1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SMP support for ppc.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) borrowing a great
6 * deal of code from the sparc and intel versions.
7 *
8 * Copyright (C) 1999 Cort Dougan <cort@cs.nmt.edu>
9 *
10 * PowerPC-64 Support added by Dave Engebretsen, Peter Bergner, and
11 * Mike Corrigan {engebret|bergner|mikec}@us.ibm.com
12 */
13
14 #undef DEBUG
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/task_stack.h>
20 #include <linux/sched/topology.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/init.h>
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/err.h>
28 #include <linux/device.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/profile.h>
33 #include <linux/processor.h>
34 #include <linux/random.h>
35 #include <linux/stackprotector.h>
36 #include <linux/pgtable.h>
37 #include <linux/clockchips.h>
38
39 #include <asm/ptrace.h>
40 #include <linux/atomic.h>
41 #include <asm/irq.h>
42 #include <asm/hw_irq.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/dbell.h>
45 #include <asm/page.h>
46 #include <asm/prom.h>
47 #include <asm/smp.h>
48 #include <asm/time.h>
49 #include <asm/machdep.h>
50 #include <asm/cputhreads.h>
51 #include <asm/cputable.h>
52 #include <asm/mpic.h>
53 #include <asm/vdso_datapage.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/paca.h>
56 #endif
57 #include <asm/vdso.h>
58 #include <asm/debug.h>
59 #include <asm/kexec.h>
60 #include <asm/asm-prototypes.h>
61 #include <asm/cpu_has_feature.h>
62 #include <asm/ftrace.h>
63 #include <asm/kup.h>
64
65 #ifdef DEBUG
66 #include <asm/udbg.h>
67 #define DBG(fmt...) udbg_printf(fmt)
68 #else
69 #define DBG(fmt...)
70 #endif
71
72 #ifdef CONFIG_HOTPLUG_CPU
73 /* State of each CPU during hotplug phases */
74 static DEFINE_PER_CPU(int, cpu_state) = { 0 };
75 #endif
76
77 struct task_struct *secondary_current;
78 bool has_big_cores;
79 bool coregroup_enabled;
80 bool thread_group_shares_l2;
81 bool thread_group_shares_l3;
82
83 DEFINE_PER_CPU(cpumask_var_t, cpu_sibling_map);
84 DEFINE_PER_CPU(cpumask_var_t, cpu_smallcore_map);
85 DEFINE_PER_CPU(cpumask_var_t, cpu_l2_cache_map);
86 DEFINE_PER_CPU(cpumask_var_t, cpu_core_map);
87 static DEFINE_PER_CPU(cpumask_var_t, cpu_coregroup_map);
88
89 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
90 EXPORT_PER_CPU_SYMBOL(cpu_l2_cache_map);
91 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
92 EXPORT_SYMBOL_GPL(has_big_cores);
93
94 enum {
95 #ifdef CONFIG_SCHED_SMT
96 smt_idx,
97 #endif
98 cache_idx,
99 mc_idx,
100 die_idx,
101 };
102
103 #define MAX_THREAD_LIST_SIZE 8
104 #define THREAD_GROUP_SHARE_L1 1
105 #define THREAD_GROUP_SHARE_L2_L3 2
106 struct thread_groups {
107 unsigned int property;
108 unsigned int nr_groups;
109 unsigned int threads_per_group;
110 unsigned int thread_list[MAX_THREAD_LIST_SIZE];
111 };
112
113 /* Maximum number of properties that groups of threads within a core can share */
114 #define MAX_THREAD_GROUP_PROPERTIES 2
115
116 struct thread_groups_list {
117 unsigned int nr_properties;
118 struct thread_groups property_tgs[MAX_THREAD_GROUP_PROPERTIES];
119 };
120
121 static struct thread_groups_list tgl[NR_CPUS] __initdata;
122 /*
123 * On big-cores system, thread_group_l1_cache_map for each CPU corresponds to
124 * the set its siblings that share the L1-cache.
125 */
126 DEFINE_PER_CPU(cpumask_var_t, thread_group_l1_cache_map);
127
128 /*
129 * On some big-cores system, thread_group_l2_cache_map for each CPU
130 * corresponds to the set its siblings within the core that share the
131 * L2-cache.
132 */
133 DEFINE_PER_CPU(cpumask_var_t, thread_group_l2_cache_map);
134
135 /*
136 * On P10, thread_group_l3_cache_map for each CPU is equal to the
137 * thread_group_l2_cache_map
138 */
139 DEFINE_PER_CPU(cpumask_var_t, thread_group_l3_cache_map);
140
141 /* SMP operations for this machine */
142 struct smp_ops_t *smp_ops;
143
144 /* Can't be static due to PowerMac hackery */
145 volatile unsigned int cpu_callin_map[NR_CPUS];
146
147 int smt_enabled_at_boot = 1;
148
149 /*
150 * Returns 1 if the specified cpu should be brought up during boot.
151 * Used to inhibit booting threads if they've been disabled or
152 * limited on the command line
153 */
smp_generic_cpu_bootable(unsigned int nr)154 int smp_generic_cpu_bootable(unsigned int nr)
155 {
156 /* Special case - we inhibit secondary thread startup
157 * during boot if the user requests it.
158 */
159 if (system_state < SYSTEM_RUNNING && cpu_has_feature(CPU_FTR_SMT)) {
160 if (!smt_enabled_at_boot && cpu_thread_in_core(nr) != 0)
161 return 0;
162 if (smt_enabled_at_boot
163 && cpu_thread_in_core(nr) >= smt_enabled_at_boot)
164 return 0;
165 }
166
167 return 1;
168 }
169
170
171 #ifdef CONFIG_PPC64
smp_generic_kick_cpu(int nr)172 int smp_generic_kick_cpu(int nr)
173 {
174 if (nr < 0 || nr >= nr_cpu_ids)
175 return -EINVAL;
176
177 /*
178 * The processor is currently spinning, waiting for the
179 * cpu_start field to become non-zero After we set cpu_start,
180 * the processor will continue on to secondary_start
181 */
182 if (!paca_ptrs[nr]->cpu_start) {
183 paca_ptrs[nr]->cpu_start = 1;
184 smp_mb();
185 return 0;
186 }
187
188 #ifdef CONFIG_HOTPLUG_CPU
189 /*
190 * Ok it's not there, so it might be soft-unplugged, let's
191 * try to bring it back
192 */
193 generic_set_cpu_up(nr);
194 smp_wmb();
195 smp_send_reschedule(nr);
196 #endif /* CONFIG_HOTPLUG_CPU */
197
198 return 0;
199 }
200 #endif /* CONFIG_PPC64 */
201
call_function_action(int irq,void * data)202 static irqreturn_t call_function_action(int irq, void *data)
203 {
204 generic_smp_call_function_interrupt();
205 return IRQ_HANDLED;
206 }
207
reschedule_action(int irq,void * data)208 static irqreturn_t reschedule_action(int irq, void *data)
209 {
210 scheduler_ipi();
211 return IRQ_HANDLED;
212 }
213
214 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast_ipi_action(int irq,void * data)215 static irqreturn_t tick_broadcast_ipi_action(int irq, void *data)
216 {
217 timer_broadcast_interrupt();
218 return IRQ_HANDLED;
219 }
220 #endif
221
222 #ifdef CONFIG_NMI_IPI
nmi_ipi_action(int irq,void * data)223 static irqreturn_t nmi_ipi_action(int irq, void *data)
224 {
225 smp_handle_nmi_ipi(get_irq_regs());
226 return IRQ_HANDLED;
227 }
228 #endif
229
230 static irq_handler_t smp_ipi_action[] = {
231 [PPC_MSG_CALL_FUNCTION] = call_function_action,
232 [PPC_MSG_RESCHEDULE] = reschedule_action,
233 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
234 [PPC_MSG_TICK_BROADCAST] = tick_broadcast_ipi_action,
235 #endif
236 #ifdef CONFIG_NMI_IPI
237 [PPC_MSG_NMI_IPI] = nmi_ipi_action,
238 #endif
239 };
240
241 /*
242 * The NMI IPI is a fallback and not truly non-maskable. It is simpler
243 * than going through the call function infrastructure, and strongly
244 * serialized, so it is more appropriate for debugging.
