1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <asm/page.h>
16
17 /**
18 * typedef dma_cookie_t - an opaque DMA cookie
19 *
20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21 */
22 typedef s32 dma_cookie_t;
23 #define DMA_MIN_COOKIE 1
24
dma_submit_error(dma_cookie_t cookie)25 static inline int dma_submit_error(dma_cookie_t cookie)
26 {
27 return cookie < 0 ? cookie : 0;
28 }
29
30 /**
31 * enum dma_status - DMA transaction status
32 * @DMA_COMPLETE: transaction completed
33 * @DMA_IN_PROGRESS: transaction not yet processed
34 * @DMA_PAUSED: transaction is paused
35 * @DMA_ERROR: transaction failed
36 */
37 enum dma_status {
38 DMA_COMPLETE,
39 DMA_IN_PROGRESS,
40 DMA_PAUSED,
41 DMA_ERROR,
42 DMA_OUT_OF_ORDER,
43 };
44
45 /**
46 * enum dma_transaction_type - DMA transaction types/indexes
47 *
48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
49 * automatically set as dma devices are registered.
50 */
51 enum dma_transaction_type {
52 DMA_MEMCPY,
53 DMA_XOR,
54 DMA_PQ,
55 DMA_XOR_VAL,
56 DMA_PQ_VAL,
57 DMA_MEMSET,
58 DMA_MEMSET_SG,
59 DMA_INTERRUPT,
60 DMA_PRIVATE,
61 DMA_ASYNC_TX,
62 DMA_SLAVE,
63 DMA_CYCLIC,
64 DMA_INTERLEAVE,
65 DMA_COMPLETION_NO_ORDER,
66 DMA_REPEAT,
67 DMA_LOAD_EOT,
68 /* last transaction type for creation of the capabilities mask */
69 DMA_TX_TYPE_END,
70 };
71
72 /**
73 * enum dma_transfer_direction - dma transfer mode and direction indicator
74 * @DMA_MEM_TO_MEM: Async/Memcpy mode
75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
78 */
79 enum dma_transfer_direction {
80 DMA_MEM_TO_MEM,
81 DMA_MEM_TO_DEV,
82 DMA_DEV_TO_MEM,
83 DMA_DEV_TO_DEV,
84 DMA_TRANS_NONE,
85 };
86
87 /**
88 * Interleaved Transfer Request
89 * ----------------------------
90 * A chunk is collection of contiguous bytes to be transferred.
91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
92 * ICGs may or may not change between chunks.
93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
94 * that when repeated an integral number of times, specifies the transfer.
95 * A transfer template is specification of a Frame, the number of times
96 * it is to be repeated and other per-transfer attributes.
97 *
98 * Practically, a client driver would have ready a template for each
99 * type of transfer it is going to need during its lifetime and
100 * set only 'src_start' and 'dst_start' before submitting the requests.
101 *
102 *
103 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
104 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
105 *
106 * == Chunk size
107 * ... ICG
108 */
109
110 /**
111 * struct data_chunk - Element of scatter-gather list that makes a frame.
112 * @size: Number of bytes to read from source.
113 * size_dst := fn(op, size_src), so doesn't mean much for destination.
114 * @icg: Number of bytes to jump after last src/dst address of this
115 * chunk and before first src/dst address for next chunk.
116 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
117 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
118 * @dst_icg: Number of bytes to jump after last dst address of this
119 * chunk and before the first dst address for next chunk.
120 * Ignored if dst_inc is true and dst_sgl is false.
121 * @src_icg: Number of bytes to jump after last src address of this
122 * chunk and before the first src address for next chunk.
123 * Ignored if src_inc is true and src_sgl is false.
124 */
125 struct data_chunk {
126 size_t size;
127 size_t icg;
128 size_t dst_icg;
129 size_t src_icg;
130 };
131
132 /**
133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134 * and attributes.
135 * @src_start: Bus address of source for the first chunk.
136 * @dst_start: Bus address of destination for the first chunk.
137 * @dir: Specifies the type of Source and Destination.
138 * @src_inc: If the source address increments after reading from it.
139 * @dst_inc: If the destination address increments after writing to it.
140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141 * Otherwise, source is read contiguously (icg ignored).
142 * Ignored if src_inc is false.
143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144 * Otherwise, destination is filled contiguously (icg ignored).
145 * Ignored if dst_inc is false.
146 * @numf: Number of frames in this template.
147 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148 * @sgl: Array of {chunk,icg} pairs that make up a frame.
149 */
150 struct dma_interleaved_template {
151 dma_addr_t src_start;
152 dma_addr_t dst_start;
153 enum dma_transfer_direction dir;
154 bool src_inc;
155 bool dst_inc;
156 bool src_sgl;
157 bool dst_sgl;
158 size_t numf;
159 size_t frame_size;
160 struct data_chunk sgl[];
161 };
162
163 /**
164 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
165 * control completion, and communicate status.
166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
167 * this transaction
168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
169 * acknowledges receipt, i.e. has a chance to establish any dependency
170 * chains
171 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
172 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
173 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
174 * sources that were the result of a previous operation, in the case of a PQ
175 * operation it continues the calculation with new sources
176 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
177 * on the result of this operation
178 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
179 * cleared or freed
180 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
181 * data and the descriptor should be in different format from normal
182 * data descriptors.
183 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
184 * repeated when it ends until a transaction is issued on the same channel
185 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
186 * interleaved transactions and is ignored for all other transaction types.
187 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
188 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
189 * repeated transaction ends. Not setting this flag when the previously queued
190 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction
191 * to never be processed and stay in the issued queue forever. The flag is
192 * ignored if the previous transaction is not a repeated transaction.
193 */
194 enum dma_ctrl_flags {
195 DMA_PREP_INTERRUPT = (1 << 0),
196 DMA_CTRL_ACK = (1 << 1),
197 DMA_PREP_PQ_DISABLE_P = (1 << 2),
198 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
199 DMA_PREP_CONTINUE = (1 << 4),
200 DMA_PREP_FENCE = (1 << 5),
201 DMA_CTRL_REUSE = (1 << 6),
202 DMA_PREP_CMD = (1 << 7),
203 DMA_PREP_REPEAT = (1 << 8),
204 DMA_PREP_LOAD_EOT = (1 << 9),
205 };
206
207 /**
208 * enum sum_check_bits - bit position of pq_check_flags
209 */
210 enum sum_check_bits {
211 SUM_CHECK_P = 0,
212 SUM_CHECK_Q = 1,
213 };
214
215 /**
216 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
217 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
218 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
219 */
220 enum sum_check_flags {
221 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
222 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
223 };
224
225
226 /**
227 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
228 * See linux/cpumask.h
229 */
230 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
231
232 /**
233 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
234 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
235 * client driver and it is attached (via the dmaengine_desc_attach_metadata()
236 * helper) to the descriptor.
