1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2019 SUSE
6  *
7  * Author: Joerg Roedel <jroedel@suse.de>
8  */
9 
10 #define pr_fmt(fmt)	"SEV: " fmt
11 
12 #include <linux/sched/debug.h>	/* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/cc_platform.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/sev.h>
25 #include <asm/insn-eval.h>
26 #include <asm/fpu/xcr.h>
27 #include <asm/processor.h>
28 #include <asm/realmode.h>
29 #include <asm/traps.h>
30 #include <asm/svm.h>
31 #include <asm/smp.h>
32 #include <asm/cpu.h>
33 
34 #define DR7_RESET_VALUE        0x400
35 
36 /* For early boot hypervisor communication in SEV-ES enabled guests */
37 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
38 
39 /*
40  * Needs to be in the .data section because we need it NULL before bss is
41  * cleared
42  */
43 static struct ghcb __initdata *boot_ghcb;
44 
45 /* #VC handler runtime per-CPU data */
46 struct sev_es_runtime_data {
47 	struct ghcb ghcb_page;
48 
49 	/*
50 	 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
51 	 * It is needed when an NMI happens while the #VC handler uses the real
52 	 * GHCB, and the NMI handler itself is causing another #VC exception. In
53 	 * that case the GHCB content of the first handler needs to be backed up
54 	 * and restored.
55 	 */
56 	struct ghcb backup_ghcb;
57 
58 	/*
59 	 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
60 	 * There is no need for it to be atomic, because nothing is written to
61 	 * the GHCB between the read and the write of ghcb_active. So it is safe
62 	 * to use it when a nested #VC exception happens before the write.
63 	 *
64 	 * This is necessary for example in the #VC->NMI->#VC case when the NMI
65 	 * happens while the first #VC handler uses the GHCB. When the NMI code
66 	 * raises a second #VC handler it might overwrite the contents of the
67 	 * GHCB written by the first handler. To avoid this the content of the
68 	 * GHCB is saved and restored when the GHCB is detected to be in use
69 	 * already.
70 	 */
71 	bool ghcb_active;
72 	bool backup_ghcb_active;
73 
74 	/*
75 	 * Cached DR7 value - write it on DR7 writes and return it on reads.
76 	 * That value will never make it to the real hardware DR7 as debugging
77 	 * is currently unsupported in SEV-ES guests.
78 	 */
79 	unsigned long dr7;
80 };
81 
82 struct ghcb_state {
83 	struct ghcb *ghcb;
84 };
85 
86 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
87 DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
88 
89 /* Needed in vc_early_forward_exception */
90 void do_early_exception(struct pt_regs *regs, int trapnr);
91 
on_vc_stack(struct pt_regs * regs)92 static __always_inline bool on_vc_stack(struct pt_regs *regs)
93 {
94 	unsigned long sp = regs->sp;
95 
96 	/* User-mode RSP is not trusted */
97 	if (user_mode(regs))
98 		return false;
99 
100 	/* SYSCALL gap still has user-mode RSP */
101 	if (ip_within_syscall_gap(regs))
102 		return false;
103 
104 	return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
105 }
106 
107 /*
108  * This function handles the case when an NMI is raised in the #VC
109  * exception handler entry code, before the #VC handler has switched off
110  * its IST stack. In this case, the IST entry for #VC must be adjusted,
111  * so that any nested #VC exception will not overwrite the stack
112  * contents of the interrupted #VC handler.
113  *
114  * The IST entry is adjusted unconditionally so that it can be also be
115  * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
116  * nested sev_es_ist_exit() call may adjust back the IST entry too
117  * early.
118  *
119  * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
120  * on the NMI IST stack, as they are only called from NMI handling code
121  * right now.
122  */
__sev_es_ist_enter(struct pt_regs * regs)123 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
124 {
125 	unsigned long old_ist, new_ist;
126 
127 	/* Read old IST entry */
128 	new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
129 
130 	/*
131 	 * If NMI happened while on the #VC IST stack, set the new IST
132 	 * value below regs->sp, so that the interrupted stack frame is
133 	 * not overwritten by subsequent #VC exceptions.
134 	 */
135 	if (on_vc_stack(regs))
136 		new_ist = regs->sp;
137 
138 	/*
139 	 * Reserve additional 8 bytes and store old IST value so this
140 	 * adjustment can be unrolled in __sev_es_ist_exit().
141 	 */
142 	new_ist -= sizeof(old_ist);
143 	*(unsigned long *)new_ist = old_ist;
144 
145 	/* Set new IST entry */
146 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
147 }
148 
__sev_es_ist_exit(void)149 void noinstr __sev_es_ist_exit(void)
150 {
151 	unsigned long ist;
152 
153 	/* Read IST entry */
154 	ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
155 
156 	if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
157 		return;
158 
159 	/* Read back old IST entry and write it to the TSS */
160 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
161 }
162 
163 /*
164  * Nothing shall interrupt this code path while holding the per-CPU
165  * GHCB. The backup GHCB is only for NMIs interrupting this path.
166  *
167  * Callers must disable local interrupts around it.
168  */
__sev_get_ghcb(struct ghcb_state * state)169 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
170 {
171 	struct sev_es_runtime_data *data;
172 	struct ghcb *ghcb;
173 
174 	WARN_ON(!irqs_disabled());
175 
176 	data = this_cpu_read(runtime_data);
177 	ghcb = &data->ghcb_page;
178 
179 	if (unlikely(data->ghcb_active)) {
180 		/* GHCB is already in use - save its contents */
181 
182 		if (unlikely(data->backup_ghcb_active)) {
183 			/*
184 			 * Backup-GHCB is also already in use. There is no way
185 			 * to continue here so just kill the machine. To make
186 			 * panic() work, mark GHCBs inactive so that messages
187 			 * can be printed out.