245 */
246 const char *smp_ipi_name[] = {
247 [PPC_MSG_CALL_FUNCTION] = "ipi call function",
248 [PPC_MSG_RESCHEDULE] = "ipi reschedule",
249 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
250 [PPC_MSG_TICK_BROADCAST] = "ipi tick-broadcast",
251 #endif
252 #ifdef CONFIG_NMI_IPI
253 [PPC_MSG_NMI_IPI] = "nmi ipi",
254 #endif
255 };
256
257 /* optional function to request ipi, for controllers with >= 4 ipis */
smp_request_message_ipi(int virq,int msg)258 int smp_request_message_ipi(int virq, int msg)
259 {
260 int err;
261
262 if (msg < 0 || msg > PPC_MSG_NMI_IPI)
263 return -EINVAL;
264 #ifndef CONFIG_NMI_IPI
265 if (msg == PPC_MSG_NMI_IPI)
266 return 1;
267 #endif
268
269 err = request_irq(virq, smp_ipi_action[msg],
270 IRQF_PERCPU | IRQF_NO_THREAD | IRQF_NO_SUSPEND,
271 smp_ipi_name[msg], NULL);
272 WARN(err < 0, "unable to request_irq %d for %s (rc %d)\n",
273 virq, smp_ipi_name[msg], err);
274
275 return err;
276 }
277
278 #ifdef CONFIG_PPC_SMP_MUXED_IPI
279 struct cpu_messages {
280 long messages; /* current messages */
281 };
282 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cpu_messages, ipi_message);
283
smp_muxed_ipi_set_message(int cpu,int msg)284 void smp_muxed_ipi_set_message(int cpu, int msg)
285 {
286 struct cpu_messages *info = &per_cpu(ipi_message, cpu);
287 char *message = (char *)&info->messages;
288
289 /*
290 * Order previous accesses before accesses in the IPI handler.
291 */
292 smp_mb();
293 message[msg] = 1;
294 }
295
smp_muxed_ipi_message_pass(int cpu,int msg)296 void smp_muxed_ipi_message_pass(int cpu, int msg)
297 {
298 smp_muxed_ipi_set_message(cpu, msg);
299
300 /*
301 * cause_ipi functions are required to include a full barrier
302 * before doing whatever causes the IPI.
303 */
304 smp_ops->cause_ipi(cpu);
305 }
306
307 #ifdef __BIG_ENDIAN__
308 #define IPI_MESSAGE(A) (1uL << ((BITS_PER_LONG - 8) - 8 * (A)))
309 #else
310 #define IPI_MESSAGE(A) (1uL << (8 * (A)))
311 #endif
312
smp_ipi_demux(void)313 irqreturn_t smp_ipi_demux(void)
314 {
315 mb(); /* order any irq clear */
316
317 return smp_ipi_demux_relaxed();
318 }
319
320 /* sync-free variant. Callers should ensure synchronization */
smp_ipi_demux_relaxed(void)321 irqreturn_t smp_ipi_demux_relaxed(void)
322 {
323 struct cpu_messages *info;
324 unsigned long all;
325
326 info = this_cpu_ptr(&ipi_message);
327 do {
328 all = xchg(&info->messages, 0);
329 #if defined(CONFIG_KVM_XICS) && defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
330 /*
331 * Must check for PPC_MSG_RM_HOST_ACTION messages
332 * before PPC_MSG_CALL_FUNCTION messages because when
333 * a VM is destroyed, we call kick_all_cpus_sync()
334 * to ensure that any pending PPC_MSG_RM_HOST_ACTION
335 * messages have completed before we free any VCPUs.
336 */
337 if (all & IPI_MESSAGE(PPC_MSG_RM_HOST_ACTION))
338 kvmppc_xics_ipi_action();
339 #endif
340 if (all & IPI_MESSAGE(PPC_MSG_CALL_FUNCTION))
341 generic_smp_call_function_interrupt();
342 if (all & IPI_MESSAGE(PPC_MSG_RESCHEDULE))
343 scheduler_ipi();
344 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
345 if (all & IPI_MESSAGE(PPC_MSG_TICK_BROADCAST))
346 timer_broadcast_interrupt();
347 #endif
348 #ifdef CONFIG_NMI_IPI
349 if (all & IPI_MESSAGE(PPC_MSG_NMI_IPI))
350 nmi_ipi_action(0, NULL);
351 #endif
352 } while (info->messages);
353
354 return IRQ_HANDLED;
355 }
356 #endif /* CONFIG_PPC_SMP_MUXED_IPI */
357
do_message_pass(int cpu,int msg)358 static inline void do_message_pass(int cpu, int msg)
359 {
360 if (smp_ops->message_pass)
361 smp_ops->message_pass(cpu, msg);
362 #ifdef CONFIG_PPC_SMP_MUXED_IPI
363 else
364 smp_muxed_ipi_message_pass(cpu, msg);
365 #endif
366 }
367
smp_send_reschedule(int cpu)368 void smp_send_reschedule(int cpu)
369 {
370 if (likely(smp_ops))
371 do_message_pass(cpu, PPC_MSG_RESCHEDULE);
372 }
373 EXPORT_SYMBOL_GPL(smp_send_reschedule);
374
arch_send_call_function_single_ipi(int cpu)375 void arch_send_call_function_single_ipi(int cpu)
376 {
377 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
378 }
379
arch_send_call_function_ipi_mask(const struct cpumask * mask)380 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
381 {
382 unsigned int cpu;
383
384 for_each_cpu(cpu, mask)
385 do_message_pass(cpu, PPC_MSG_CALL_FUNCTION);
386 }
387
388 #ifdef CONFIG_NMI_IPI
389
390 /*
391 * "NMI IPI" system.
392 *
393 * NMI IPIs may not be recoverable, so should not be used as ongoing part of
394 * a running system. They can be used for crash, debug, halt/reboot, etc.
395 *
396 * The IPI call waits with interrupts disabled until all targets enter the
397 * NMI handler, then returns. Subsequent IPIs can be issued before targets
398 * have returned from their handlers, so there is no guarantee about
399 * concurrency or re-entrancy.
400 *
401 * A new NMI can be issued before all targets exit the handler.
402 *
403 * The IPI call may time out without all targets entering the NMI handler.
404 * In that case, there is some logic to recover (and ignore subsequent
405 * NMI interrupts that may eventually be raised), but the platform interrupt
406 * handler may not be able to distinguish this from other exception causes,
407 * which may cause a crash.
408 */
409
410 static atomic_t __nmi_ipi_lock = ATOMIC_INIT(0);
411 static struct cpumask nmi_ipi_pending_mask;
412 static bool nmi_ipi_busy = false;
413 static void (*nmi_ipi_function)(struct pt_regs *) = NULL;
414
nmi_ipi_lock_start(unsigned long * flags)415 static void nmi_ipi_lock_start(unsigned long *flags)
416 {
417 raw_local_irq_save(*flags);
418 hard_irq_disable();
419 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1) {
420 raw_local_irq_restore(*flags);
421 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
422 raw_local_irq_save(*flags);
423 hard_irq_disable();
424 }
425 }
426
nmi_ipi_lock(void)427 static void nmi_ipi_lock(void)
428 {
429 while (atomic_cmpxchg(&__nmi_ipi_lock, 0, 1) == 1)
430 spin_until_cond(atomic_read(&__nmi_ipi_lock) == 0);
431 }
432
nmi_ipi_unlock(void)433 static void nmi_ipi_unlock(void)
434 {
435 smp_mb();
436 WARN_ON(atomic_read(&__nmi_ipi_lock) != 1);
437 atomic_set(&__nmi_ipi_lock, 0);
438 }
439
nmi_ipi_unlock_end(unsigned long * flags)440 static void nmi_ipi_unlock_end(unsigned long *flags)
441 {
442 nmi_ipi_unlock();
443 raw_local_irq_restore(*flags);
444 }
445
446 /*
447 * Platform NMI handler calls this to ack
448 */
smp_handle_nmi_ipi(struct pt_regs * regs)449 int smp_handle_nmi_ipi(struct pt_regs *regs)
450 {
451 void (*fn)(struct pt_regs *) = NULL;
452 unsigned long flags;
453 int me = raw_smp_processor_id();
454 int ret = 0;
455
456 /*
457 * Unexpected NMIs are possible here because the interrupt may not
458 * be able to distinguish NMI IPIs from other types of NMIs, or
459 * because the caller may have timed out.