237 *
238 * Client drivers interested to use this mode can follow:
239 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
240 * 1. prepare the descriptor (dmaengine_prep_*)
241 * construct the metadata in the client's buffer
242 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
243 * descriptor
244 * 3. submit the transfer
245 * - DMA_DEV_TO_MEM:
246 * 1. prepare the descriptor (dmaengine_prep_*)
247 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
248 * descriptor
249 * 3. submit the transfer
250 * 4. when the transfer is completed, the metadata should be available in the
251 * attached buffer
252 *
253 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
254 * driver. The client driver can ask for the pointer, maximum size and the
255 * currently used size of the metadata and can directly update or read it.
256 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
257 * provided as helper functions.
258 *
259 * Note: the metadata area for the descriptor is no longer valid after the
260 * transfer has been completed (valid up to the point when the completion
261 * callback returns if used).
262 *
263 * Client drivers interested to use this mode can follow:
264 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
265 * 1. prepare the descriptor (dmaengine_prep_*)
266 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
267 * metadata area
268 * 3. update the metadata at the pointer
269 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount
270 * of data the client has placed into the metadata buffer
271 * 5. submit the transfer
272 * - DMA_DEV_TO_MEM:
273 * 1. prepare the descriptor (dmaengine_prep_*)
274 * 2. submit the transfer
275 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
276 * pointer to the engine's metadata area
277 * 4. Read out the metadata from the pointer
278 *
279 * Note: the two mode is not compatible and clients must use one mode for a
280 * descriptor.
281 */
282 enum dma_desc_metadata_mode {
283 DESC_METADATA_NONE = 0,
284 DESC_METADATA_CLIENT = BIT(0),
285 DESC_METADATA_ENGINE = BIT(1),
286 };
287
288 /**
289 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
290 * @memcpy_count: transaction counter
291 * @bytes_transferred: byte counter
292 */
293 struct dma_chan_percpu {
294 /* stats */
295 unsigned long memcpy_count;
296 unsigned long bytes_transferred;
297 };
298
299 /**
300 * struct dma_router - DMA router structure
301 * @dev: pointer to the DMA router device
302 * @route_free: function to be called when the route can be disconnected
303 */
304 struct dma_router {
305 struct device *dev;
306 void (*route_free)(struct device *dev, void *route_data);
307 };
308
309 /**
310 * struct dma_chan - devices supply DMA channels, clients use them
311 * @device: ptr to the dma device who supplies this channel, always !%NULL
312 * @slave: ptr to the device using this channel
313 * @cookie: last cookie value returned to client
314 * @completed_cookie: last completed cookie for this channel
315 * @chan_id: channel ID for sysfs
316 * @dev: class device for sysfs
317 * @name: backlink name for sysfs
318 * @dbg_client_name: slave name for debugfs in format:
319 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
320 * @device_node: used to add this to the device chan list
321 * @local: per-cpu pointer to a struct dma_chan_percpu
322 * @client_count: how many clients are using this channel
323 * @table_count: number of appearances in the mem-to-mem allocation table
324 * @router: pointer to the DMA router structure
325 * @route_data: channel specific data for the router
326 * @private: private data for certain client-channel associations
327 */
328 struct dma_chan {
329 struct dma_device *device;
330 struct device *slave;
331 dma_cookie_t cookie;
332 dma_cookie_t completed_cookie;
333
334 /* sysfs */
335 int chan_id;
336 struct dma_chan_dev *dev;
337 const char *name;
338 #ifdef CONFIG_DEBUG_FS
339 char *dbg_client_name;
340 #endif
341
342 struct list_head device_node;
343 struct dma_chan_percpu __percpu *local;
344 int client_count;
345 int table_count;
346
347 /* DMA router */
348 struct dma_router *router;
349 void *route_data;
350
351 void *private;
352 };
353
354 /**
355 * struct dma_chan_dev - relate sysfs device node to backing channel device
356 * @chan: driver channel device
357 * @device: sysfs device
358 * @dev_id: parent dma_device dev_id
359 * @chan_dma_dev: The channel is using custom/different dma-mapping
360 * compared to the parent dma_device
361 */
362 struct dma_chan_dev {
363 struct dma_chan *chan;
364 struct device device;
365 int dev_id;
366 bool chan_dma_dev;
367 };
368
369 /**
370 * enum dma_slave_buswidth - defines bus width of the DMA slave
371 * device, source or target buses
372 */
373 enum dma_slave_buswidth {
374 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
375 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
376 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
377 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
378 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
379 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
380 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
381 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
382 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
383 DMA_SLAVE_BUSWIDTH_128_BYTES = 128,
384 };
385
386 /**
387 * struct dma_slave_config - dma slave channel runtime config
388 * @direction: whether the data shall go in or out on this slave
389 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
390 * legal values. DEPRECATED, drivers should use the direction argument
391 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
392 * the dir field in the dma_interleaved_template structure.
393 * @src_addr: this is the physical address where DMA slave data
394 * should be read (RX), if the source is memory this argument is
395 * ignored.
396 * @dst_addr: this is the physical address where DMA slave data
397 * should be written (TX), if the source is memory this argument
398 * is ignored.
399 * @src_addr_width: this is the width in bytes of the source (RX)
400 * register where DMA data shall be read. If the source
401 * is memory this may be ignored depending on architecture.
402 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128.
403 * @dst_addr_width: same as src_addr_width but for destination
404 * target (TX) mutatis mutandis.
405 * @src_maxburst: the maximum number of words (note: words, as in
406 * units of the src_addr_width member, not bytes) that can be sent
407 * in one burst to the device. Typically something like half the
408 * FIFO depth on I/O peripherals so you don't overflow it. This
409 * may or may not be applicable on memory sources.
410 * @dst_maxburst: same as src_maxburst but for destination target
411 * mutatis mutandis.
412 * @src_port_window_size: The length of the register area in words the data need
413 * to be accessed on the device side. It is only used for devices which is using
414 * an area instead of a single register to receive the data. Typically the DMA
415 * loops in this area in order to transfer the data.
416 * @dst_port_window_size: same as src_port_window_size but for the destination
417 * port.
418 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
419 * with 'true' if peripheral should be flow controller. Direction will be
420 * selected at Runtime.