188 			 */
189 			data->ghcb_active        = false;
190 			data->backup_ghcb_active = false;
191 
192 			instrumentation_begin();
193 			panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
194 			instrumentation_end();
195 		}
196 
197 		/* Mark backup_ghcb active before writing to it */
198 		data->backup_ghcb_active = true;
199 
200 		state->ghcb = &data->backup_ghcb;
201 
202 		/* Backup GHCB content */
203 		*state->ghcb = *ghcb;
204 	} else {
205 		state->ghcb = NULL;
206 		data->ghcb_active = true;
207 	}
208 
209 	return ghcb;
210 }
211 
212 /* Needed in vc_early_forward_exception */
213 void do_early_exception(struct pt_regs *regs, int trapnr);
214 
sev_es_rd_ghcb_msr(void)215 static inline u64 sev_es_rd_ghcb_msr(void)
216 {
217 	return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
218 }
219 
sev_es_wr_ghcb_msr(u64 val)220 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
221 {
222 	u32 low, high;
223 
224 	low  = (u32)(val);
225 	high = (u32)(val >> 32);
226 
227 	native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
228 }
229 
vc_fetch_insn_kernel(struct es_em_ctxt * ctxt,unsigned char * buffer)230 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
231 				unsigned char *buffer)
232 {
233 	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
234 }
235 
__vc_decode_user_insn(struct es_em_ctxt * ctxt)236 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
237 {
238 	char buffer[MAX_INSN_SIZE];
239 	int insn_bytes;
240 
241 	insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
242 	if (insn_bytes == 0) {
243 		/* Nothing could be copied */
244 		ctxt->fi.vector     = X86_TRAP_PF;
245 		ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
246 		ctxt->fi.cr2        = ctxt->regs->ip;
247 		return ES_EXCEPTION;
248 	} else if (insn_bytes == -EINVAL) {
249 		/* Effective RIP could not be calculated */
250 		ctxt->fi.vector     = X86_TRAP_GP;
251 		ctxt->fi.error_code = 0;
252 		ctxt->fi.cr2        = 0;
253 		return ES_EXCEPTION;
254 	}
255 
256 	if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
257 		return ES_DECODE_FAILED;
258 
259 	if (ctxt->insn.immediate.got)
260 		return ES_OK;
261 	else
262 		return ES_DECODE_FAILED;
263 }
264 
__vc_decode_kern_insn(struct es_em_ctxt * ctxt)265 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
266 {
267 	char buffer[MAX_INSN_SIZE];
268 	int res, ret;
269 
270 	res = vc_fetch_insn_kernel(ctxt, buffer);
271 	if (res) {
272 		ctxt->fi.vector     = X86_TRAP_PF;
273 		ctxt->fi.error_code = X86_PF_INSTR;
274 		ctxt->fi.cr2        = ctxt->regs->ip;
275 		return ES_EXCEPTION;
276 	}
277 
278 	ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
279 	if (ret < 0)
280 		return ES_DECODE_FAILED;
281 	else
282 		return ES_OK;
283 }
284 
vc_decode_insn(struct es_em_ctxt * ctxt)285 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
286 {
287 	if (user_mode(ctxt->regs))
288 		return __vc_decode_user_insn(ctxt);
289 	else
290 		return __vc_decode_kern_insn(ctxt);
291 }
292 
vc_write_mem(struct es_em_ctxt * ctxt,char * dst,char * buf,size_t size)293 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
294 				   char *dst, char *buf, size_t size)
295 {
296 	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
297 
298 	/*
299 	 * This function uses __put_user() independent of whether kernel or user
300 	 * memory is accessed. This works fine because __put_user() does no
301 	 * sanity checks of the pointer being accessed. All that it does is
302 	 * to report when the access failed.
303 	 *
304 	 * Also, this function runs in atomic context, so __put_user() is not
305 	 * allowed to sleep. The page-fault handler detects that it is running
306 	 * in atomic context and will not try to take mmap_sem and handle the
307 	 * fault, so additional pagefault_enable()/disable() calls are not
308 	 * needed.
309 	 *
310 	 * The access can't be done via copy_to_user() here because
311 	 * vc_write_mem() must not use string instructions to access unsafe
312 	 * memory. The reason is that MOVS is emulated by the #VC handler by
313 	 * splitting the move up into a read and a write and taking a nested #VC
314 	 * exception on whatever of them is the MMIO access. Using string
315 	 * instructions here would cause infinite nesting.
316 	 */
317 	switch (size) {
318 	case 1: {
319 		u8 d1;
320 		u8 __user *target = (u8 __user *)dst;
321 
322 		memcpy(&d1, buf, 1);
323 		if (__put_user(d1, target))
324 			goto fault;
325 		break;
326 	}
327 	case 2: {
328 		u16 d2;
329 		u16 __user *target = (u16 __user *)dst;
330 
331 		memcpy(&d2, buf, 2);
332 		if (__put_user(d2, target))
333 			goto fault;
334 		break;
335 	}
336 	case 4: {
337 		u32 d4;
338 		u32 __user *target = (u32 __user *)dst;
339 
340 		memcpy(&d4, buf, 4);
341 		if (__put_user(d4, target))
342 			goto fault;
343 		break;
344 	}
345 	case 8: {
346 		u64 d8;
347 		u64 __user *target = (u64 __user *)dst;
348 
349 		memcpy(&d8, buf, 8);
350 		if (__put_user(d8, target))
351 			goto fault;
352 		break;
353 	}
354 	default:
355 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
356 		return ES_UNSUPPORTED;
357 	}
358 
359 	return ES_OK;
360 
361 fault:
362 	if (user_mode(ctxt->regs))
363 		error_code |= X86_PF_USER;
364 
365 	ctxt->fi.vector = X86_TRAP_PF;
366 	ctxt->fi.error_code = error_code;
367 	ctxt->fi.cr2 = (unsigned long)dst;
368 
369 	return ES_EXCEPTION;
370 }
371 
vc_read_mem(struct es_em_ctxt * ctxt,char * src,char * buf,size_t size)372 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
373 				  char *src, char *buf, size_t size)
374 {
375 	unsigned long error_code = X86_PF_PROT;
376 
377 	/*
378 	 * This function uses __get_user() independent of whether kernel or user
379 	 * memory is accessed. This works fine because __get_user() does no
380 	 * sanity checks of the pointer being accessed. All that it does is
381 	 * to report when the access failed.