460 */
461 nmi_ipi_lock_start(&flags);
462 if (cpumask_test_cpu(me, &nmi_ipi_pending_mask)) {
463 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
464 fn = READ_ONCE(nmi_ipi_function);
465 WARN_ON_ONCE(!fn);
466 ret = 1;
467 }
468 nmi_ipi_unlock_end(&flags);
469
470 if (fn)
471 fn(regs);
472
473 return ret;
474 }
475
do_smp_send_nmi_ipi(int cpu,bool safe)476 static void do_smp_send_nmi_ipi(int cpu, bool safe)
477 {
478 if (!safe && smp_ops->cause_nmi_ipi && smp_ops->cause_nmi_ipi(cpu))
479 return;
480
481 if (cpu >= 0) {
482 do_message_pass(cpu, PPC_MSG_NMI_IPI);
483 } else {
484 int c;
485
486 for_each_online_cpu(c) {
487 if (c == raw_smp_processor_id())
488 continue;
489 do_message_pass(c, PPC_MSG_NMI_IPI);
490 }
491 }
492 }
493
494 /*
495 * - cpu is the target CPU (must not be this CPU), or NMI_IPI_ALL_OTHERS.
496 * - fn is the target callback function.
497 * - delay_us > 0 is the delay before giving up waiting for targets to
498 * begin executing the handler, == 0 specifies indefinite delay.
499 */
__smp_send_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us,bool safe)500 static int __smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *),
501 u64 delay_us, bool safe)
502 {
503 unsigned long flags;
504 int me = raw_smp_processor_id();
505 int ret = 1;
506
507 BUG_ON(cpu == me);
508 BUG_ON(cpu < 0 && cpu != NMI_IPI_ALL_OTHERS);
509
510 if (unlikely(!smp_ops))
511 return 0;
512
513 nmi_ipi_lock_start(&flags);
514 while (nmi_ipi_busy) {
515 nmi_ipi_unlock_end(&flags);
516 spin_until_cond(!nmi_ipi_busy);
517 nmi_ipi_lock_start(&flags);
518 }
519 nmi_ipi_busy = true;
520 nmi_ipi_function = fn;
521
522 WARN_ON_ONCE(!cpumask_empty(&nmi_ipi_pending_mask));
523
524 if (cpu < 0) {
525 /* ALL_OTHERS */
526 cpumask_copy(&nmi_ipi_pending_mask, cpu_online_mask);
527 cpumask_clear_cpu(me, &nmi_ipi_pending_mask);
528 } else {
529 cpumask_set_cpu(cpu, &nmi_ipi_pending_mask);
530 }
531
532 nmi_ipi_unlock();
533
534 /* Interrupts remain hard disabled */
535
536 do_smp_send_nmi_ipi(cpu, safe);
537
538 nmi_ipi_lock();
539 /* nmi_ipi_busy is set here, so unlock/lock is okay */
540 while (!cpumask_empty(&nmi_ipi_pending_mask)) {
541 nmi_ipi_unlock();
542 udelay(1);
543 nmi_ipi_lock();
544 if (delay_us) {
545 delay_us--;
546 if (!delay_us)
547 break;
548 }
549 }
550
551 if (!cpumask_empty(&nmi_ipi_pending_mask)) {
552 /* Timeout waiting for CPUs to call smp_handle_nmi_ipi */
553 ret = 0;
554 cpumask_clear(&nmi_ipi_pending_mask);
555 }
556
557 nmi_ipi_function = NULL;
558 nmi_ipi_busy = false;
559
560 nmi_ipi_unlock_end(&flags);
561
562 return ret;
563 }
564
smp_send_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us)565 int smp_send_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
566 {
567 return __smp_send_nmi_ipi(cpu, fn, delay_us, false);
568 }
569
smp_send_safe_nmi_ipi(int cpu,void (* fn)(struct pt_regs *),u64 delay_us)570 int smp_send_safe_nmi_ipi(int cpu, void (*fn)(struct pt_regs *), u64 delay_us)
571 {
572 return __smp_send_nmi_ipi(cpu, fn, delay_us, true);
573 }
574 #endif /* CONFIG_NMI_IPI */
575
576 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)577 void tick_broadcast(const struct cpumask *mask)
578 {
579 unsigned int cpu;
580
581 for_each_cpu(cpu, mask)
582 do_message_pass(cpu, PPC_MSG_TICK_BROADCAST);
583 }
584 #endif
585
586 #ifdef CONFIG_DEBUGGER
debugger_ipi_callback(struct pt_regs * regs)587 static void debugger_ipi_callback(struct pt_regs *regs)
588 {
589 debugger_ipi(regs);
590 }
591
smp_send_debugger_break(void)592 void smp_send_debugger_break(void)
593 {
594 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, debugger_ipi_callback, 1000000);
595 }
596 #endif
597
598 #ifdef CONFIG_KEXEC_CORE
crash_send_ipi(void (* crash_ipi_callback)(struct pt_regs *))599 void crash_send_ipi(void (*crash_ipi_callback)(struct pt_regs *))
600 {
601 int cpu;
602
603 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, crash_ipi_callback, 1000000);
604 if (kdump_in_progress() && crash_wake_offline) {
605 for_each_present_cpu(cpu) {
606 if (cpu_online(cpu))
607 continue;
608 /*
609 * crash_ipi_callback will wait for
610 * all cpus, including offline CPUs.
611 * We don't care about nmi_ipi_function.
612 * Offline cpus will jump straight into
613 * crash_ipi_callback, we can skip the
614 * entire NMI dance and waiting for
615 * cpus to clear pending mask, etc.
616 */
617 do_smp_send_nmi_ipi(cpu, false);
618 }
619 }
620 }
621 #endif
622
623 #ifdef CONFIG_NMI_IPI
nmi_stop_this_cpu(struct pt_regs * regs)624 static void nmi_stop_this_cpu(struct pt_regs *regs)
625 {
626 /*
627 * IRQs are already hard disabled by the smp_handle_nmi_ipi.
628 */
629 set_cpu_online(smp_processor_id(), false);
630
631 spin_begin();
632 while (1)
633 spin_cpu_relax();
634 }
635
smp_send_stop(void)636 void smp_send_stop(void)
637 {
638 smp_send_nmi_ipi(NMI_IPI_ALL_OTHERS, nmi_stop_this_cpu, 1000000);
639 }
640
641 #else /* CONFIG_NMI_IPI */
642
stop_this_cpu(void * dummy)643 static void stop_this_cpu(void *dummy)
644 {
645 hard_irq_disable();
646
647 /*
648 * Offlining CPUs in stop_this_cpu can result in scheduler warnings,
649 * (see commit de6e5d38417e), but printk_safe_flush_on_panic() wants
650 * to know other CPUs are offline before it breaks locks to flush
651 * printk buffers, in case we panic()ed while holding the lock.
652 */
653 set_cpu_online(smp_processor_id(), false);
654
655 spin_begin();
656 while (1)
657 spin_cpu_relax();
658 }
659
smp_send_stop(void)660 void smp_send_stop(void)
661 {
662 static bool stopped = false;
663
664 /*
665 * Prevent waiting on csd lock from a previous smp_send_stop.
