1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_LIST_H
3 #define _LINUX_LIST_H
4
5 #include <linux/container_of.h>
6 #include <linux/types.h>
7 #include <linux/stddef.h>
8 #include <linux/poison.h>
9 #include <linux/const.h>
10
11 #include <asm/barrier.h>
12
13 /*
14 * Circular doubly linked list implementation.
15 *
16 * Some of the internal functions ("__xxx") are useful when
17 * manipulating whole lists rather than single entries, as
18 * sometimes we already know the next/prev entries and we can
19 * generate better code by using them directly rather than
20 * using the generic single-entry routines.
21 */
22
23 #define LIST_HEAD_INIT(name) { &(name), &(name) }
24
25 #define LIST_HEAD(name) \
26 struct list_head name = LIST_HEAD_INIT(name)
27
28 /**
29 * INIT_LIST_HEAD - Initialize a list_head structure
30 * @list: list_head structure to be initialized.
31 *
32 * Initializes the list_head to point to itself. If it is a list header,
33 * the result is an empty list.
34 */
INIT_LIST_HEAD(struct list_head * list)35 static inline void INIT_LIST_HEAD(struct list_head *list)
36 {
37 WRITE_ONCE(list->next, list);
38 list->prev = list;
39 }
40
41 #ifdef CONFIG_DEBUG_LIST
42 extern bool __list_add_valid(struct list_head *new,
43 struct list_head *prev,
44 struct list_head *next);
45 extern bool __list_del_entry_valid(struct list_head *entry);
46 #else
__list_add_valid(struct list_head * new,struct list_head * prev,struct list_head * next)47 static inline bool __list_add_valid(struct list_head *new,
48 struct list_head *prev,
49 struct list_head *next)
50 {
51 return true;
52 }
__list_del_entry_valid(struct list_head * entry)53 static inline bool __list_del_entry_valid(struct list_head *entry)
54 {
55 return true;
56 }
57 #endif
58
59 /*
60 * Insert a new entry between two known consecutive entries.
61 *
62 * This is only for internal list manipulation where we know
63 * the prev/next entries already!
64 */
__list_add(struct list_head * new,struct list_head * prev,struct list_head * next)65 static inline void __list_add(struct list_head *new,
66 struct list_head *prev,
67 struct list_head *next)
68 {
69 if (!__list_add_valid(new, prev, next))
70 return;
71
72 next->prev = new;
73 new->next = next;
74 new->prev = prev;
75 WRITE_ONCE(prev->next, new);
76 }
77
78 /**
79 * list_add - add a new entry
80 * @new: new entry to be added
81 * @head: list head to add it after
82 *
83 * Insert a new entry after the specified head.
84 * This is good for implementing stacks.
85 */
list_add(struct list_head * new,struct list_head * head)86 static inline void list_add(struct list_head *new, struct list_head *head)
87 {
88 __list_add(new, head, head->next);
89 }
90
91
92 /**
93 * list_add_tail - add a new entry
94 * @new: new entry to be added
95 * @head: list head to add it before
96 *
97 * Insert a new entry before the specified head.
98 * This is useful for implementing queues.
99 */
list_add_tail(struct list_head * new,struct list_head * head)100 static inline void list_add_tail(struct list_head *new, struct list_head *head)
101 {
102 __list_add(new, head->prev, head);
103 }
104
105 /*
106 * Delete a list entry by making the prev/next entries
107 * point to each other.
108 *
109 * This is only for internal list manipulation where we know
110 * the prev/next entries already!
111 */
__list_del(struct list_head * prev,struct list_head * next)112 static inline void __list_del(struct list_head * prev, struct list_head * next)
113 {
114 next->prev = prev;
115 WRITE_ONCE(prev->next, next);
116 }
117
118 /*
119 * Delete a list entry and clear the 'prev' pointer.
120 *
121 * This is a special-purpose list clearing method used in the networking code
122 * for lists allocated as per-cpu, where we don't want to incur the extra
123 * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
124 * needs to check the node 'prev' pointer instead of calling list_empty().