421 * @slave_id: Slave requester id. Only valid for slave channels. The dma
422 * slave peripheral will have unique id as dma requester which need to be
423 * pass as slave config.
424 * @peripheral_config: peripheral configuration for programming peripheral
425 * for dmaengine transfer
426 * @peripheral_size: peripheral configuration buffer size
427 *
428 * This struct is passed in as configuration data to a DMA engine
429 * in order to set up a certain channel for DMA transport at runtime.
430 * The DMA device/engine has to provide support for an additional
431 * callback in the dma_device structure, device_config and this struct
432 * will then be passed in as an argument to the function.
433 *
434 * The rationale for adding configuration information to this struct is as
435 * follows: if it is likely that more than one DMA slave controllers in
436 * the world will support the configuration option, then make it generic.
437 * If not: if it is fixed so that it be sent in static from the platform
438 * data, then prefer to do that.
439 */
440 struct dma_slave_config {
441 enum dma_transfer_direction direction;
442 phys_addr_t src_addr;
443 phys_addr_t dst_addr;
444 enum dma_slave_buswidth src_addr_width;
445 enum dma_slave_buswidth dst_addr_width;
446 u32 src_maxburst;
447 u32 dst_maxburst;
448 u32 src_port_window_size;
449 u32 dst_port_window_size;
450 bool device_fc;
451 unsigned int slave_id;
452 void *peripheral_config;
453 size_t peripheral_size;
454 };
455
456 /**
457 * enum dma_residue_granularity - Granularity of the reported transfer residue
458 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
459 * DMA channel is only able to tell whether a descriptor has been completed or
460 * not, which means residue reporting is not supported by this channel. The
461 * residue field of the dma_tx_state field will always be 0.
462 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
463 * completed segment of the transfer (For cyclic transfers this is after each
464 * period). This is typically implemented by having the hardware generate an
465 * interrupt after each transferred segment and then the drivers updates the
466 * outstanding residue by the size of the segment. Another possibility is if
467 * the hardware supports scatter-gather and the segment descriptor has a field
468 * which gets set after the segment has been completed. The driver then counts
469 * the number of segments without the flag set to compute the residue.
470 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
471 * burst. This is typically only supported if the hardware has a progress
472 * register of some sort (E.g. a register with the current read/write address
473 * or a register with the amount of bursts/beats/bytes that have been
474 * transferred or still need to be transferred).
475 */
476 enum dma_residue_granularity {
477 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
478 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
479 DMA_RESIDUE_GRANULARITY_BURST = 2,
480 };
481
482 /**
483 * struct dma_slave_caps - expose capabilities of a slave channel only
484 * @src_addr_widths: bit mask of src addr widths the channel supports.
485 * Width is specified in bytes, e.g. for a channel supporting
486 * a width of 4 the mask should have BIT(4) set.
487 * @dst_addr_widths: bit mask of dst addr widths the channel supports
488 * @directions: bit mask of slave directions the channel supports.
489 * Since the enum dma_transfer_direction is not defined as bit flag for
490 * each type, the dma controller should set BIT(<TYPE>) and same
491 * should be checked by controller as well
492 * @min_burst: min burst capability per-transfer
493 * @max_burst: max burst capability per-transfer
494 * @max_sg_burst: max number of SG list entries executed in a single burst
495 * DMA tansaction with no software intervention for reinitialization.
496 * Zero value means unlimited number of entries.
497 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
498 * for resume later)
499 * @cmd_resume: true, if resume is supported
500 * @cmd_terminate: true, if terminate cmd is supported
501 * @residue_granularity: granularity of the reported transfer residue
502 * @descriptor_reuse: if a descriptor can be reused by client and
503 * resubmitted multiple times
504 */
505 struct dma_slave_caps {
506 u32 src_addr_widths;
507 u32 dst_addr_widths;
508 u32 directions;
509 u32 min_burst;
510 u32 max_burst;
511 u32 max_sg_burst;
512 bool cmd_pause;
513 bool cmd_resume;
514 bool cmd_terminate;
515 enum dma_residue_granularity residue_granularity;
516 bool descriptor_reuse;
517 };
518
dma_chan_name(struct dma_chan * chan)519 static inline const char *dma_chan_name(struct dma_chan *chan)
520 {
521 return dev_name(&chan->dev->device);
522 }
523
524 void dma_chan_cleanup(struct kref *kref);
525
526 /**
527 * typedef dma_filter_fn - callback filter for dma_request_channel
528 * @chan: channel to be reviewed
529 * @filter_param: opaque parameter passed through dma_request_channel
530 *
531 * When this optional parameter is specified in a call to dma_request_channel a
532 * suitable channel is passed to this routine for further dispositioning before
533 * being returned. Where 'suitable' indicates a non-busy channel that
534 * satisfies the given capability mask. It returns 'true' to indicate that the
535 * channel is suitable.