666 * This is racy, but in general callers try to do the right
667 * thing and only fire off one smp_send_stop (e.g., see
668 * kernel/panic.c)
669 */
670 if (stopped)
671 return;
672
673 stopped = true;
674
675 smp_call_function(stop_this_cpu, NULL, 0);
676 }
677 #endif /* CONFIG_NMI_IPI */
678
679 struct task_struct *current_set[NR_CPUS];
680
smp_store_cpu_info(int id)681 static void smp_store_cpu_info(int id)
682 {
683 per_cpu(cpu_pvr, id) = mfspr(SPRN_PVR);
684 #ifdef CONFIG_PPC_FSL_BOOK3E
685 per_cpu(next_tlbcam_idx, id)
686 = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) - 1;
687 #endif
688 }
689
690 /*
691 * Relationships between CPUs are maintained in a set of per-cpu cpumasks so
692 * rather than just passing around the cpumask we pass around a function that
693 * returns the that cpumask for the given CPU.
694 */
set_cpus_related(int i,int j,struct cpumask * (* get_cpumask)(int))695 static void set_cpus_related(int i, int j, struct cpumask *(*get_cpumask)(int))
696 {
697 cpumask_set_cpu(i, get_cpumask(j));
698 cpumask_set_cpu(j, get_cpumask(i));
699 }
700
701 #ifdef CONFIG_HOTPLUG_CPU
set_cpus_unrelated(int i,int j,struct cpumask * (* get_cpumask)(int))702 static void set_cpus_unrelated(int i, int j,
703 struct cpumask *(*get_cpumask)(int))
704 {
705 cpumask_clear_cpu(i, get_cpumask(j));
706 cpumask_clear_cpu(j, get_cpumask(i));
707 }
708 #endif
709
710 /*
711 * Extends set_cpus_related. Instead of setting one CPU at a time in
712 * dstmask, set srcmask at oneshot. dstmask should be super set of srcmask.
713 */
or_cpumasks_related(int i,int j,struct cpumask * (* srcmask)(int),struct cpumask * (* dstmask)(int))714 static void or_cpumasks_related(int i, int j, struct cpumask *(*srcmask)(int),
715 struct cpumask *(*dstmask)(int))
716 {
717 struct cpumask *mask;
718 int k;
719
720 mask = srcmask(j);
721 for_each_cpu(k, srcmask(i))
722 cpumask_or(dstmask(k), dstmask(k), mask);
723
724 if (i == j)
725 return;
726
727 mask = srcmask(i);
728 for_each_cpu(k, srcmask(j))
729 cpumask_or(dstmask(k), dstmask(k), mask);
730 }
731
732 /*
733 * parse_thread_groups: Parses the "ibm,thread-groups" device tree
734 * property for the CPU device node @dn and stores
735 * the parsed output in the thread_groups_list
736 * structure @tglp.
737 *
738 * @dn: The device node of the CPU device.
739 * @tglp: Pointer to a thread group list structure into which the parsed
740 * output of "ibm,thread-groups" is stored.
741 *
742 * ibm,thread-groups[0..N-1] array defines which group of threads in
743 * the CPU-device node can be grouped together based on the property.
744 *
745 * This array can represent thread groupings for multiple properties.
746 *
747 * ibm,thread-groups[i + 0] tells us the property based on which the
748 * threads are being grouped together. If this value is 1, it implies
749 * that the threads in the same group share L1, translation cache. If
750 * the value is 2, it implies that the threads in the same group share
751 * the same L2 cache.
752 *
753 * ibm,thread-groups[i+1] tells us how many such thread groups exist for the
754 * property ibm,thread-groups[i]
755 *
756 * ibm,thread-groups[i+2] tells us the number of threads in each such
757 * group.
758 * Suppose k = (ibm,thread-groups[i+1] * ibm,thread-groups[i+2]), then,
759 *
760 * ibm,thread-groups[i+3..i+k+2] (is the list of threads identified by
761 * "ibm,ppc-interrupt-server#s" arranged as per their membership in
762 * the grouping.
763 *
764 * Example:
765 * If "ibm,thread-groups" = [1,2,4,8,10,12,14,9,11,13,15,2,2,4,8,10,12,14,9,11,13,15]
766 * This can be decomposed up into two consecutive arrays:
767 * a) [1,2,4,8,10,12,14,9,11,13,15]
768 * b) [2,2,4,8,10,12,14,9,11,13,15]
769 *
770 * where in,
771 *
772 * a) provides information of Property "1" being shared by "2" groups,
773 * each with "4" threads each. The "ibm,ppc-interrupt-server#s" of
774 * the first group is {8,10,12,14} and the
775 * "ibm,ppc-interrupt-server#s" of the second group is
776 * {9,11,13,15}. Property "1" is indicative of the thread in the
777 * group sharing L1 cache, translation cache and Instruction Data
778 * flow.
779 *
780 * b) provides information of Property "2" being shared by "2" groups,
781 * each group with "4" threads. The "ibm,ppc-interrupt-server#s" of
782 * the first group is {8,10,12,14} and the
783 * "ibm,ppc-interrupt-server#s" of the second group is
784 * {9,11,13,15}. Property "2" indicates that the threads in each
785 * group share the L2-cache.
786 *
787 * Returns 0 on success, -EINVAL if the property does not exist,
788 * -ENODATA if property does not have a value, and -EOVERFLOW if the
789 * property data isn't large enough.
790 */
parse_thread_groups(struct device_node * dn,struct thread_groups_list * tglp)791 static int parse_thread_groups(struct device_node *dn,
792 struct thread_groups_list *tglp)
793 {
794 unsigned int property_idx = 0;
795 u32 *thread_group_array;
796 size_t total_threads;
797 int ret = 0, count;
798 u32 *thread_list;
799 int i = 0;
800
801 count = of_property_count_u32_elems(dn, "ibm,thread-groups");
802 thread_group_array = kcalloc(count, sizeof(u32), GFP_KERNEL);
803 ret = of_property_read_u32_array(dn, "ibm,thread-groups",
804 thread_group_array, count);
805 if (ret)
806 goto out_free;
807
808 while (i < count && property_idx < MAX_THREAD_GROUP_PROPERTIES) {
809 int j;
810 struct thread_groups *tg = &tglp->property_tgs[property_idx++];
811
812 tg->property = thread_group_array[i];
813 tg->nr_groups = thread_group_array[i + 1];
814 tg->threads_per_group = thread_group_array[i + 2];
815 total_threads = tg->nr_groups * tg->threads_per_group;
816
817 thread_list = &thread_group_array[i + 3];
818
819 for (j = 0; j < total_threads; j++)
820 tg->thread_list[j] = thread_list[j];
821 i = i + 3 + total_threads;
822 }
823
824 tglp->nr_properties = property_idx;
825
826 out_free:
827 kfree(thread_group_array);
828 return ret;
829 }
830
831 /*
832 * get_cpu_thread_group_start : Searches the thread group in tg->thread_list
833 * that @cpu belongs to.
834 *
835 * @cpu : The logical CPU whose thread group is being searched.
836 * @tg : The thread-group structure of the CPU node which @cpu belongs
837 * to.
838 *
839 * Returns the index to tg->thread_list that points to the the start
840 * of the thread_group that @cpu belongs to.
841 *
842 * Returns -1 if cpu doesn't belong to any of the groups pointed to by
843 * tg->thread_list.