382 	 *
383 	 * Also, this function runs in atomic context, so __get_user() is not
384 	 * allowed to sleep. The page-fault handler detects that it is running
385 	 * in atomic context and will not try to take mmap_sem and handle the
386 	 * fault, so additional pagefault_enable()/disable() calls are not
387 	 * needed.
388 	 *
389 	 * The access can't be done via copy_from_user() here because
390 	 * vc_read_mem() must not use string instructions to access unsafe
391 	 * memory. The reason is that MOVS is emulated by the #VC handler by
392 	 * splitting the move up into a read and a write and taking a nested #VC
393 	 * exception on whatever of them is the MMIO access. Using string
394 	 * instructions here would cause infinite nesting.
395 	 */
396 	switch (size) {
397 	case 1: {
398 		u8 d1;
399 		u8 __user *s = (u8 __user *)src;
400 
401 		if (__get_user(d1, s))
402 			goto fault;
403 		memcpy(buf, &d1, 1);
404 		break;
405 	}
406 	case 2: {
407 		u16 d2;
408 		u16 __user *s = (u16 __user *)src;
409 
410 		if (__get_user(d2, s))
411 			goto fault;
412 		memcpy(buf, &d2, 2);
413 		break;
414 	}
415 	case 4: {
416 		u32 d4;
417 		u32 __user *s = (u32 __user *)src;
418 
419 		if (__get_user(d4, s))
420 			goto fault;
421 		memcpy(buf, &d4, 4);
422 		break;
423 	}
424 	case 8: {
425 		u64 d8;
426 		u64 __user *s = (u64 __user *)src;
427 		if (__get_user(d8, s))
428 			goto fault;
429 		memcpy(buf, &d8, 8);
430 		break;
431 	}
432 	default:
433 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
434 		return ES_UNSUPPORTED;
435 	}
436 
437 	return ES_OK;
438 
439 fault:
440 	if (user_mode(ctxt->regs))
441 		error_code |= X86_PF_USER;
442 
443 	ctxt->fi.vector = X86_TRAP_PF;
444 	ctxt->fi.error_code = error_code;
445 	ctxt->fi.cr2 = (unsigned long)src;
446 
447 	return ES_EXCEPTION;
448 }
449 
vc_slow_virt_to_phys(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned long vaddr,phys_addr_t * paddr)450 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
451 					   unsigned long vaddr, phys_addr_t *paddr)
452 {
453 	unsigned long va = (unsigned long)vaddr;
454 	unsigned int level;
455 	phys_addr_t pa;
456 	pgd_t *pgd;
457 	pte_t *pte;
458 
459 	pgd = __va(read_cr3_pa());
460 	pgd = &pgd[pgd_index(va)];
461 	pte = lookup_address_in_pgd(pgd, va, &level);
462 	if (!pte) {
463 		ctxt->fi.vector     = X86_TRAP_PF;
464 		ctxt->fi.cr2        = vaddr;
465 		ctxt->fi.error_code = 0;
466 
467 		if (user_mode(ctxt->regs))
468 			ctxt->fi.error_code |= X86_PF_USER;
469 
470 		return ES_EXCEPTION;
471 	}
472 
473 	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
474 		/* Emulated MMIO to/from encrypted memory not supported */
475 		return ES_UNSUPPORTED;
476 
477 	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
478 	pa |= va & ~page_level_mask(level);
479 
480 	*paddr = pa;
481 
482 	return ES_OK;
483 }
484 
485 /* Include code shared with pre-decompression boot stage */
486 #include "sev-shared.c"
487 
__sev_put_ghcb(struct ghcb_state * state)488 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
489 {
490 	struct sev_es_runtime_data *data;
491 	struct ghcb *ghcb;
492 
493 	WARN_ON(!irqs_disabled());
494 
495 	data = this_cpu_read(runtime_data);
496 	ghcb = &data->ghcb_page;
497 
498 	if (state->ghcb) {
499 		/* Restore GHCB from Backup */
500 		*ghcb = *state->ghcb;
501 		data->backup_ghcb_active = false;
502 		state->ghcb = NULL;
503 	} else {
504 		/*
505 		 * Invalidate the GHCB so a VMGEXIT instruction issued
506 		 * from userspace won't appear to be valid.
507 		 */
508 		vc_ghcb_invalidate(ghcb);
509 		data->ghcb_active = false;
510 	}
511 }
512 
__sev_es_nmi_complete(void)513 void noinstr __sev_es_nmi_complete(void)
514 {
515 	struct ghcb_state state;
516 	struct ghcb *ghcb;
517 
518 	ghcb = __sev_get_ghcb(&state);
519 
520 	vc_ghcb_invalidate(ghcb);
521 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
522 	ghcb_set_sw_exit_info_1(ghcb, 0);
523 	ghcb_set_sw_exit_info_2(ghcb, 0);
524 
525 	sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
526 	VMGEXIT();
527 
528 	__sev_put_ghcb(&state);
529 }
530 
get_jump_table_addr(void)531 static u64 get_jump_table_addr(void)
532 {
533 	struct ghcb_state state;
534 	unsigned long flags;
535 	struct ghcb *ghcb;
536 	u64 ret = 0;
537 
538 	local_irq_save(flags);
539 
540 	ghcb = __sev_get_ghcb(&state);
541 
542 	vc_ghcb_invalidate(ghcb);
543 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
544 	ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
545 	ghcb_set_sw_exit_info_2(ghcb, 0);
546 
547 	sev_es_wr_ghcb_msr(__pa(ghcb));