536 */
537 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
538
539 typedef void (*dma_async_tx_callback)(void *dma_async_param);
540
541 enum dmaengine_tx_result {
542 DMA_TRANS_NOERROR = 0, /* SUCCESS */
543 DMA_TRANS_READ_FAILED, /* Source DMA read failed */
544 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
545 DMA_TRANS_ABORTED, /* Op never submitted / aborted */
546 };
547
548 struct dmaengine_result {
549 enum dmaengine_tx_result result;
550 u32 residue;
551 };
552
553 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
554 const struct dmaengine_result *result);
555
556 struct dmaengine_unmap_data {
557 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
558 u16 map_cnt;
559 #else
560 u8 map_cnt;
561 #endif
562 u8 to_cnt;
563 u8 from_cnt;
564 u8 bidi_cnt;
565 struct device *dev;
566 struct kref kref;
567 size_t len;
568 dma_addr_t addr[];
569 };
570
571 struct dma_async_tx_descriptor;
572
573 struct dma_descriptor_metadata_ops {
574 int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
575 size_t len);
576
577 void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
578 size_t *payload_len, size_t *max_len);
579 int (*set_len)(struct dma_async_tx_descriptor *desc,
580 size_t payload_len);
581 };
582
583 /**
584 * struct dma_async_tx_descriptor - async transaction descriptor
585 * ---dma generic offload fields---
586 * @cookie: tracking cookie for this transaction, set to -EBUSY if
587 * this tx is sitting on a dependency list
588 * @flags: flags to augment operation preparation, control completion, and
589 * communicate status
590 * @phys: physical address of the descriptor
591 * @chan: target channel for this operation
592 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
593 * descriptor pending. To be pushed on .issue_pending() call
594 * @callback: routine to call after this operation is complete
595 * @callback_param: general parameter to pass to the callback routine
596 * @desc_metadata_mode: core managed metadata mode to protect mixed use of
597 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
598 * DESC_METADATA_NONE
599 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
600 * DMA driver if metadata mode is supported with the descriptor
601 * ---async_tx api specific fields---
602 * @next: at completion submit this descriptor
603 * @parent: pointer to the next level up in the dependency chain
604 * @lock: protect the parent and next pointers
605 */
606 struct dma_async_tx_descriptor {
607 dma_cookie_t cookie;
608 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
609 dma_addr_t phys;
610 struct dma_chan *chan;
611 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
612 int (*desc_free)(struct dma_async_tx_descriptor *tx);
613 dma_async_tx_callback callback;
614 dma_async_tx_callback_result callback_result;
615 void *callback_param;
616 struct dmaengine_unmap_data *unmap;
617 enum dma_desc_metadata_mode desc_metadata_mode;
618 struct dma_descriptor_metadata_ops *metadata_ops;
619 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
620 struct dma_async_tx_descriptor *next;
621 struct dma_async_tx_descriptor *parent;
622 spinlock_t lock;
623 #endif
624 };
625
626 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)627 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
628 struct dmaengine_unmap_data *unmap)
629 {
630 kref_get(&unmap->kref);
631 tx->unmap = unmap;
632 }
633
634 struct dmaengine_unmap_data *
635 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
636 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
637 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)638 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
639 struct dmaengine_unmap_data *unmap)
640 {
641 }
642 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)643 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
644 {
645 return NULL;
646 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)647 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
648 {
649 }
650 #endif
651
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)652 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
653 {
654 if (!tx->unmap)
655 return;
656
657 dmaengine_unmap_put(tx->unmap);
658 tx->unmap = NULL;
659 }
660
661 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)662 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
663 {
664 }
txd_unlock(struct dma_async_tx_descriptor * txd)665 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
666 {
667 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)668 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
669 {
670 BUG();
671 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)672 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
673 {
674 }
txd_clear_next(struct dma_async_tx_descriptor * txd)675 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
676 {
677 }
txd_next(struct dma_async_tx_descriptor * txd)678 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
679 {
680 return NULL;
681 }
txd_parent(struct dma_async_tx_descriptor * txd)682 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
683 {
684 return NULL;
685 }
686
687 #else
txd_lock(struct dma_async_tx_descriptor * txd)688 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
689 {
690 spin_lock_bh(&txd->lock);
691 }
txd_unlock(struct dma_async_tx_descriptor * txd)692 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
693 {
694 spin_unlock_bh(&txd->lock);
695 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)696 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
697 {
698 txd->next = next;
699 next->parent = txd;
700 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)701 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
702 {
703 txd->parent = NULL;
704 }
txd_clear_next(struct dma_async_tx_descriptor * txd)705 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
706 {
707 txd->next = NULL;
708 }
txd_parent(struct dma_async_tx_descriptor * txd)709 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
710 {
711 return txd->parent;
712 }
txd_next(struct dma_async_tx_descriptor * txd)713 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
714 {
715 return txd->next;
716 }
717 #endif
718
719 /**
720 * struct dma_tx_state - filled in to report the status of
721 * a transfer.
722 * @last: last completed DMA cookie
723 * @used: last issued DMA cookie (i.e. the one in progress)
724 * @residue: the remaining number of bytes left to transmit
725 * on the selected transfer for states DMA_IN_PROGRESS and
726 * DMA_PAUSED if this is implemented in the driver, else 0
727 * @in_flight_bytes: amount of data in bytes cached by the DMA.
728 */
729 struct dma_tx_state {
730 dma_cookie_t last;
731 dma_cookie_t used;
732 u32 residue;
733 u32 in_flight_bytes;
734 };
735
736 /**
737 * enum dmaengine_alignment - defines alignment of the DMA async tx
738 * buffers
739 */
740 enum dmaengine_alignment {
741 DMAENGINE_ALIGN_1_BYTE = 0,
742 DMAENGINE_ALIGN_2_BYTES = 1,
743 DMAENGINE_ALIGN_4_BYTES = 2,
744 DMAENGINE_ALIGN_8_BYTES = 3,
745 DMAENGINE_ALIGN_16_BYTES = 4,
746 DMAENGINE_ALIGN_32_BYTES = 5,
747 DMAENGINE_ALIGN_64_BYTES = 6,
748 DMAENGINE_ALIGN_128_BYTES = 7,
749 DMAENGINE_ALIGN_256_BYTES = 8,
750 };
751
752 /**
753 * struct dma_slave_map - associates slave device and it's slave channel with
754 * parameter to be used by a filter function
755 * @devname: name of the device
756 * @slave: slave channel name
757 * @param: opaque parameter to pass to struct dma_filter.fn
758 */
759 struct dma_slave_map {
760 const char *devname;
761 const char *slave;
762 void *param;
763 };
764
765 /**
766 * struct dma_filter - information for slave device/channel to filter_fn/param
767 * mapping
768 * @fn: filter function callback
769 * @mapcnt: number of slave device/channel in the map
770 * @map: array of channel to filter mapping data
771 */
772 struct dma_filter {
773 dma_filter_fn fn;
774 int mapcnt;
775 const struct dma_slave_map *map;
776 };
777
778 /**
779 * struct dma_device - info on the entity supplying DMA services
780 * @chancnt: how many DMA channels are supported
781 * @privatecnt: how many DMA channels are requested by dma_request_channel
782 * @channels: the list of struct dma_chan
783 * @global_node: list_head for global dma_device_list
784 * @filter: information for device/slave to filter function/param mapping
785 * @cap_mask: one or more dma_capability flags
786 * @desc_metadata_modes: supported metadata modes by the DMA device
787 * @max_xor: maximum number of xor sources, 0 if no capability
788 * @max_pq: maximum number of PQ sources and PQ-continue capability
789 * @copy_align: alignment shift for memcpy operations
790 * @xor_align: alignment shift for xor operations
791 * @pq_align: alignment shift for pq operations
792 * @fill_align: alignment shift for memset operations
793 * @dev_id: unique device ID
794 * @dev: struct device reference for dma mapping api
795 * @owner: owner module (automatically set based on the provided dev)
796 * @src_addr_widths: bit mask of src addr widths the device supports
797 * Width is specified in bytes, e.g. for a device supporting
798 * a width of 4 the mask should have BIT(4) set.