844 */
get_cpu_thread_group_start(int cpu,struct thread_groups * tg)845 static int get_cpu_thread_group_start(int cpu, struct thread_groups *tg)
846 {
847 int hw_cpu_id = get_hard_smp_processor_id(cpu);
848 int i, j;
849
850 for (i = 0; i < tg->nr_groups; i++) {
851 int group_start = i * tg->threads_per_group;
852
853 for (j = 0; j < tg->threads_per_group; j++) {
854 int idx = group_start + j;
855
856 if (tg->thread_list[idx] == hw_cpu_id)
857 return group_start;
858 }
859 }
860
861 return -1;
862 }
863
get_thread_groups(int cpu,int group_property,int * err)864 static struct thread_groups *__init get_thread_groups(int cpu,
865 int group_property,
866 int *err)
867 {
868 struct device_node *dn = of_get_cpu_node(cpu, NULL);
869 struct thread_groups_list *cpu_tgl = &tgl[cpu];
870 struct thread_groups *tg = NULL;
871 int i;
872 *err = 0;
873
874 if (!dn) {
875 *err = -ENODATA;
876 return NULL;
877 }
878
879 if (!cpu_tgl->nr_properties) {
880 *err = parse_thread_groups(dn, cpu_tgl);
881 if (*err)
882 goto out;
883 }
884
885 for (i = 0; i < cpu_tgl->nr_properties; i++) {
886 if (cpu_tgl->property_tgs[i].property == group_property) {
887 tg = &cpu_tgl->property_tgs[i];
888 break;
889 }
890 }
891
892 if (!tg)
893 *err = -EINVAL;
894 out:
895 of_node_put(dn);
896 return tg;
897 }
898
update_mask_from_threadgroup(cpumask_var_t * mask,struct thread_groups * tg,int cpu,int cpu_group_start)899 static int update_mask_from_threadgroup(cpumask_var_t *mask, struct thread_groups *tg, int cpu, int cpu_group_start)
900 {
901 int first_thread = cpu_first_thread_sibling(cpu);
902 int i;
903
904 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cpu));
905
906 for (i = first_thread; i < first_thread + threads_per_core; i++) {
907 int i_group_start = get_cpu_thread_group_start(i, tg);
908
909 if (unlikely(i_group_start == -1)) {
910 WARN_ON_ONCE(1);
911 return -ENODATA;
912 }
913
914 if (i_group_start == cpu_group_start)
915 cpumask_set_cpu(i, *mask);
916 }
917
918 return 0;
919 }
920
init_thread_group_cache_map(int cpu,int cache_property)921 static int __init init_thread_group_cache_map(int cpu, int cache_property)
922
923 {
924 int cpu_group_start = -1, err = 0;
925 struct thread_groups *tg = NULL;
926 cpumask_var_t *mask = NULL;
927
928 if (cache_property != THREAD_GROUP_SHARE_L1 &&
929 cache_property != THREAD_GROUP_SHARE_L2_L3)
930 return -EINVAL;
931
932 tg = get_thread_groups(cpu, cache_property, &err);
933
934 if (!tg)
935 return err;
936
937 cpu_group_start = get_cpu_thread_group_start(cpu, tg);
938
939 if (unlikely(cpu_group_start == -1)) {
940 WARN_ON_ONCE(1);
941 return -ENODATA;
942 }
943
944 if (cache_property == THREAD_GROUP_SHARE_L1) {
945 mask = &per_cpu(thread_group_l1_cache_map, cpu);
946 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
947 }
948 else if (cache_property == THREAD_GROUP_SHARE_L2_L3) {
949 mask = &per_cpu(thread_group_l2_cache_map, cpu);
950 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
951 mask = &per_cpu(thread_group_l3_cache_map, cpu);
952 update_mask_from_threadgroup(mask, tg, cpu, cpu_group_start);
953 }
954
955
956 return 0;
957 }
958
959 static bool shared_caches;
960
961 #ifdef CONFIG_SCHED_SMT
962 /* cpumask of CPUs with asymmetric SMT dependency */
powerpc_smt_flags(void)963 static int powerpc_smt_flags(void)
964 {
965 int flags = SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
966
967 if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
968 printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
969 flags |= SD_ASYM_PACKING;
970 }
971 return flags;
972 }
973 #endif
974
975 /*
976 * P9 has a slightly odd architecture where pairs of cores share an L2 cache.
977 * This topology makes it *much* cheaper to migrate tasks between adjacent cores
978 * since the migrated task remains cache hot. We want to take advantage of this
979 * at the scheduler level so an extra topology level is required.
980 */
powerpc_shared_cache_flags(void)981 static int powerpc_shared_cache_flags(void)
982 {
983 return SD_SHARE_PKG_RESOURCES;
984 }
985
986 /*
987 * We can't just pass cpu_l2_cache_mask() directly because
988 * returns a non-const pointer and the compiler barfs on that.
989 */
shared_cache_mask(int cpu)990 static const struct cpumask *shared_cache_mask(int cpu)
991 {
992 return per_cpu(cpu_l2_cache_map, cpu);
993 }
994
995 #ifdef CONFIG_SCHED_SMT
smallcore_smt_mask(int cpu)996 static const struct cpumask *smallcore_smt_mask(int cpu)
997 {
998 return cpu_smallcore_mask(cpu);
999 }
1000 #endif
1001
cpu_coregroup_mask(int cpu)1002 static struct cpumask *cpu_coregroup_mask(int cpu)
1003 {
1004 return per_cpu(cpu_coregroup_map, cpu);
1005 }
1006
has_coregroup_support(void)1007 static bool has_coregroup_support(void)
1008 {
1009 return coregroup_enabled;
1010 }
1011
cpu_mc_mask(int cpu)1012 static const struct cpumask *cpu_mc_mask(int cpu)
1013 {
1014 return cpu_coregroup_mask(cpu);
1015 }
1016
1017 static struct sched_domain_topology_level powerpc_topology[] = {
1018 #ifdef CONFIG_SCHED_SMT
1019 { cpu_smt_mask, powerpc_smt_flags, SD_INIT_NAME(SMT) },
1020 #endif
1021 { shared_cache_mask, powerpc_shared_cache_flags, SD_INIT_NAME(CACHE) },
1022 { cpu_mc_mask, SD_INIT_NAME(MC) },
1023 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1024 { NULL, },
1025 };
1026
init_big_cores(void)1027 static int __init init_big_cores(void)
1028 {
1029 int cpu;
1030
1031 for_each_possible_cpu(cpu) {
1032 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L1);
1033
1034 if (err)
1035 return err;
1036
1037 zalloc_cpumask_var_node(&per_cpu(cpu_smallcore_map, cpu),
1038 GFP_KERNEL,
1039 cpu_to_node(cpu));
1040 }
1041
1042 has_big_cores = true;
1043
1044 for_each_possible_cpu(cpu) {
1045 int err = init_thread_group_cache_map(cpu, THREAD_GROUP_SHARE_L2_L3);
1046
1047 if (err)
1048 return err;
1049 }
1050
1051 thread_group_shares_l2 = true;
1052 thread_group_shares_l3 = true;
1053 pr_debug("L2/L3 cache only shared by the threads in the small core\n");
1054
1055 return 0;
1056 }
1057
smp_prepare_cpus(unsigned int max_cpus)1058 void __init smp_prepare_cpus(unsigned int max_cpus)
1059 {
1060 unsigned int cpu;
1061
1062 DBG("smp_prepare_cpus\n");
1063
1064 /*
1065 * setup_cpu may need to be called on the boot cpu. We havent
1066 * spun any cpus up but lets be paranoid.
1067 */
1068 BUG_ON(boot_cpuid != smp_processor_id());
1069
1070 /* Fixup boot cpu */
1071 smp_store_cpu_info(boot_cpuid);
1072 cpu_callin_map[boot_cpuid] = 1;
1073
1074 for_each_possible_cpu(cpu) {
1075 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu),
1076 GFP_KERNEL, cpu_to_node(cpu));
1077 zalloc_cpumask_var_node(&per_cpu(cpu_l2_cache_map, cpu),
1078 GFP_KERNEL, cpu_to_node(cpu));
1079 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu),
1080 GFP_KERNEL, cpu_to_node(cpu));
1081 if (has_coregroup_support())
1082 zalloc_cpumask_var_node(&per_cpu(cpu_coregroup_map, cpu),
1083 GFP_KERNEL, cpu_to_node(cpu));
1084
1085 #ifdef CONFIG_NUMA
1086 /*
1087 * numa_node_id() works after this.