548 	VMGEXIT();
549 
550 	if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
551 	    ghcb_sw_exit_info_2_is_valid(ghcb))
552 		ret = ghcb->save.sw_exit_info_2;
553 
554 	__sev_put_ghcb(&state);
555 
556 	local_irq_restore(flags);
557 
558 	return ret;
559 }
560 
sev_es_setup_ap_jump_table(struct real_mode_header * rmh)561 int sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
562 {
563 	u16 startup_cs, startup_ip;
564 	phys_addr_t jump_table_pa;
565 	u64 jump_table_addr;
566 	u16 __iomem *jump_table;
567 
568 	jump_table_addr = get_jump_table_addr();
569 
570 	/* On UP guests there is no jump table so this is not a failure */
571 	if (!jump_table_addr)
572 		return 0;
573 
574 	/* Check if AP Jump Table is page-aligned */
575 	if (jump_table_addr & ~PAGE_MASK)
576 		return -EINVAL;
577 
578 	jump_table_pa = jump_table_addr & PAGE_MASK;
579 
580 	startup_cs = (u16)(rmh->trampoline_start >> 4);
581 	startup_ip = (u16)(rmh->sev_es_trampoline_start -
582 			   rmh->trampoline_start);
583 
584 	jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
585 	if (!jump_table)
586 		return -EIO;
587 
588 	writew(startup_ip, &jump_table[0]);
589 	writew(startup_cs, &jump_table[1]);
590 
591 	iounmap(jump_table);
592 
593 	return 0;
594 }
595 
596 /*
597  * This is needed by the OVMF UEFI firmware which will use whatever it finds in
598  * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
599  * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
600  */
sev_es_efi_map_ghcbs(pgd_t * pgd)601 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
602 {
603 	struct sev_es_runtime_data *data;
604 	unsigned long address, pflags;
605 	int cpu;
606 	u64 pfn;
607 
608 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
609 		return 0;
610 
611 	pflags = _PAGE_NX | _PAGE_RW;
612 
613 	for_each_possible_cpu(cpu) {
614 		data = per_cpu(runtime_data, cpu);
615 
616 		address = __pa(&data->ghcb_page);
617 		pfn = address >> PAGE_SHIFT;
618 
619 		if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
620 			return 1;
621 	}
622 
623 	return 0;
624 }
625 
vc_handle_msr(struct ghcb * ghcb,struct es_em_ctxt * ctxt)626 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
627 {
628 	struct pt_regs *regs = ctxt->regs;
629 	enum es_result ret;
630 	u64 exit_info_1;
631 
632 	/* Is it a WRMSR? */
633 	exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
634 
635 	ghcb_set_rcx(ghcb, regs->cx);
636 	if (exit_info_1) {
637 		ghcb_set_rax(ghcb, regs->ax);
638 		ghcb_set_rdx(ghcb, regs->dx);
639 	}
640 
641 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_MSR,
642 				  exit_info_1, 0);
643 
644 	if ((ret == ES_OK) && (!exit_info_1)) {
645 		regs->ax = ghcb->save.rax;
646 		regs->dx = ghcb->save.rdx;
647 	}
648 
649 	return ret;
650 }
651 
652 /*
653  * This function runs on the first #VC exception after the kernel
654  * switched to virtual addresses.
655  */
sev_es_setup_ghcb(void)656 static bool __init sev_es_setup_ghcb(void)
657 {
658 	/* First make sure the hypervisor talks a supported protocol. */
659 	if (!sev_es_negotiate_protocol())
660 		return false;
661 
662 	/*
663 	 * Clear the boot_ghcb. The first exception comes in before the bss
664 	 * section is cleared.
665 	 */
666 	memset(&boot_ghcb_page, 0, PAGE_SIZE);
667 
668 	/* Alright - Make the boot-ghcb public */
669 	boot_ghcb = &boot_ghcb_page;
670 
671 	return true;
672 }
673 
674 #ifdef CONFIG_HOTPLUG_CPU
sev_es_ap_hlt_loop(void)675 static void sev_es_ap_hlt_loop(void)
676 {
677 	struct ghcb_state state;
678 	struct ghcb *ghcb;
679 
680 	ghcb = __sev_get_ghcb(&state);
681 
682 	while (true) {
683 		vc_ghcb_invalidate(ghcb);
684 		ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
685 		ghcb_set_sw_exit_info_1(ghcb, 0);
686 		ghcb_set_sw_exit_info_2(ghcb, 0);
687 
688 		sev_es_wr_ghcb_msr(__pa(ghcb));
689 		VMGEXIT();
690 
691 		/* Wakeup signal? */
692 		if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
693 		    ghcb->save.sw_exit_info_2)
694 			break;
695 	}
696 
697 	__sev_put_ghcb(&state);
698 }
699 
700 /*
701  * Play_dead handler when running under SEV-ES. This is needed because
702  * the hypervisor can't deliver an SIPI request to restart the AP.
703  * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
704  * hypervisor wakes it up again.
705  */
sev_es_play_dead(void)706 static void sev_es_play_dead(void)
707 {
708 	play_dead_common();
709 
710 	/* IRQs now disabled */
711 
712 	sev_es_ap_hlt_loop();
713 
714 	/*
715 	 * If we get here, the VCPU was woken up again. Jump to CPU
716 	 * startup code to get it back online.