799 * @dst_addr_widths: bit mask of dst addr widths the device supports
800 * @directions: bit mask of slave directions the device supports.
801 * Since the enum dma_transfer_direction is not defined as bit flag for
802 * each type, the dma controller should set BIT(<TYPE>) and same
803 * should be checked by controller as well
804 * @min_burst: min burst capability per-transfer
805 * @max_burst: max burst capability per-transfer
806 * @max_sg_burst: max number of SG list entries executed in a single burst
807 * DMA tansaction with no software intervention for reinitialization.
808 * Zero value means unlimited number of entries.
809 * @residue_granularity: granularity of the transfer residue reported
810 * by tx_status
811 * @device_alloc_chan_resources: allocate resources and return the
812 * number of allocated descriptors
813 * @device_router_config: optional callback for DMA router configuration
814 * @device_free_chan_resources: release DMA channel's resources
815 * @device_prep_dma_memcpy: prepares a memcpy operation
816 * @device_prep_dma_xor: prepares a xor operation
817 * @device_prep_dma_xor_val: prepares a xor validation operation
818 * @device_prep_dma_pq: prepares a pq operation
819 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
820 * @device_prep_dma_memset: prepares a memset operation
821 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
822 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
823 * @device_prep_slave_sg: prepares a slave dma operation
824 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
825 * The function takes a buffer of size buf_len. The callback function will
826 * be called after period_len bytes have been transferred.
827 * @device_prep_interleaved_dma: Transfer expression in a generic way.
828 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
829 * @device_caps: May be used to override the generic DMA slave capabilities
830 * with per-channel specific ones
831 * @device_config: Pushes a new configuration to a channel, return 0 or an error
832 * code
833 * @device_pause: Pauses any transfer happening on a channel. Returns
834 * 0 or an error code
835 * @device_resume: Resumes any transfer on a channel previously
836 * paused. Returns 0 or an error code
837 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
838 * or an error code
839 * @device_synchronize: Synchronizes the termination of a transfers to the
840 * current context.
841 * @device_tx_status: poll for transaction completion, the optional
842 * txstate parameter can be supplied with a pointer to get a
843 * struct with auxiliary transfer status information, otherwise the call
844 * will just return a simple status code
845 * @device_issue_pending: push pending transactions to hardware
846 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
847 * @device_release: called sometime atfer dma_async_device_unregister() is
848 * called and there are no further references to this structure. This
849 * must be implemented to free resources however many existing drivers
850 * do not and are therefore not safe to unbind while in use.
851 * @dbg_summary_show: optional routine to show contents in debugfs; default code
852 * will be used when this is omitted, but custom code can show extra,
853 * controller specific information.
854 */
855 struct dma_device {
856 struct kref ref;
857 unsigned int chancnt;
858 unsigned int privatecnt;
859 struct list_head channels;
860 struct list_head global_node;
861 struct dma_filter filter;
862 dma_cap_mask_t cap_mask;
863 enum dma_desc_metadata_mode desc_metadata_modes;
864 unsigned short max_xor;
865 unsigned short max_pq;
866 enum dmaengine_alignment copy_align;
867 enum dmaengine_alignment xor_align;
868 enum dmaengine_alignment pq_align;
869 enum dmaengine_alignment fill_align;
870 #define DMA_HAS_PQ_CONTINUE (1 << 15)
871
872 int dev_id;
873 struct device *dev;
874 struct module *owner;
875 struct ida chan_ida;
876 struct mutex chan_mutex; /* to protect chan_ida */
877
878 u32 src_addr_widths;
879 u32 dst_addr_widths;
880 u32 directions;
881 u32 min_burst;
882 u32 max_burst;
883 u32 max_sg_burst;
884 bool descriptor_reuse;
885 enum dma_residue_granularity residue_granularity;
886
887 int (*device_alloc_chan_resources)(struct dma_chan *chan);
888 int (*device_router_config)(struct dma_chan *chan);
889 void (*device_free_chan_resources)(struct dma_chan *chan);
890
891 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
892 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
893 size_t len, unsigned long flags);
894 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
895 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
896 unsigned int src_cnt, size_t len, unsigned long flags);
897 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
898 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
899 size_t len, enum sum_check_flags *result, unsigned long flags);
900 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
901 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
902 unsigned int src_cnt, const unsigned char *scf,
903 size_t len, unsigned long flags);
904 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
905 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
906 unsigned int src_cnt, const unsigned char *scf, size_t len,
907 enum sum_check_flags *pqres, unsigned long flags);
908 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
909 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
910 unsigned long flags);
911 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
912 struct dma_chan *chan, struct scatterlist *sg,
913 unsigned int nents, int value, unsigned long flags);
914 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
915 struct dma_chan *chan, unsigned long flags);
916
917 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
918 struct dma_chan *chan, struct scatterlist *sgl,
919 unsigned int sg_len, enum dma_transfer_direction direction,
920 unsigned long flags, void *context);
921 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
922 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
923 size_t period_len, enum dma_transfer_direction direction,
924 unsigned long flags);
925 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
926 struct dma_chan *chan, struct dma_interleaved_template *xt,
927 unsigned long flags);
928 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
929 struct dma_chan *chan, dma_addr_t dst, u64 data,
930 unsigned long flags);
931
932 void (*device_caps)(struct dma_chan *chan,
933 struct dma_slave_caps *caps);
934 int (*device_config)(struct dma_chan *chan,
935 struct dma_slave_config *config);
936 int (*device_pause)(struct dma_chan *chan);
937 int (*device_resume)(struct dma_chan *chan);
938 int (*device_terminate_all)(struct dma_chan *chan);
939 void (*device_synchronize)(struct dma_chan *chan);
940
941 enum dma_status (*device_tx_status)(struct dma_chan *chan,
942 dma_cookie_t cookie,
943 struct dma_tx_state *txstate);
944 void (*device_issue_pending)(struct dma_chan *chan);
945 void (*device_release)(struct dma_device *dev);
946 /* debugfs support */
947 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
948 struct dentry *dbg_dev_root;
949 };
950
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)951 static inline int dmaengine_slave_config(struct dma_chan *chan,
952 struct dma_slave_config *config)
953 {
954 if (chan->device->device_config)
955 return chan->device->device_config(chan, config);
956
957 return -ENOSYS;
958 }
959
is_slave_direction(enum dma_transfer_direction direction)960 static inline bool is_slave_direction(enum dma_transfer_direction direction)
961 {
962 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
963 }
964
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)965 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
966 struct dma_chan *chan, dma_addr_t buf, size_t len,
967 enum dma_transfer_direction dir, unsigned long flags)
