 if (retval) {
2603 irq_chip_pm_put(&desc->irq_data);
2604 kfree(action);
2605 }
2606
2607 return retval;
2608 }
2609 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2610
2611 /**
2612 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2613 * @irq: Interrupt line to allocate
2614 * @handler: Function to be called when the IRQ occurs.
2615 * @name: An ascii name for the claiming device
2616 * @dev_id: A percpu cookie passed back to the handler function
2617 *
2618 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2619 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2620 * being enabled on the same CPU by using enable_percpu_nmi().
2621 *
2622 * Dev_id must be globally unique. It is a per-cpu variable, and
2623 * the handler gets called with the interrupted CPU's instance of
2624 * that variable.
2625 *
2626 * Interrupt lines requested for NMI delivering should have auto enabling
2627 * setting disabled.
2628 *
2629 * If the interrupt line cannot be used to deliver NMIs, function
2630 * will fail returning a negative value.
2631 */
request_percpu_nmi(unsigned int irq,irq_handler_t handler,const char * name,void __percpu * dev_id)2632 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2633 const char *name, void __percpu *dev_id)
2634 {
2635 struct irqaction *action;
2636 struct irq_desc *desc;
2637 unsigned long flags;
2638 int retval;
2639
2640 if (!handler)
2641 return -EINVAL;
2642
2643 desc = irq_to_desc(irq);
2644
2645 if (!desc || !irq_settings_can_request(desc) ||
2646 !irq_settings_is_per_cpu_devid(desc) ||
2647 irq_settings_can_autoenable(desc) ||
2648 !irq_supports_nmi(desc))
2649 return -EINVAL;
2650
2651 /* The line cannot already be NMI */
2652 if (desc->istate & IRQS_NMI)
2653 return -EINVAL;
2654
2655 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2656 if (!action)
2657 return -ENOMEM;
2658
2659 action->handler = handler;
2660 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2661 | IRQF_NOBALANCING;
2662 action->name = name;
2663 action->percpu_dev_id = dev_id;
2664
2665 retval = irq_chip_pm_get(&desc->irq_data);
2666 if (retval < 0)
2667 goto err_out;
2668
2669 retval = __setup_irq(irq, desc, action);
2670 if (retval)
2671 goto err_irq_setup;
2672
2673 raw_spin_lock_irqsave(&desc->lock, flags);
2674 desc->istate |= IRQS_NMI;
2675 raw_spin_unlock_irqrestore(&desc->lock, flags);
2676
2677 return 0;
2678
2679 err_irq_setup:
2680 irq_chip_pm_put(&desc->irq_data);
2681 err_out:
2682 kfree(action);
2683
2684 return retval;
2685 }
2686
2687 /**
2688 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2689 * @irq: Interrupt line to prepare for NMI delivery
2690 *
2691 * This call prepares an interrupt line to deliver NMI on the current CPU,
2692 * before that interrupt line gets enabled with enable_percpu_nmi().
2693 *
2694 * As a CPU local operation, this should be called from non-preemptible
2695 * context.
2696 *
2697 * If the interrupt line cannot be used to deliver NMIs, function
2698 * will fail returning a negative value.
2699 */
prepare_percpu_nmi(unsigned int irq)2700 int prepare_percpu_nmi(unsigned int irq)
2701 {
2702 unsigned long flags;
2703 struct irq_desc *desc;
2704 int ret = 0;
2705
2706 WARN_ON(preemptible());
2707
2708 desc = irq_get_desc_lock(irq, &flags,
2709 IRQ_GET_DESC_CHECK_PERCPU);
2710 if (!desc)
2711 return -EINVAL;
2712
2713 if (WARN(!(desc->istate & IRQS_NMI),
2714 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2715 irq)) {
2716 ret = -EINVAL;
2717 goto out;
2718 }
2719
2720 ret = irq_nmi_setup(desc);
2721 if (ret) {
2722 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2723 goto out;
2724 }
2725
2726 out:
2727 irq_put_desc_unlock(desc, flags);
2728 return ret;
2729 }
2730
2731 /**
2732 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2733 * @irq: Interrupt line from which CPU local NMI configuration should be
2734 * removed
2735 *
2736 * This call undoes the setup done by prepare_percpu_nmi().
2737 *
2738 * IRQ line should not be enabled for the current CPU.
2739 *
2740 * As a CPU local operation, this should be called from non-preemptible
2741 * context.