717 	 */
718 	start_cpu0();
719 }
720 #else  /* CONFIG_HOTPLUG_CPU */
721 #define sev_es_play_dead	native_play_dead
722 #endif /* CONFIG_HOTPLUG_CPU */
723 
724 #ifdef CONFIG_SMP
sev_es_setup_play_dead(void)725 static void __init sev_es_setup_play_dead(void)
726 {
727 	smp_ops.play_dead = sev_es_play_dead;
728 }
729 #else
sev_es_setup_play_dead(void)730 static inline void sev_es_setup_play_dead(void) { }
731 #endif
732 
alloc_runtime_data(int cpu)733 static void __init alloc_runtime_data(int cpu)
734 {
735 	struct sev_es_runtime_data *data;
736 
737 	data = memblock_alloc(sizeof(*data), PAGE_SIZE);
738 	if (!data)
739 		panic("Can't allocate SEV-ES runtime data");
740 
741 	per_cpu(runtime_data, cpu) = data;
742 }
743 
init_ghcb(int cpu)744 static void __init init_ghcb(int cpu)
745 {
746 	struct sev_es_runtime_data *data;
747 	int err;
748 
749 	data = per_cpu(runtime_data, cpu);
750 
751 	err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
752 					 sizeof(data->ghcb_page));
753 	if (err)
754 		panic("Can't map GHCBs unencrypted");
755 
756 	memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
757 
758 	data->ghcb_active = false;
759 	data->backup_ghcb_active = false;
760 }
761 
sev_es_init_vc_handling(void)762 void __init sev_es_init_vc_handling(void)
763 {
764 	int cpu;
765 
766 	BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
767 
768 	if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
769 		return;
770 
771 	if (!sev_es_check_cpu_features())
772 		panic("SEV-ES CPU Features missing");
773 
774 	/* Enable SEV-ES special handling */
775 	static_branch_enable(&sev_es_enable_key);
776 
777 	/* Initialize per-cpu GHCB pages */
778 	for_each_possible_cpu(cpu) {
779 		alloc_runtime_data(cpu);
780 		init_ghcb(cpu);
781 	}
782 
783 	sev_es_setup_play_dead();
784 
785 	/* Secondary CPUs use the runtime #VC handler */
786 	initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
787 }
788 
vc_early_forward_exception(struct es_em_ctxt * ctxt)789 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
790 {
791 	int trapnr = ctxt->fi.vector;
792 
793 	if (trapnr == X86_TRAP_PF)
794 		native_write_cr2(ctxt->fi.cr2);
795 
796 	ctxt->regs->orig_ax = ctxt->fi.error_code;
797 	do_early_exception(ctxt->regs, trapnr);
798 }
799 
vc_insn_get_reg(struct es_em_ctxt * ctxt)800 static long *vc_insn_get_reg(struct es_em_ctxt *ctxt)
801 {
802 	long *reg_array;
803 	int offset;
804 
805 	reg_array = (long *)ctxt->regs;
806 	offset    = insn_get_modrm_reg_off(&ctxt->insn, ctxt->regs);
807 
808 	if (offset < 0)
809 		return NULL;
810 
811 	offset /= sizeof(long);
812 
813 	return reg_array + offset;
814 }
815 
vc_insn_get_rm(struct es_em_ctxt * ctxt)816 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
817 {
818 	long *reg_array;
819 	int offset;
820 
821 	reg_array = (long *)ctxt->regs;
822 	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
823 
824 	if (offset < 0)
825 		return NULL;
826 
827 	offset /= sizeof(long);
828 
829 	return reg_array + offset;
830 }
vc_do_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned int bytes,bool read)831 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
832 				 unsigned int bytes, bool read)
833 {
834 	u64 exit_code, exit_info_1, exit_info_2;
835 	unsigned long ghcb_pa = __pa(ghcb);
836 	enum es_result res;
837 	phys_addr_t paddr;
838 	void __user *ref;
839 
840 	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
841 	if (ref == (void __user *)-1L)
842 		return ES_UNSUPPORTED;
843 
844 	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
845 
846 	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
847 	if (res != ES_OK) {
848 		if (res == ES_EXCEPTION && !read)
849 			ctxt->fi.error_code |= X86_PF_WRITE;
850 
851 		return res;
852 	}
853 
854 	exit_info_1 = paddr;
855 	/* Can never be greater than 8 */
856 	exit_info_2 = bytes;
857 
858 	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
859 
860 	return sev_es_ghcb_hv_call(ghcb, true, ctxt, exit_code, exit_info_1, exit_info_2);
861 }
862 
vc_handle_mmio_twobyte_ops(struct ghcb * ghcb,struct es_em_ctxt * ctxt)863 static enum es_result vc_handle_mmio_twobyte_ops(struct ghcb *ghcb,
864 						 struct es_em_ctxt *ctxt)
865 {
866 	struct insn *insn = &ctxt->insn;
867 	unsigned int bytes = 0;
868 	enum es_result ret;
869 	int sign_byte;
870 	long *reg_data;
871 
872 	switch (insn->opcode.bytes[1]) {
873 		/* MMIO Read w/ zero-extension */
874 	case 0xb6:
875 		bytes = 1;
876 		fallthrough;
877 	case 0xb7:
878 		if (!bytes)
879 			bytes = 2;
880 
881 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
882 		if (ret)
883 			break;
884 
885 		/* Zero extend based on operand size */
886 		reg_data = vc_insn_get_reg(ctxt);
887 		if (!reg_data)
888 			return ES_DECODE_FAILED;
889 
890 		memset(reg_data, 0, insn->opnd_bytes);
891 
892 		memcpy(reg_data, ghcb->shared_buffer, bytes);
893 		break;
894 
895 		/* MMIO Read w/ sign-extension */
896 	case 0xbe:
897 		bytes = 1;
898 		fallthrough;
899 	case 0xbf:
900 		if (!bytes)
901 			bytes = 2;
902 
903 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
904 		if (ret)
905 			break;
906 
907 		/* Sign extend based on operand size */
908 		reg_data = vc_insn_get_reg(ctxt);
909 		if (!reg_data)
910 			return ES_DECODE_FAILED;
911 
912 		if (bytes == 1) {
913 			u8 *val = (u8 *)ghcb->shared_buffer;
914 
915 			sign_byte = (*val & 0x80) ? 0xff : 0x00;
916 		} else {
917 			u16 *val = (u16 *)ghcb->shared_buffer;
918 
919 			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
920 		}
921 		memset(reg_data, sign_byte, insn->opnd_bytes);
922 
923 		memcpy(reg_data, ghcb->shared_buffer, bytes);
924 		break;
925 
926 	default:
927 		ret = ES_UNSUPPORTED;
928 	}
929 
930 	return ret;
931 }
932 
933 /*
934  * The MOVS instruction has two memory operands, which raises the
935  * problem that it is not known whether the access to the source or the
936  * destination caused the #VC exception (and hence whether an MMIO read
937  * or write operation needs to be emulated).
938  *
939  * Instead of playing games with walking page-tables and trying to guess
940  * whether the source or destination is an MMIO range, split the move
941  * into two operations, a read and a write with only one memory operand.
942  * This will cause a nested #VC exception on the MMIO address which can
943  * then be handled.
944  *
945  * This implementation has the benefit that it also supports MOVS where
946  * source _and_ destination are MMIO regions.
947  *
948  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
949  * rare operation. If it turns out to be a performance problem the split
950  * operations can be moved to memcpy_fromio() and memcpy_toio().