968 {
969 struct scatterlist sg;
970 sg_init_table(&sg, 1);
971 sg_dma_address(&sg) = buf;
972 sg_dma_len(&sg) = len;
973
974 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
975 return NULL;
976
977 return chan->device->device_prep_slave_sg(chan, &sg, 1,
978 dir, flags, NULL);
979 }
980
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)981 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
982 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
983 enum dma_transfer_direction dir, unsigned long flags)
984 {
985 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
986 return NULL;
987
988 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
989 dir, flags, NULL);
990 }
991
992 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
993 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)994 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
995 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
996 enum dma_transfer_direction dir, unsigned long flags,
997 struct rio_dma_ext *rio_ext)
998 {
999 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1000 return NULL;
1001
1002 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1003 dir, flags, rio_ext);
1004 }
1005 #endif
1006
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)1007 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
1008 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1009 size_t period_len, enum dma_transfer_direction dir,
1010 unsigned long flags)
1011 {
1012 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1013 return NULL;
1014
1015 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1016 period_len, dir, flags);
1017 }
1018
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)1019 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1020 struct dma_chan *chan, struct dma_interleaved_template *xt,
1021 unsigned long flags)
1022 {
1023 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1024 return NULL;
1025 if (flags & DMA_PREP_REPEAT &&
1026 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1027 return NULL;
1028
1029 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1030 }
1031
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1032 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1033 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1034 unsigned long flags)
1035 {
1036 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1037 return NULL;
1038
1039 return chan->device->device_prep_dma_memset(chan, dest, value,
1040 len, flags);
1041 }
1042
dmaengine_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1043 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1044 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1045 size_t len, unsigned long flags)
1046 {
1047 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1048 return NULL;
1049
1050 return chan->device->device_prep_dma_memcpy(chan, dest, src,
1051 len, flags);
1052 }
1053
dmaengine_is_metadata_mode_supported(struct dma_chan * chan,enum dma_desc_metadata_mode mode)1054 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1055 enum dma_desc_metadata_mode mode)
1056 {
1057 if (!chan)
1058 return false;
1059
1060 return !!(chan->device->desc_metadata_modes & mode);
1061 }
1062
1063 #ifdef CONFIG_DMA_ENGINE
1064 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1065 void *data, size_t len);
1066 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1067 size_t *payload_len, size_t *max_len);
1068 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1069 size_t payload_len);
1070 #else /* CONFIG_DMA_ENGINE */
dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor * desc,void * data,size_t len)1071 static inline int dmaengine_desc_attach_metadata(
1072 struct dma_async_tx_descriptor *desc, void *data, size_t len)
1073 {
1074 return -EINVAL;
1075 }
dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor * desc,size_t * payload_len,size_t * max_len)1076 static inline void *dmaengine_desc_get_metadata_ptr(
1077 struct dma_async_tx_descriptor *desc, size_t *payload_len,
1078 size_t *max_len)
1079 {
1080 return NULL;
1081 }
dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor * desc,size_t payload_len)1082 static inline int dmaengine_desc_set_metadata_len(
1083 struct dma_async_tx_descriptor *desc, size_t payload_len)
1084 {
1085 return -EINVAL;
1086 }
1087 #endif /* CONFIG_DMA_ENGINE */
1088
1089 /**
1090 * dmaengine_terminate_all() - Terminate all active DMA transfers
1091 * @chan: The channel for which to terminate the transfers
1092 *
1093 * This function is DEPRECATED use either dmaengine_terminate_sync() or
1094 * dmaengine_terminate_async() instead.
1095 */
dmaengine_terminate_all(struct dma_chan * chan)1096 static inline int dmaengine_terminate_all(struct dma_chan *chan)
1097 {
1098 if (chan->device->device_terminate_all)
1099 return chan->device->device_terminate_all(chan);
1100
1101 return -ENOSYS;
1102 }
1103
1104 /**
1105 * dmaengine_terminate_async() - Terminate all active DMA transfers
1106 * @chan: The channel for which to terminate the transfers
1107 *
1108 * Calling this function will terminate all active and pending descriptors
1109 * that have previously been submitted to the channel. It is not guaranteed
1110 * though that the transfer for the active descriptor has stopped when the
1111 * function returns. Furthermore it is possible the complete callback of a
1112 * submitted transfer is still running when this function returns.
1113 *
1114 * dmaengine_synchronize() needs to be called before it is safe to free
1115 * any memory that is accessed by previously submitted descriptors or before
1116 * freeing any resources accessed from within the completion callback of any
1117 * previously submitted descriptors.
1118 *
1119 * This function can be called from atomic context as well as from within a
1120 * complete callback of a descriptor submitted on the same channel.
1121 *
1122 * If none of the two conditions above apply consider using
1123 * dmaengine_terminate_sync() instead.
1124 */
dmaengine_terminate_async(struct dma_chan * chan)1125 static inline int dmaengine_terminate_async(struct dma_chan *chan)
1126 {
1127 if (chan->device->device_terminate_all)
1128 return chan->device->device_terminate_all(chan);
1129
1130 return -EINVAL;
1131 }
1132
1133 /**
1134 * dmaengine_synchronize() - Synchronize DMA channel termination
1135 * @chan: The channel to synchronize
1136 *
1137 * Synchronizes to the DMA channel termination to the current context. When this
1138 * function returns it is guaranteed that all transfers for previously issued
1139 * descriptors have stopped and it is safe to free the memory associated
1140 * with them. Furthermore it is guaranteed that all complete callback functions
1141 * for a previously submitted descriptor have finished running and it is safe to
1142 * free resources accessed from within the complete callbacks.
1143 *
1144 * The behavior of this function is undefined if dma_async_issue_pending() has
1145 * been called between dmaengine_terminate_async() and this function.
1146 *
1147 * This function must only be called from non-atomic context and must not be
1148 * called from within a complete callback of a descriptor submitted on the same
1149 * channel.
1150 */
dmaengine_synchronize(struct dma_chan * chan)1151 static inline void dmaengine_synchronize(struct dma_chan *chan)
1152 {
1153 might_sleep();
1154
1155 if (chan->device->device_synchronize)
1156 chan->device->device_synchronize(chan);
1157 }
1158
1159 /**
1160 * dmaengine_terminate_sync() - Terminate all active DMA transfers
1161 * @chan: The channel for which to terminate the transfers
1162 *
1163 * Calling this function will terminate all active and pending transfers
1164 * that have previously been submitted to the channel. It is similar to
1165 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1166 * stopped and that all complete callbacks have finished running when the
1167 * function returns.