1088 */
1089 if (cpu_present(cpu)) {
1090 set_cpu_numa_node(cpu, numa_cpu_lookup_table[cpu]);
1091 set_cpu_numa_mem(cpu,
1092 local_memory_node(numa_cpu_lookup_table[cpu]));
1093 }
1094 #endif
1095 }
1096
1097 /* Init the cpumasks so the boot CPU is related to itself */
1098 cpumask_set_cpu(boot_cpuid, cpu_sibling_mask(boot_cpuid));
1099 cpumask_set_cpu(boot_cpuid, cpu_l2_cache_mask(boot_cpuid));
1100 cpumask_set_cpu(boot_cpuid, cpu_core_mask(boot_cpuid));
1101
1102 if (has_coregroup_support())
1103 cpumask_set_cpu(boot_cpuid, cpu_coregroup_mask(boot_cpuid));
1104
1105 init_big_cores();
1106 if (has_big_cores) {
1107 cpumask_set_cpu(boot_cpuid,
1108 cpu_smallcore_mask(boot_cpuid));
1109 }
1110
1111 if (cpu_to_chip_id(boot_cpuid) != -1) {
1112 int idx = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1113
1114 /*
1115 * All threads of a core will all belong to the same core,
1116 * chip_id_lookup_table will have one entry per core.
1117 * Assumption: if boot_cpuid doesn't have a chip-id, then no
1118 * other CPUs, will also not have chip-id.
1119 */
1120 chip_id_lookup_table = kcalloc(idx, sizeof(int), GFP_KERNEL);
1121 if (chip_id_lookup_table)
1122 memset(chip_id_lookup_table, -1, sizeof(int) * idx);
1123 }
1124
1125 if (smp_ops && smp_ops->probe)
1126 smp_ops->probe();
1127 }
1128
smp_prepare_boot_cpu(void)1129 void smp_prepare_boot_cpu(void)
1130 {
1131 BUG_ON(smp_processor_id() != boot_cpuid);
1132 #ifdef CONFIG_PPC64
1133 paca_ptrs[boot_cpuid]->__current = current;
1134 #endif
1135 set_numa_node(numa_cpu_lookup_table[boot_cpuid]);
1136 current_set[boot_cpuid] = current;
1137 }
1138
1139 #ifdef CONFIG_HOTPLUG_CPU
1140
generic_cpu_disable(void)1141 int generic_cpu_disable(void)
1142 {
1143 unsigned int cpu = smp_processor_id();
1144
1145 if (cpu == boot_cpuid)
1146 return -EBUSY;
1147
1148 set_cpu_online(cpu, false);
1149 #ifdef CONFIG_PPC64
1150 vdso_data->processorCount--;
1151 #endif
1152 /* Update affinity of all IRQs previously aimed at this CPU */
1153 irq_migrate_all_off_this_cpu();
1154
1155 /*
1156 * Depending on the details of the interrupt controller, it's possible
1157 * that one of the interrupts we just migrated away from this CPU is
1158 * actually already pending on this CPU. If we leave it in that state
1159 * the interrupt will never be EOI'ed, and will never fire again. So
1160 * temporarily enable interrupts here, to allow any pending interrupt to
1161 * be received (and EOI'ed), before we take this CPU offline.
1162 */
1163 local_irq_enable();
1164 mdelay(1);
1165 local_irq_disable();
1166
1167 return 0;
1168 }
1169
generic_cpu_die(unsigned int cpu)1170 void generic_cpu_die(unsigned int cpu)
1171 {
1172 int i;
1173
1174 for (i = 0; i < 100; i++) {
1175 smp_rmb();
1176 if (is_cpu_dead(cpu))
1177 return;
1178 msleep(100);
1179 }
1180 printk(KERN_ERR "CPU%d didn't die...\n", cpu);
1181 }
1182
generic_set_cpu_dead(unsigned int cpu)1183 void generic_set_cpu_dead(unsigned int cpu)
1184 {
1185 per_cpu(cpu_state, cpu) = CPU_DEAD;
1186 }
1187
1188 /*
1189 * The cpu_state should be set to CPU_UP_PREPARE in kick_cpu(), otherwise
1190 * the cpu_state is always CPU_DEAD after calling generic_set_cpu_dead(),
1191 * which makes the delay in generic_cpu_die() not happen.
1192 */
generic_set_cpu_up(unsigned int cpu)1193 void generic_set_cpu_up(unsigned int cpu)
1194 {
1195 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1196 }
1197
generic_check_cpu_restart(unsigned int cpu)1198 int generic_check_cpu_restart(unsigned int cpu)
1199 {
1200 return per_cpu(cpu_state, cpu) == CPU_UP_PREPARE;
1201 }
1202
is_cpu_dead(unsigned int cpu)1203 int is_cpu_dead(unsigned int cpu)
1204 {
1205 return per_cpu(cpu_state, cpu) == CPU_DEAD;
1206 }
1207
secondaries_inhibited(void)1208 static bool secondaries_inhibited(void)
1209 {
1210 return kvm_hv_mode_active();
1211 }
1212
1213 #else /* HOTPLUG_CPU */
1214
1215 #define secondaries_inhibited() 0
1216
1217 #endif
1218
cpu_idle_thread_init(unsigned int cpu,struct task_struct * idle)1219 static void cpu_idle_thread_init(unsigned int cpu, struct task_struct *idle)
1220 {
1221 #ifdef CONFIG_PPC64
1222 paca_ptrs[cpu]->__current = idle;
1223 paca_ptrs[cpu]->kstack = (unsigned long)task_stack_page(idle) +
1224 THREAD_SIZE - STACK_FRAME_OVERHEAD;
1225 #endif
1226 task_thread_info(idle)->cpu = cpu;
1227 secondary_current = current_set[cpu] = idle;
1228 }
1229
__cpu_up(unsigned int cpu,struct task_struct * tidle)1230 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1231 {
1232 int rc, c;
1233
1234 /*
1235 * Don't allow secondary threads to come online if inhibited
1236 */
1237 if (threads_per_core > 1 && secondaries_inhibited() &&
1238 cpu_thread_in_subcore(cpu))
1239 return -EBUSY;
1240
1241 if (smp_ops == NULL ||
1242 (smp_ops->cpu_bootable && !smp_ops->cpu_bootable(cpu)))
1243 return -EINVAL;
1244
1245 cpu_idle_thread_init(cpu, tidle);
1246
1247 /*
1248 * The platform might need to allocate resources prior to bringing
1249 * up the CPU
1250 */
1251 if (smp_ops->prepare_cpu) {
1252 rc = smp_ops->prepare_cpu(cpu);
1253 if (rc)
1254 return rc;
1255 }
1256
1257 /* Make sure callin-map entry is 0 (can be leftover a CPU
1258 * hotplug
1259 */
1260 cpu_callin_map[cpu] = 0;
1261
1262 /* The information for processor bringup must
1263 * be written out to main store before we release
1264 * the processor.
1265 */
1266 smp_mb();
1267
1268 /* wake up cpus */
1269 DBG("smp: kicking cpu %d\n", cpu);
1270 rc = smp_ops->kick_cpu(cpu);
1271 if (rc) {
1272 pr_err("smp: failed starting cpu %d (rc %d)\n", cpu, rc);
1273 return rc;
1274 }
1275
1276 /*
1277 * wait to see if the cpu made a callin (is actually up).
1278 * use this value that I found through experimentation.
1279 * -- Cort
1280 */
1281 if (system_state < SYSTEM_RUNNING)
1282 for (c = 50000; c && !cpu_callin_map[cpu]; c--)
1283 udelay(100);
1284 #ifdef CONFIG_HOTPLUG_CPU
1285 else
1286 /*
1287 * CPUs can take much longer to come up in the
1288 * hotplug case. Wait five seconds.
1289 */
1290 for (c = 5000; c && !cpu_callin_map[cpu]; c--)
1291 msleep(1);
1292 #endif
1293
1294 if (!cpu_callin_map[cpu]) {
1295 printk(KERN_ERR "Processor %u is stuck.\n", cpu);
1296 return -ENOENT;
1297 }
1298
1299 DBG("Processor %u found.\n", cpu);
1300
1301 if (smp_ops->give_timebase)
1302 smp_ops->give_timebase();
1303
1304 /* Wait until cpu puts itself in the online & active maps */
1305 spin_until_cond(cpu_online(cpu));
1306
1307 return 0;
1308 }
1309
1310 /* Return the value of the reg property corresponding to the given
1311 * logical cpu.