951  */
vc_handle_mmio_movs(struct es_em_ctxt * ctxt,unsigned int bytes)952 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
953 					  unsigned int bytes)
954 {
955 	unsigned long ds_base, es_base;
956 	unsigned char *src, *dst;
957 	unsigned char buffer[8];
958 	enum es_result ret;
959 	bool rep;
960 	int off;
961 
962 	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
963 	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
964 
965 	if (ds_base == -1L || es_base == -1L) {
966 		ctxt->fi.vector = X86_TRAP_GP;
967 		ctxt->fi.error_code = 0;
968 		return ES_EXCEPTION;
969 	}
970 
971 	src = ds_base + (unsigned char *)ctxt->regs->si;
972 	dst = es_base + (unsigned char *)ctxt->regs->di;
973 
974 	ret = vc_read_mem(ctxt, src, buffer, bytes);
975 	if (ret != ES_OK)
976 		return ret;
977 
978 	ret = vc_write_mem(ctxt, dst, buffer, bytes);
979 	if (ret != ES_OK)
980 		return ret;
981 
982 	if (ctxt->regs->flags & X86_EFLAGS_DF)
983 		off = -bytes;
984 	else
985 		off =  bytes;
986 
987 	ctxt->regs->si += off;
988 	ctxt->regs->di += off;
989 
990 	rep = insn_has_rep_prefix(&ctxt->insn);
991 	if (rep)
992 		ctxt->regs->cx -= 1;
993 
994 	if (!rep || ctxt->regs->cx == 0)
995 		return ES_OK;
996 	else
997 		return ES_RETRY;
998 }
999 
vc_handle_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1000 static enum es_result vc_handle_mmio(struct ghcb *ghcb,
1001 				     struct es_em_ctxt *ctxt)
1002 {
1003 	struct insn *insn = &ctxt->insn;
1004 	unsigned int bytes = 0;
1005 	enum es_result ret;
1006 	long *reg_data;
1007 
1008 	switch (insn->opcode.bytes[0]) {
1009 	/* MMIO Write */
1010 	case 0x88:
1011 		bytes = 1;
1012 		fallthrough;
1013 	case 0x89:
1014 		if (!bytes)
1015 			bytes = insn->opnd_bytes;
1016 
1017 		reg_data = vc_insn_get_reg(ctxt);
1018 		if (!reg_data)
1019 			return ES_DECODE_FAILED;
1020 
1021 		memcpy(ghcb->shared_buffer, reg_data, bytes);
1022 
1023 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1024 		break;
1025 
1026 	case 0xc6:
1027 		bytes = 1;
1028 		fallthrough;
1029 	case 0xc7:
1030 		if (!bytes)
1031 			bytes = insn->opnd_bytes;
1032 
1033 		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1034 
1035 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1036 		break;
1037 
1038 		/* MMIO Read */
1039 	case 0x8a:
1040 		bytes = 1;
1041 		fallthrough;
1042 	case 0x8b:
1043 		if (!bytes)
1044 			bytes = insn->opnd_bytes;
1045 
1046 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1047 		if (ret)
1048 			break;
1049 
1050 		reg_data = vc_insn_get_reg(ctxt);
1051 		if (!reg_data)
1052 			return ES_DECODE_FAILED;
1053 
1054 		/* Zero-extend for 32-bit operation */
1055 		if (bytes == 4)
1056 			*reg_data = 0;
1057 
1058 		memcpy(reg_data, ghcb->shared_buffer, bytes);
1059 		break;
1060 
1061 		/* MOVS instruction */
1062 	case 0xa4:
1063 		bytes = 1;
1064 		fallthrough;
1065 	case 0xa5:
1066 		if (!bytes)
1067 			bytes = insn->opnd_bytes;
1068 
1069 		ret = vc_handle_mmio_movs(ctxt, bytes);
1070 		break;
1071 		/* Two-Byte Opcodes */
1072 	case 0x0f:
1073 		ret = vc_handle_mmio_twobyte_ops(ghcb, ctxt);
1074 		break;
1075 	default:
1076 		ret = ES_UNSUPPORTED;
1077 	}
1078 
1079 	return ret;
1080 }
1081 
vc_handle_dr7_write(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1082 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1083 					  struct es_em_ctxt *ctxt)
1084 {
1085 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1086 	long val, *reg = vc_insn_get_rm(ctxt);
1087 	enum es_result ret;
1088 
1089 	if (!reg)
1090 		return ES_DECODE_FAILED;
1091 
1092 	val = *reg;
1093 
1094 	/* Upper 32 bits must be written as zeroes */
1095 	if (val >> 32) {
1096 		ctxt->fi.vector = X86_TRAP_GP;
1097 		ctxt->fi.error_code = 0;
1098 		return ES_EXCEPTION;
1099 	}
1100 
1101 	/* Clear out other reserved bits and set bit 10 */
1102 	val = (val & 0xffff23ffL) | BIT(10);
1103 
1104 	/* Early non-zero writes to DR7 are not supported */
1105 	if (!data && (val & ~DR7_RESET_VALUE))
1106 		return ES_UNSUPPORTED;
1107 
1108 	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
1109 	ghcb_set_rax(ghcb, val);
1110 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1111 	if (ret != ES_OK)
1112 		return ret;
1113 
1114 	if (data)
1115 		data->dr7 = val;
1116 
1117 	return ES_OK;
1118 }
1119 
vc_handle_dr7_read(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1120 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1121 					 struct es_em_ctxt *ctxt)
1122 {
1123 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1124 	long *reg = vc_insn_get_rm(ctxt);
1125 
1126 	if (!reg)
1127 		return ES_DECODE_FAILED;
1128 
1129 	if (data)
1130 		*reg = data->dr7;
1131 	else
1132 		*reg = DR7_RESET_VALUE;
1133 
1134 	return ES_OK;
1135 }
1136 
vc_handle_wbinvd(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1137 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1138 				       struct es_em_ctxt *ctxt)
1139 {
1140 	return sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_WBINVD, 0, 0);
1141 }
1142 
vc_handle_rdpmc(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1143 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1144 {
1145 	enum es_result ret;
1146 
1147 	ghcb_set_rcx(ghcb, ctxt->regs->cx);
1148 
1149 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_RDPMC, 0, 0);
1150 	if (ret != ES_OK)
1151 		return ret;
1152 
1153 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1154 		return ES_VMM_ERROR;
1155 
1156 	ctxt->regs->ax = ghcb->save.rax;
1157 	ctxt->regs->dx = ghcb->save.rdx;
1158 
1159 	return ES_OK;
1160 }
1161 
vc_handle_monitor(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1162 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1163 					struct es_em_ctxt *ctxt)
1164 {
1165 	/*
1166 	 * Treat it as a NOP and do not leak a physical address to the
1167 	 * hypervisor.