1168 *
1169 * This function must only be called from non-atomic context and must not be
1170 * called from within a complete callback of a descriptor submitted on the same
1171 * channel.
1172 */
dmaengine_terminate_sync(struct dma_chan * chan)1173 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1174 {
1175 int ret;
1176
1177 ret = dmaengine_terminate_async(chan);
1178 if (ret)
1179 return ret;
1180
1181 dmaengine_synchronize(chan);
1182
1183 return 0;
1184 }
1185
dmaengine_pause(struct dma_chan * chan)1186 static inline int dmaengine_pause(struct dma_chan *chan)
1187 {
1188 if (chan->device->device_pause)
1189 return chan->device->device_pause(chan);
1190
1191 return -ENOSYS;
1192 }
1193
dmaengine_resume(struct dma_chan * chan)1194 static inline int dmaengine_resume(struct dma_chan *chan)
1195 {
1196 if (chan->device->device_resume)
1197 return chan->device->device_resume(chan);
1198
1199 return -ENOSYS;
1200 }
1201
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1202 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1203 dma_cookie_t cookie, struct dma_tx_state *state)
1204 {
1205 return chan->device->device_tx_status(chan, cookie, state);
1206 }
1207
dmaengine_submit(struct dma_async_tx_descriptor * desc)1208 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1209 {
1210 return desc->tx_submit(desc);
1211 }
1212
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1213 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1214 size_t off1, size_t off2, size_t len)
1215 {
1216 return !(((1 << align) - 1) & (off1 | off2 | len));
1217 }
1218
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1219 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1220 size_t off2, size_t len)
1221 {
1222 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1223 }
1224
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1225 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1226 size_t off2, size_t len)
1227 {
1228 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1229 }
1230
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1231 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1232 size_t off2, size_t len)
1233 {
1234 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1235 }
1236
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1237 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1238 size_t off2, size_t len)
1239 {
1240 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1241 }
1242
1243 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1244 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1245 {
1246 dma->max_pq = maxpq;
1247 if (has_pq_continue)
1248 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1249 }
1250
dmaf_continue(enum dma_ctrl_flags flags)1251 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1252 {
1253 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1254 }
1255
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1256 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1257 {
1258 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1259
1260 return (flags & mask) == mask;
1261 }
1262
dma_dev_has_pq_continue(struct dma_device * dma)1263 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1264 {
1265 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1266 }
1267
dma_dev_to_maxpq(struct dma_device * dma)1268 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1269 {
1270 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1271 }
1272
1273 /* dma_maxpq - reduce maxpq in the face of continued operations
1274 * @dma - dma device with PQ capability
1275 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1276 *
1277 * When an engine does not support native continuation we need 3 extra
1278 * source slots to reuse P and Q with the following coefficients:
1279 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1280 * 2/ {01} * Q : use Q to continue Q' calculation
1281 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1282 *
1283 * In the case where P is disabled we only need 1 extra source:
1284 * 1/ {01} * Q : use Q to continue Q' calculation
1285 */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1286 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1287 {
1288 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1289 return dma_dev_to_maxpq(dma);
1290 if (dmaf_p_disabled_continue(flags))
1291 return dma_dev_to_maxpq(dma) - 1;
1292 if (dmaf_continue(flags))
1293 return dma_dev_to_maxpq(dma) - 3;
1294 BUG();
1295 }
1296
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1297 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1298 size_t dir_icg)
1299 {
1300 if (inc) {
1301 if (dir_icg)
1302 return dir_icg;
1303 if (sgl)
1304 return icg;
1305 }
1306
1307 return 0;
1308 }
1309
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1310 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1311 struct data_chunk *chunk)
1312 {
1313 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1314 chunk->icg, chunk->dst_icg);
1315 }
1316
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1317 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1318 struct data_chunk *chunk)
1319 {
1320 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1321 chunk->icg, chunk->src_icg);
1322 }
1323
1324 /* --- public DMA engine API --- */
1325
1326 #ifdef CONFIG_DMA_ENGINE
1327 void dmaengine_get(void);
1328 void dmaengine_put(void);
1329 #else
dmaengine_get(void)1330 static inline void dmaengine_get(void)
1331 {
1332 }
dmaengine_put(void)1333 static inline void dmaengine_put(void)
1334 {
1335 }
1336 #endif
1337
1338 #ifdef CONFIG_ASYNC_TX_DMA
1339 #define async_dmaengine_get() dmaengine_get()
1340 #define async_dmaengine_put() dmaengine_put()
1341 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1342 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1343 #else
1344 #define async_dma_find_channel(type) dma_find_channel(type)
1345 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1346 #else
async_dmaengine_get(void)1347 static inline void async_dmaengine_get(void)
1348 {
1349 }
async_dmaengine_put(void)1350 static inline void async_dmaengine_put(void)
1351 {
1352 }
1353 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1354 async_dma_find_channel(enum dma_transaction_type type)
1355 {
1356 return NULL;
1357 }
1358 #endif /* CONFIG_ASYNC_TX_DMA */
1359 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1360 struct dma_chan *chan);
1361
async_tx_ack(struct dma_async_tx_descriptor * tx)1362 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1363 {
1364 tx->flags |= DMA_CTRL_ACK;
1365 }
1366
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1367 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1368 {
1369 tx->flags &= ~DMA_CTRL_ACK;
1370 }
1371
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1372 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1373 {
1374 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1375 }
1376
1377 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1378 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1379 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1380 {
1381 set_bit(tx_type, dstp->bits);
1382 }
1383
1384 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1385 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1386 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1387 {
1388 clear_bit(tx_type, dstp->bits);
1389 }
1390
1391 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1392 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1393 {
1394 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1395 }
1396
1397 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1398 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1399 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1400 {
1401 return test_bit(tx_type, srcp->bits);
1402 }
1403
1404 #define for_each_dma_cap_mask(cap, mask) \
1405 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1406
1407 /**
1408 * dma_async_issue_pending - flush pending transactions to HW
1409 * @chan: target DMA channel
1410 *
1411 * This allows drivers to push copies to HW in batches,
1412 * reducing MMIO writes where possible.