2742 */
teardown_percpu_nmi(unsigned int irq)2743 void teardown_percpu_nmi(unsigned int irq)
2744 {
2745 unsigned long flags;
2746 struct irq_desc *desc;
2747
2748 WARN_ON(preemptible());
2749
2750 desc = irq_get_desc_lock(irq, &flags,
2751 IRQ_GET_DESC_CHECK_PERCPU);
2752 if (!desc)
2753 return;
2754
2755 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2756 goto out;
2757
2758 irq_nmi_teardown(desc);
2759 out:
2760 irq_put_desc_unlock(desc, flags);
2761 }
2762
__irq_get_irqchip_state(struct irq_data * data,enum irqchip_irq_state which,bool * state)2763 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2764 bool *state)
2765 {
2766 struct irq_chip *chip;
2767 int err = -EINVAL;
2768
2769 do {
2770 chip = irq_data_get_irq_chip(data);
2771 if (WARN_ON_ONCE(!chip))
2772 return -ENODEV;
2773 if (chip->irq_get_irqchip_state)
2774 break;
2775 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2776 data = data->parent_data;
2777 #else
2778 data = NULL;
2779 #endif
2780 } while (data);
2781
2782 if (data)
2783 err = chip->irq_get_irqchip_state(data, which, state);
2784 return err;
2785 }
2786
2787 /**
2788 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2789 * @irq: Interrupt line that is forwarded to a VM
2790 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2791 * @state: a pointer to a boolean where the state is to be stored
2792 *
2793 * This call snapshots the internal irqchip state of an
2794 * interrupt, returning into @state the bit corresponding to
2795 * stage @which
2796 *
2797 * This function should be called with preemption disabled if the
2798 * interrupt controller has per-cpu registers.
2799 */
irq_get_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool * state)2800 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2801 bool *state)
2802 {
2803 struct irq_desc *desc;
2804 struct irq_data *data;
2805 unsigned long flags;
2806 int err = -EINVAL;
2807
2808 desc = irq_get_desc_buslock(irq, &flags, 0);
2809 if (!desc)
2810 return err;
2811
2812 data = irq_desc_get_irq_data(desc);
2813
2814 err = __irq_get_irqchip_state(data, which, state);
2815
2816 irq_put_desc_busunlock(desc, flags);
2817 return err;
2818 }
2819 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2820
2821 /**
2822 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2823 * @irq: Interrupt line that is forwarded to a VM
2824 * @which: State to be restored (one of IRQCHIP_STATE_*)
2825 * @val: Value corresponding to @which
2826 *
2827 * This call sets the internal irqchip state of an interrupt,
2828 * depending on the value of @which.
2829 *
2830 * This function should be called with migration disabled if the
2831 * interrupt controller has per-cpu registers.
2832 */
irq_set_irqchip_state(unsigned int irq,enum irqchip_irq_state which,bool val)2833 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2834 bool val)
2835 {
2836 struct irq_desc *desc;
2837 struct irq_data *data;
2838 struct irq_chip *chip;
2839 unsigned long flags;
2840 int err = -EINVAL;
2841
2842 desc = irq_get_desc_buslock(irq, &flags, 0);
2843 if (!desc)
2844 return err;
2845
2846 data = irq_desc_get_irq_data(desc);
2847
2848 do {
2849 chip = irq_data_get_irq_chip(data);
2850 if (WARN_ON_ONCE(!chip)) {
2851 err = -ENODEV;
2852 goto out_unlock;
2853 }
2854 if (chip->irq_set_irqchip_state)
2855 break;
2856 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2857 data = data->parent_data;
2858 #else
2859 data = NULL;
2860 #endif
2861 } while (data);
2862
2863 if (data)
2864 err = chip->irq_set_irqchip_state(data, which, val);
2865
2866 out_unlock:
2867 irq_put_desc_busunlock(desc, flags);
2868 return err;
2869 }
2870 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2871
2872 /**
2873 * irq_has_action - Check whether an interrupt is requested
2874 * @irq: The linux irq number
2875 *
2876 * Returns: A snapshot of the current state
2877 */
irq_has_action(unsigned int irq)2878 bool irq_has_action(unsigned int irq)
2879 {
2880 bool res;
2881
2882 rcu_read_lock();
2883 res = irq_desc_has_action(irq_to_desc(irq));
2884 rcu_read_unlock();
2885 return res;
2886 }
2887 EXPORT_SYMBOL_GPL(irq_has_action);
2888
2889 /**
2890 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2891 * @irq: The linux irq number
2892 * @bitmask: The bitmask to evaluate
2893 *
2894 * Returns: True if one of the bits in @bitmask is set
2895 */
irq_check_status_bit(unsigned int irq,unsigned int bitmask)2896 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2897 {
2898 struct irq_desc *desc;
2899 bool res = false;
2900
2901 rcu_read_lock();
2902 desc = irq_to_desc(irq);
2903 if (desc)
2904 res = !!(desc->status_use_accessors & bitmask);
2905 rcu_read_unlock();
2906 return res;
2907 }
2908 EXPORT_SYMBOL_GPL(irq_check_status_bit);
2909