1168 	 */
1169 	return ES_OK;
1170 }
1171 
vc_handle_mwait(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1172 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1173 				      struct es_em_ctxt *ctxt)
1174 {
1175 	/* Treat the same as MONITOR/MONITORX */
1176 	return ES_OK;
1177 }
1178 
vc_handle_vmmcall(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1179 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1180 					struct es_em_ctxt *ctxt)
1181 {
1182 	enum es_result ret;
1183 
1184 	ghcb_set_rax(ghcb, ctxt->regs->ax);
1185 	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1186 
1187 	if (x86_platform.hyper.sev_es_hcall_prepare)
1188 		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1189 
1190 	ret = sev_es_ghcb_hv_call(ghcb, true, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1191 	if (ret != ES_OK)
1192 		return ret;
1193 
1194 	if (!ghcb_rax_is_valid(ghcb))
1195 		return ES_VMM_ERROR;
1196 
1197 	ctxt->regs->ax = ghcb->save.rax;
1198 
1199 	/*
1200 	 * Call sev_es_hcall_finish() after regs->ax is already set.
1201 	 * This allows the hypervisor handler to overwrite it again if
1202 	 * necessary.
1203 	 */
1204 	if (x86_platform.hyper.sev_es_hcall_finish &&
1205 	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1206 		return ES_VMM_ERROR;
1207 
1208 	return ES_OK;
1209 }
1210 
vc_handle_trap_ac(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1211 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1212 					struct es_em_ctxt *ctxt)
1213 {
1214 	/*
1215 	 * Calling ecx_alignment_check() directly does not work, because it
1216 	 * enables IRQs and the GHCB is active. Forward the exception and call
1217 	 * it later from vc_forward_exception().
1218 	 */
1219 	ctxt->fi.vector = X86_TRAP_AC;
1220 	ctxt->fi.error_code = 0;
1221 	return ES_EXCEPTION;
1222 }
1223 
vc_handle_exitcode(struct es_em_ctxt * ctxt,struct ghcb * ghcb,unsigned long exit_code)1224 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1225 					 struct ghcb *ghcb,
1226 					 unsigned long exit_code)
1227 {
1228 	enum es_result result;
1229 
1230 	switch (exit_code) {
1231 	case SVM_EXIT_READ_DR7:
1232 		result = vc_handle_dr7_read(ghcb, ctxt);
1233 		break;
1234 	case SVM_EXIT_WRITE_DR7:
1235 		result = vc_handle_dr7_write(ghcb, ctxt);
1236 		break;
1237 	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1238 		result = vc_handle_trap_ac(ghcb, ctxt);
1239 		break;
1240 	case SVM_EXIT_RDTSC:
1241 	case SVM_EXIT_RDTSCP:
1242 		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1243 		break;
1244 	case SVM_EXIT_RDPMC:
1245 		result = vc_handle_rdpmc(ghcb, ctxt);
1246 		break;
1247 	case SVM_EXIT_INVD:
1248 		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1249 		result = ES_UNSUPPORTED;
1250 		break;
1251 	case SVM_EXIT_CPUID:
1252 		result = vc_handle_cpuid(ghcb, ctxt);
1253 		break;
1254 	case SVM_EXIT_IOIO:
1255 		result = vc_handle_ioio(ghcb, ctxt);
1256 		break;
1257 	case SVM_EXIT_MSR:
1258 		result = vc_handle_msr(ghcb, ctxt);
1259 		break;
1260 	case SVM_EXIT_VMMCALL:
1261 		result = vc_handle_vmmcall(ghcb, ctxt);
1262 		break;
1263 	case SVM_EXIT_WBINVD:
1264 		result = vc_handle_wbinvd(ghcb, ctxt);
1265 		break;
1266 	case SVM_EXIT_MONITOR:
1267 		result = vc_handle_monitor(ghcb, ctxt);
1268 		break;
1269 	case SVM_EXIT_MWAIT:
1270 		result = vc_handle_mwait(ghcb, ctxt);
1271 		break;
1272 	case SVM_EXIT_NPF:
1273 		result = vc_handle_mmio(ghcb, ctxt);
1274 		break;
1275 	default:
1276 		/*
1277 		 * Unexpected #VC exception
1278 		 */
1279 		result = ES_UNSUPPORTED;
1280 	}
1281 
1282 	return result;
1283 }
1284 
vc_forward_exception(struct es_em_ctxt * ctxt)1285 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1286 {
1287 	long error_code = ctxt->fi.error_code;
1288 	int trapnr = ctxt->fi.vector;
1289 
1290 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1291 
1292 	switch (trapnr) {
1293 	case X86_TRAP_GP:
1294 		exc_general_protection(ctxt->regs, error_code);
1295 		break;
1296 	case X86_TRAP_UD:
1297 		exc_invalid_op(ctxt->regs);
1298 		break;
1299 	case X86_TRAP_PF:
1300 		write_cr2(ctxt->fi.cr2);
1301 		exc_page_fault(ctxt->regs, error_code);
1302 		break;
1303 	case X86_TRAP_AC:
1304 		exc_alignment_check(ctxt->regs, error_code);
1305 		break;
1306 	default:
1307 		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1308 		BUG();
1309 	}
1310 }
1311 
is_vc2_stack(unsigned long sp)1312 static __always_inline bool is_vc2_stack(unsigned long sp)
1313 {
1314 	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1315 }
1316 
vc_from_invalid_context(struct pt_regs * regs)1317 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
1318 {
1319 	unsigned long sp, prev_sp;
1320 
1321 	sp      = (unsigned long)regs;
1322 	prev_sp = regs->sp;
1323 
1324 	/*
1325 	 * If the code was already executing on the VC2 stack when the #VC
1326 	 * happened, let it proceed to the normal handling routine. This way the
1327 	 * code executing on the VC2 stack can cause #VC exceptions to get handled.