1312 */
cpu_to_core_id(int cpu)1313 int cpu_to_core_id(int cpu)
1314 {
1315 struct device_node *np;
1316 int id = -1;
1317
1318 np = of_get_cpu_node(cpu, NULL);
1319 if (!np)
1320 goto out;
1321
1322 id = of_get_cpu_hwid(np, 0);
1323 out:
1324 of_node_put(np);
1325 return id;
1326 }
1327 EXPORT_SYMBOL_GPL(cpu_to_core_id);
1328
1329 /* Helper routines for cpu to core mapping */
cpu_core_index_of_thread(int cpu)1330 int cpu_core_index_of_thread(int cpu)
1331 {
1332 return cpu >> threads_shift;
1333 }
1334 EXPORT_SYMBOL_GPL(cpu_core_index_of_thread);
1335
cpu_first_thread_of_core(int core)1336 int cpu_first_thread_of_core(int core)
1337 {
1338 return core << threads_shift;
1339 }
1340 EXPORT_SYMBOL_GPL(cpu_first_thread_of_core);
1341
1342 /* Must be called when no change can occur to cpu_present_mask,
1343 * i.e. during cpu online or offline.
1344 */
cpu_to_l2cache(int cpu)1345 static struct device_node *cpu_to_l2cache(int cpu)
1346 {
1347 struct device_node *np;
1348 struct device_node *cache;
1349
1350 if (!cpu_present(cpu))
1351 return NULL;
1352
1353 np = of_get_cpu_node(cpu, NULL);
1354 if (np == NULL)
1355 return NULL;
1356
1357 cache = of_find_next_cache_node(np);
1358
1359 of_node_put(np);
1360
1361 return cache;
1362 }
1363
update_mask_by_l2(int cpu,cpumask_var_t * mask)1364 static bool update_mask_by_l2(int cpu, cpumask_var_t *mask)
1365 {
1366 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1367 struct device_node *l2_cache, *np;
1368 int i;
1369
1370 if (has_big_cores)
1371 submask_fn = cpu_smallcore_mask;
1372
1373 /*
1374 * If the threads in a thread-group share L2 cache, then the
1375 * L2-mask can be obtained from thread_group_l2_cache_map.
1376 */
1377 if (thread_group_shares_l2) {
1378 cpumask_set_cpu(cpu, cpu_l2_cache_mask(cpu));
1379
1380 for_each_cpu(i, per_cpu(thread_group_l2_cache_map, cpu)) {
1381 if (cpu_online(i))
1382 set_cpus_related(i, cpu, cpu_l2_cache_mask);
1383 }
1384
1385 /* Verify that L1-cache siblings are a subset of L2 cache-siblings */
1386 if (!cpumask_equal(submask_fn(cpu), cpu_l2_cache_mask(cpu)) &&
1387 !cpumask_subset(submask_fn(cpu), cpu_l2_cache_mask(cpu))) {
1388 pr_warn_once("CPU %d : Inconsistent L1 and L2 cache siblings\n",
1389 cpu);
1390 }
1391
1392 return true;
1393 }
1394
1395 l2_cache = cpu_to_l2cache(cpu);
1396 if (!l2_cache || !*mask) {
1397 /* Assume only core siblings share cache with this CPU */
1398 for_each_cpu(i, cpu_sibling_mask(cpu))
1399 set_cpus_related(cpu, i, cpu_l2_cache_mask);
1400
1401 return false;
1402 }
1403
1404 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1405
1406 /* Update l2-cache mask with all the CPUs that are part of submask */
1407 or_cpumasks_related(cpu, cpu, submask_fn, cpu_l2_cache_mask);
1408
1409 /* Skip all CPUs already part of current CPU l2-cache mask */
1410 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(cpu));
1411
1412 for_each_cpu(i, *mask) {
1413 /*
1414 * when updating the marks the current CPU has not been marked
1415 * online, but we need to update the cache masks
1416 */
1417 np = cpu_to_l2cache(i);
1418
1419 /* Skip all CPUs already part of current CPU l2-cache */
1420 if (np == l2_cache) {
1421 or_cpumasks_related(cpu, i, submask_fn, cpu_l2_cache_mask);
1422 cpumask_andnot(*mask, *mask, submask_fn(i));
1423 } else {
1424 cpumask_andnot(*mask, *mask, cpu_l2_cache_mask(i));
1425 }
1426
1427 of_node_put(np);
1428 }
1429 of_node_put(l2_cache);
1430
1431 return true;
1432 }
1433
1434 #ifdef CONFIG_HOTPLUG_CPU
remove_cpu_from_masks(int cpu)1435 static void remove_cpu_from_masks(int cpu)
1436 {
1437 struct cpumask *(*mask_fn)(int) = cpu_sibling_mask;
1438 int i;
1439
1440 unmap_cpu_from_node(cpu);
1441
1442 if (shared_caches)
1443 mask_fn = cpu_l2_cache_mask;
1444
1445 for_each_cpu(i, mask_fn(cpu)) {
1446 set_cpus_unrelated(cpu, i, cpu_l2_cache_mask);
1447 set_cpus_unrelated(cpu, i, cpu_sibling_mask);
1448 if (has_big_cores)
1449 set_cpus_unrelated(cpu, i, cpu_smallcore_mask);
1450 }
1451
1452 for_each_cpu(i, cpu_core_mask(cpu))
1453 set_cpus_unrelated(cpu, i, cpu_core_mask);
1454
1455 if (has_coregroup_support()) {
1456 for_each_cpu(i, cpu_coregroup_mask(cpu))
1457 set_cpus_unrelated(cpu, i, cpu_coregroup_mask);
1458 }
1459 }
1460 #endif
1461
add_cpu_to_smallcore_masks(int cpu)1462 static inline void add_cpu_to_smallcore_masks(int cpu)
1463 {
1464 int i;
1465
1466 if (!has_big_cores)
1467 return;
1468
1469 cpumask_set_cpu(cpu, cpu_smallcore_mask(cpu));
1470
1471 for_each_cpu(i, per_cpu(thread_group_l1_cache_map, cpu)) {
1472 if (cpu_online(i))
1473 set_cpus_related(i, cpu, cpu_smallcore_mask);
1474 }
1475 }
1476
update_coregroup_mask(int cpu,cpumask_var_t * mask)1477 static void update_coregroup_mask(int cpu, cpumask_var_t *mask)
1478 {
1479 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1480 int coregroup_id = cpu_to_coregroup_id(cpu);
1481 int i;
1482
1483 if (shared_caches)
1484 submask_fn = cpu_l2_cache_mask;
1485
1486 if (!*mask) {
1487 /* Assume only siblings are part of this CPU's coregroup */
1488 for_each_cpu(i, submask_fn(cpu))
1489 set_cpus_related(cpu, i, cpu_coregroup_mask);
1490
1491 return;
1492 }
1493
1494 cpumask_and(*mask, cpu_online_mask, cpu_cpu_mask(cpu));
1495
1496 /* Update coregroup mask with all the CPUs that are part of submask */
1497 or_cpumasks_related(cpu, cpu, submask_fn, cpu_coregroup_mask);
1498
1499 /* Skip all CPUs already part of coregroup mask */
1500 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(cpu));
1501
1502 for_each_cpu(i, *mask) {
1503 /* Skip all CPUs not part of this coregroup */
1504 if (coregroup_id == cpu_to_coregroup_id(i)) {
1505 or_cpumasks_related(cpu, i, submask_fn, cpu_coregroup_mask);
1506 cpumask_andnot(*mask, *mask, submask_fn(i));
1507 } else {
1508 cpumask_andnot(*mask, *mask, cpu_coregroup_mask(i));
1509 }
1510 }
1511 }
1512
add_cpu_to_masks(int cpu)1513 static void add_cpu_to_masks(int cpu)
1514 {
1515 struct cpumask *(*submask_fn)(int) = cpu_sibling_mask;
1516 int first_thread = cpu_first_thread_sibling(cpu);
1517 cpumask_var_t mask;
1518 int chip_id = -1;
1519 bool ret;
1520 int i;
1521
1522 /*
1523 * This CPU will not be in the online mask yet so we need to manually
1524 * add it to it's own thread sibling mask.