1413 */
dma_async_issue_pending(struct dma_chan * chan)1414 static inline void dma_async_issue_pending(struct dma_chan *chan)
1415 {
1416 chan->device->device_issue_pending(chan);
1417 }
1418
1419 /**
1420 * dma_async_is_tx_complete - poll for transaction completion
1421 * @chan: DMA channel
1422 * @cookie: transaction identifier to check status of
1423 * @last: returns last completed cookie, can be NULL
1424 * @used: returns last issued cookie, can be NULL
1425 *
1426 * If @last and @used are passed in, upon return they reflect the driver
1427 * internal state and can be used with dma_async_is_complete() to check
1428 * the status of multiple cookies without re-checking hardware state.
1429 */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1430 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1431 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1432 {
1433 struct dma_tx_state state;
1434 enum dma_status status;
1435
1436 status = chan->device->device_tx_status(chan, cookie, &state);
1437 if (last)
1438 *last = state.last;
1439 if (used)
1440 *used = state.used;
1441 return status;
1442 }
1443
1444 /**
1445 * dma_async_is_complete - test a cookie against chan state
1446 * @cookie: transaction identifier to test status of
1447 * @last_complete: last know completed transaction
1448 * @last_used: last cookie value handed out
1449 *
1450 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1451 * the test logic is separated for lightweight testing of multiple cookies
1452 */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1453 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1454 dma_cookie_t last_complete, dma_cookie_t last_used)
1455 {
1456 if (last_complete <= last_used) {
1457 if ((cookie <= last_complete) || (cookie > last_used))
1458 return DMA_COMPLETE;
1459 } else {
1460 if ((cookie <= last_complete) && (cookie > last_used))
1461 return DMA_COMPLETE;
1462 }
1463 return DMA_IN_PROGRESS;
1464 }
1465
1466 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1467 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1468 {
1469 if (!st)
1470 return;
1471
1472 st->last = last;
1473 st->used = used;
1474 st->residue = residue;
1475 }
1476
1477 #ifdef CONFIG_DMA_ENGINE
1478 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1479 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1480 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1481 void dma_issue_pending_all(void);
1482 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1483 dma_filter_fn fn, void *fn_param,
1484 struct device_node *np);
1485
1486 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1487 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1488
1489 void dma_release_channel(struct dma_chan *chan);
1490 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1491 #else
dma_find_channel(enum dma_transaction_type tx_type)1492 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1493 {
1494 return NULL;
1495 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1496 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1497 {
1498 return DMA_COMPLETE;
1499 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1500 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1501 {
1502 return DMA_COMPLETE;
1503 }
dma_issue_pending_all(void)1504 static inline void dma_issue_pending_all(void)
1505 {
1506 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)1507 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1508 dma_filter_fn fn,
1509 void *fn_param,
1510 struct device_node *np)
1511 {
1512 return NULL;
1513 }
dma_request_chan(struct device * dev,const char * name)1514 static inline struct dma_chan *dma_request_chan(struct device *dev,
1515 const char *name)
1516 {
1517 return ERR_PTR(-ENODEV);
1518 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1519 static inline struct dma_chan *dma_request_chan_by_mask(
1520 const dma_cap_mask_t *mask)
1521 {
1522 return ERR_PTR(-ENODEV);
1523 }
dma_release_channel(struct dma_chan * chan)1524 static inline void dma_release_channel(struct dma_chan *chan)
1525 {
1526 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1527 static inline int dma_get_slave_caps(struct dma_chan *chan,
1528 struct dma_slave_caps *caps)
1529 {
1530 return -ENXIO;
1531 }
1532 #endif
1533
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1534 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1535 {
1536 struct dma_slave_caps caps;
1537 int ret;
1538
1539 ret = dma_get_slave_caps(tx->chan, &caps);
1540 if (ret)
1541 return ret;
1542
1543 if (!caps.descriptor_reuse)
1544 return -EPERM;
1545
1546 tx->flags |= DMA_CTRL_REUSE;
1547 return 0;
1548 }
1549
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1550 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1551 {
1552 tx->flags &= ~DMA_CTRL_REUSE;
1553 }
1554
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1555 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1556 {
1557 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1558 }
1559
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1560 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1561 {
1562 /* this is supported for reusable desc, so check that */
1563 if (!dmaengine_desc_test_reuse(desc))
1564 return -EPERM;
1565
1566 return desc->desc_free(desc);
1567 }
1568
1569 /* --- DMA device --- */
1570
1571 int dma_async_device_register(struct dma_device *device);
1572 int dmaenginem_async_device_register(struct dma_device *device);
1573 void dma_async_device_unregister(struct dma_device *device);
1574 int dma_async_device_channel_register(struct dma_device *device,
1575 struct dma_chan *chan);
1576 void dma_async_device_channel_unregister(struct dma_device *device,
1577 struct dma_chan *chan);
1578 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1579 #define dma_request_channel(mask, x, y) \
1580 __dma_request_channel(&(mask), x, y, NULL)
1581
1582 /* Deprecated, please use dma_request_chan() directly */
1583 static inline struct dma_chan * __deprecated
dma_request_slave_channel(struct device * dev,const char * name)1584 dma_request_slave_channel(struct device *dev, const char *name)
1585 {
1586 struct dma_chan *ch = dma_request_chan(dev, name);
1587
1588 return IS_ERR(ch) ? NULL : ch;
1589 }
1590
1591 static inline struct dma_chan
dma_request_slave_channel_compat(const dma_cap_mask_t mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1592 *dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1593 dma_filter_fn fn, void *fn_param,
1594 struct device *dev, const char *name)
1595 {
1596 struct dma_chan *chan;
1597
1598 chan = dma_request_slave_channel(dev, name);
1599 if (chan)
1600 return chan;
1601
1602 if (!fn || !fn_param)
1603 return NULL;
1604
1605 return __dma_request_channel(&mask, fn, fn_param, NULL);
1606 }
1607
1608 static inline char *
dmaengine_get_direction_text(enum dma_transfer_direction dir)1609 dmaengine_get_direction_text(enum dma_transfer_direction dir)
1610 {
1611 switch (dir) {
1612 case DMA_DEV_TO_MEM:
1613 return "DEV_TO_MEM";
1614 case DMA_MEM_TO_DEV:
1615 return "MEM_TO_DEV";
1616 case DMA_MEM_TO_MEM:
1617 return "MEM_TO_MEM";
1618 case DMA_DEV_TO_DEV:
1619 return "DEV_TO_DEV";
1620 default:
1621 return "invalid";
1622 }
1623 }
1624
dmaengine_get_dma_device(struct dma_chan * chan)1625 static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan)
1626 {
1627 if (chan->dev->chan_dma_dev)
1628 return &chan->dev->device;
1629
1630 return chan->device->dev;
1631 }
1632
1633 #endif /* DMAENGINE_H */
1634