1328 	 */
1329 	return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
1330 }
1331 
vc_raw_handle_exception(struct pt_regs * regs,unsigned long error_code)1332 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1333 {
1334 	struct ghcb_state state;
1335 	struct es_em_ctxt ctxt;
1336 	enum es_result result;
1337 	struct ghcb *ghcb;
1338 	bool ret = true;
1339 
1340 	ghcb = __sev_get_ghcb(&state);
1341 
1342 	vc_ghcb_invalidate(ghcb);
1343 	result = vc_init_em_ctxt(&ctxt, regs, error_code);
1344 
1345 	if (result == ES_OK)
1346 		result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1347 
1348 	__sev_put_ghcb(&state);
1349 
1350 	/* Done - now check the result */
1351 	switch (result) {
1352 	case ES_OK:
1353 		vc_finish_insn(&ctxt);
1354 		break;
1355 	case ES_UNSUPPORTED:
1356 		pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
1357 				   error_code, regs->ip);
1358 		ret = false;
1359 		break;
1360 	case ES_VMM_ERROR:
1361 		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1362 				   error_code, regs->ip);
1363 		ret = false;
1364 		break;
1365 	case ES_DECODE_FAILED:
1366 		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1367 				   error_code, regs->ip);
1368 		ret = false;
1369 		break;
1370 	case ES_EXCEPTION:
1371 		vc_forward_exception(&ctxt);
1372 		break;
1373 	case ES_RETRY:
1374 		/* Nothing to do */
1375 		break;
1376 	default:
1377 		pr_emerg("Unknown result in %s():%d\n", __func__, result);
1378 		/*
1379 		 * Emulating the instruction which caused the #VC exception
1380 		 * failed - can't continue so print debug information
1381 		 */
1382 		BUG();
1383 	}
1384 
1385 	return ret;
1386 }
1387 
vc_is_db(unsigned long error_code)1388 static __always_inline bool vc_is_db(unsigned long error_code)
1389 {
1390 	return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1391 }
1392 
1393 /*
1394  * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1395  * and will panic when an error happens.
1396  */
DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)1397 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1398 {
1399 	irqentry_state_t irq_state;
1400 
1401 	/*
1402 	 * With the current implementation it is always possible to switch to a
1403 	 * safe stack because #VC exceptions only happen at known places, like
1404 	 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1405 	 * also happen with code instrumentation when the hypervisor intercepts
1406 	 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1407 	 * exceptions currently also only happen in safe places.
1408 	 *
1409 	 * But keep this here in case the noinstr annotations are violated due
1410 	 * to bug elsewhere.
1411 	 */
1412 	if (unlikely(vc_from_invalid_context(regs))) {
1413 		instrumentation_begin();
1414 		panic("Can't handle #VC exception from unsupported context\n");
1415 		instrumentation_end();
1416 	}
1417 
1418 	/*
1419 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1420 	 */
1421 	if (vc_is_db(error_code)) {
1422 		exc_debug(regs);
1423 		return;
1424 	}
1425 
1426 	irq_state = irqentry_nmi_enter(regs);
1427 
1428 	instrumentation_begin();
1429 
1430 	if (!vc_raw_handle_exception(regs, error_code)) {
1431 		/* Show some debug info */
1432 		show_regs(regs);
1433 
1434 		/* Ask hypervisor to sev_es_terminate */
1435 		sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1436 
1437 		/* If that fails and we get here - just panic */
1438 		panic("Returned from Terminate-Request to Hypervisor\n");
1439 	}
1440 
1441 	instrumentation_end();
1442 	irqentry_nmi_exit(regs, irq_state);
1443 }
1444 
1445 /*
1446  * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1447  * and will kill the current task with SIGBUS when an error happens.
1448  */
DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)1449 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1450 {
1451 	/*
1452 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1453 	 */
1454 	if (vc_is_db(error_code)) {
1455 		noist_exc_debug(regs);
1456 		return;
1457 	}
1458 
1459 	irqentry_enter_from_user_mode(regs);
1460 	instrumentation_begin();
1461 
1462 	if (!vc_raw_handle_exception(regs, error_code)) {
1463 		/*
1464 		 * Do not kill the machine if user-space triggered the
1465 		 * exception. Send SIGBUS instead and let user-space deal with
1466 		 * it.
1467 		 */
1468 		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1469 	}
1470 
1471 	instrumentation_end();
1472 	irqentry_exit_to_user_mode(regs);
1473 }
1474 
handle_vc_boot_ghcb(struct pt_regs * regs)1475 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1476 {
1477 	unsigned long exit_code = regs->orig_ax;
1478 	struct es_em_ctxt ctxt;
1479 	enum es_result result;
1480 
1481 	/* Do initial setup or terminate the guest */
1482 	if (unlikely(boot_ghcb == NULL && !sev_es_setup_ghcb()))
1483 		sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1484 
1485 	vc_ghcb_invalidate(boot_ghcb);
1486 
1487 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
1488 	if (result == ES_OK)
1489 		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
1490 
1491 	/* Done - now check the result */
1492 	switch (result) {
1493 	case ES_OK:
1494 		vc_finish_insn(&ctxt);
1495 		break;
1496 	case ES_UNSUPPORTED:
1497 		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1498 				exit_code, regs->ip);
1499 		goto fail;
1500 	case ES_VMM_ERROR:
1501 		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1502 				exit_code, regs->ip);
1503 		goto fail;
1504 	case ES_DECODE_FAILED:
1505 		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1506 				exit_code, regs->ip);
1507 		goto fail;
1508 	case ES_EXCEPTION:
1509 		vc_early_forward_exception(&ctxt);
1510 		break;
1511 	case ES_RETRY:
1512 		/* Nothing to do */
1513 		break;
1514 	default:
1515 		BUG();
1516 	}
1517 
1518 	return true;
1519 
1520 fail:
1521 	show_regs(regs);
1522 
1523 	while (true)
1524 		halt();
1525 }
1526