1525 */
1526 map_cpu_to_node(cpu, cpu_to_node(cpu));
1527 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
1528 cpumask_set_cpu(cpu, cpu_core_mask(cpu));
1529
1530 for (i = first_thread; i < first_thread + threads_per_core; i++)
1531 if (cpu_online(i))
1532 set_cpus_related(i, cpu, cpu_sibling_mask);
1533
1534 add_cpu_to_smallcore_masks(cpu);
1535
1536 /* In CPU-hotplug path, hence use GFP_ATOMIC */
1537 ret = alloc_cpumask_var_node(&mask, GFP_ATOMIC, cpu_to_node(cpu));
1538 update_mask_by_l2(cpu, &mask);
1539
1540 if (has_coregroup_support())
1541 update_coregroup_mask(cpu, &mask);
1542
1543 if (chip_id_lookup_table && ret)
1544 chip_id = cpu_to_chip_id(cpu);
1545
1546 if (shared_caches)
1547 submask_fn = cpu_l2_cache_mask;
1548
1549 /* Update core_mask with all the CPUs that are part of submask */
1550 or_cpumasks_related(cpu, cpu, submask_fn, cpu_core_mask);
1551
1552 /* Skip all CPUs already part of current CPU core mask */
1553 cpumask_andnot(mask, cpu_online_mask, cpu_core_mask(cpu));
1554
1555 /* If chip_id is -1; limit the cpu_core_mask to within DIE*/
1556 if (chip_id == -1)
1557 cpumask_and(mask, mask, cpu_cpu_mask(cpu));
1558
1559 for_each_cpu(i, mask) {
1560 if (chip_id == cpu_to_chip_id(i)) {
1561 or_cpumasks_related(cpu, i, submask_fn, cpu_core_mask);
1562 cpumask_andnot(mask, mask, submask_fn(i));
1563 } else {
1564 cpumask_andnot(mask, mask, cpu_core_mask(i));
1565 }
1566 }
1567
1568 free_cpumask_var(mask);
1569 }
1570
1571 /* Activate a secondary processor. */
start_secondary(void * unused)1572 void start_secondary(void *unused)
1573 {
1574 unsigned int cpu = raw_smp_processor_id();
1575
1576 /* PPC64 calls setup_kup() in early_setup_secondary() */
1577 if (IS_ENABLED(CONFIG_PPC32))
1578 setup_kup();
1579
1580 mmgrab(&init_mm);
1581 current->active_mm = &init_mm;
1582
1583 smp_store_cpu_info(cpu);
1584 set_dec(tb_ticks_per_jiffy);
1585 rcu_cpu_starting(cpu);
1586 cpu_callin_map[cpu] = 1;
1587
1588 if (smp_ops->setup_cpu)
1589 smp_ops->setup_cpu(cpu);
1590 if (smp_ops->take_timebase)
1591 smp_ops->take_timebase();
1592
1593 secondary_cpu_time_init();
1594
1595 #ifdef CONFIG_PPC64
1596 if (system_state == SYSTEM_RUNNING)
1597 vdso_data->processorCount++;
1598
1599 vdso_getcpu_init();
1600 #endif
1601 set_numa_node(numa_cpu_lookup_table[cpu]);
1602 set_numa_mem(local_memory_node(numa_cpu_lookup_table[cpu]));
1603
1604 /* Update topology CPU masks */
1605 add_cpu_to_masks(cpu);
1606
1607 /*
1608 * Check for any shared caches. Note that this must be done on a
1609 * per-core basis because one core in the pair might be disabled.
1610 */
1611 if (!shared_caches) {
1612 struct cpumask *(*sibling_mask)(int) = cpu_sibling_mask;
1613 struct cpumask *mask = cpu_l2_cache_mask(cpu);
1614
1615 if (has_big_cores)
1616 sibling_mask = cpu_smallcore_mask;
1617
1618 if (cpumask_weight(mask) > cpumask_weight(sibling_mask(cpu)))
1619 shared_caches = true;
1620 }
1621
1622 smp_wmb();
1623 notify_cpu_starting(cpu);
1624 set_cpu_online(cpu, true);
1625
1626 boot_init_stack_canary();
1627
1628 local_irq_enable();
1629
1630 /* We can enable ftrace for secondary cpus now */
1631 this_cpu_enable_ftrace();
1632
1633 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
1634
1635 BUG();
1636 }
1637
setup_profiling_timer(unsigned int multiplier)1638 int setup_profiling_timer(unsigned int multiplier)
1639 {
1640 return 0;
1641 }
1642
fixup_topology(void)1643 static void fixup_topology(void)
1644 {
1645 int i;
1646
1647 #ifdef CONFIG_SCHED_SMT
1648 if (has_big_cores) {
1649 pr_info("Big cores detected but using small core scheduling\n");
1650 powerpc_topology[smt_idx].mask = smallcore_smt_mask;
1651 }
1652 #endif
1653
1654 if (!has_coregroup_support())
1655 powerpc_topology[mc_idx].mask = powerpc_topology[cache_idx].mask;
1656
1657 /*
1658 * Try to consolidate topology levels here instead of
1659 * allowing scheduler to degenerate.
1660 * - Dont consolidate if masks are different.
1661 * - Dont consolidate if sd_flags exists and are different.
1662 */
1663 for (i = 1; i <= die_idx; i++) {
1664 if (powerpc_topology[i].mask != powerpc_topology[i - 1].mask)
1665 continue;
1666
1667 if (powerpc_topology[i].sd_flags && powerpc_topology[i - 1].sd_flags &&
1668 powerpc_topology[i].sd_flags != powerpc_topology[i - 1].sd_flags)
1669 continue;
1670
1671 if (!powerpc_topology[i - 1].sd_flags)
1672 powerpc_topology[i - 1].sd_flags = powerpc_topology[i].sd_flags;
1673
1674 powerpc_topology[i].mask = powerpc_topology[i + 1].mask;
1675 powerpc_topology[i].sd_flags = powerpc_topology[i + 1].sd_flags;
1676 #ifdef CONFIG_SCHED_DEBUG
1677 powerpc_topology[i].name = powerpc_topology[i + 1].name;
1678 #endif
1679 }
1680 }
1681
smp_cpus_done(unsigned int max_cpus)1682 void __init smp_cpus_done(unsigned int max_cpus)
1683 {
1684 /*
1685 * We are running pinned to the boot CPU, see rest_init().
1686 */
1687 if (smp_ops && smp_ops->setup_cpu)
1688 smp_ops->setup_cpu(boot_cpuid);
1689
1690 if (smp_ops && smp_ops->bringup_done)
1691 smp_ops->bringup_done();
1692
1693 dump_numa_cpu_topology();
1694
1695 fixup_topology();
1696 set_sched_topology(powerpc_topology);
1697 }
1698
1699 #ifdef CONFIG_HOTPLUG_CPU
__cpu_disable(void)1700 int __cpu_disable(void)
1701 {
1702 int cpu = smp_processor_id();
1703 int err;
1704
1705 if (!smp_ops->cpu_disable)
1706 return -ENOSYS;
1707
1708 this_cpu_disable_ftrace();
1709
1710 err = smp_ops->cpu_disable();
1711 if (err)
1712 return err;
1713
1714 /* Update sibling maps */
1715 remove_cpu_from_masks(cpu);
1716
1717 return 0;
1718 }
1719
__cpu_die(unsigned int cpu)1720 void __cpu_die(unsigned int cpu)
1721 {
1722 if (smp_ops->cpu_die)
1723 smp_ops->cpu_die(cpu);
1724 }
1725
arch_cpu_idle_dead(void)1726 void arch_cpu_idle_dead(void)
1727 {
1728 /*
1729 * Disable on the down path. This will be re-enabled by
1730 * start_secondary() via start_secondary_resume() below
1731 */
1732 this_cpu_disable_ftrace();
1733
1734 if (smp_ops->cpu_offline_self)
1735 smp_ops->cpu_offline_self();
1736
1737 /* If we return, we re-enter start_secondary */
1738 start_secondary_resume();
1739 }
1740
1741 #endif
1742