125 */
__list_del_clearprev(struct list_head * entry)126 static inline void __list_del_clearprev(struct list_head *entry)
127 {
128 __list_del(entry->prev, entry->next);
129 entry->prev = NULL;
130 }
131
__list_del_entry(struct list_head * entry)132 static inline void __list_del_entry(struct list_head *entry)
133 {
134 if (!__list_del_entry_valid(entry))
135 return;
136
137 __list_del(entry->prev, entry->next);
138 }
139
140 /**
141 * list_del - deletes entry from list.
142 * @entry: the element to delete from the list.
143 * Note: list_empty() on entry does not return true after this, the entry is
144 * in an undefined state.
145 */
list_del(struct list_head * entry)146 static inline void list_del(struct list_head *entry)
147 {
148 __list_del_entry(entry);
149 entry->next = LIST_POISON1;
150 entry->prev = LIST_POISON2;
151 }
152
153 /**
154 * list_replace - replace old entry by new one
155 * @old : the element to be replaced
156 * @new : the new element to insert
157 *
158 * If @old was empty, it will be overwritten.
159 */
list_replace(struct list_head * old,struct list_head * new)160 static inline void list_replace(struct list_head *old,
161 struct list_head *new)
162 {
163 new->next = old->next;
164 new->next->prev = new;
165 new->prev = old->prev;
166 new->prev->next = new;
167 }
168
169 /**
170 * list_replace_init - replace old entry by new one and initialize the old one
171 * @old : the element to be replaced
172 * @new : the new element to insert
173 *
174 * If @old was empty, it will be overwritten.
175 */
list_replace_init(struct list_head * old,struct list_head * new)176 static inline void list_replace_init(struct list_head *old,
177 struct list_head *new)
178 {
179 list_replace(old, new);
180 INIT_LIST_HEAD(old);
181 }
182
183 /**
184 * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
185 * @entry1: the location to place entry2
186 * @entry2: the location to place entry1
187 */
list_swap(struct list_head * entry1,struct list_head * entry2)188 static inline void list_swap(struct list_head *entry1,
189 struct list_head *entry2)
190 {
191 struct list_head *pos = entry2->prev;
192
193 list_del(entry2);
194 list_replace(entry1, entry2);
195 if (pos == entry1)
196 pos = entry2;
197 list_add(entry1, pos);
198 }
199
200 /**
201 * list_del_init - deletes entry from list and reinitialize it.
202 * @entry: the element to delete from the list.
203 */
list_del_init(struct list_head * entry)204 static inline void list_del_init(struct list_head *entry)
205 {
206 __list_del_entry(entry);
207 INIT_LIST_HEAD(entry);
208 }
209
210 /**
211 * list_move - delete from one list and add as another's head
212 * @list: the entry to move
213 * @head: the head that will precede our entry
214 */
list_move(struct list_head * list,struct list_head * head)215 static inline void list_move(struct list_head *list, struct list_head *head)
216 {
217 __list_del_entry(list);
218 list_add(list, head);
219 }
220
221 /**
222 * list_move_tail - delete from one list and add as another's tail
223 * @list: the entry to move
224 * @head: the head that will follow our entry
225 */
list_move_tail(struct list_head * list,struct list_head * head)226 static inline void list_move_tail(struct list_head *list,
227 struct list_head *head)
228 {
229 __list_del_entry(list);
230 list_add_tail(list, head);
231 }
232
233 /**
234 * list_bulk_move_tail - move a subsection of a list to its tail
235 * @head: the head that will follow our entry
236 * @first: first entry to move
237 * @last: last entry to move, can be the same as first
238 *
239 * Move all entries between @first and including @last before @head.
240 * All three entries must belong to the same linked list.
241 */
list_bulk_move_tail(struct list_head * head,struct list_head * first,struct list_head * last)242 static inline void list_bulk_move_tail(struct list_head *head,
243 struct list_head *first,
244 struct list_head *last)
245 {
246 first->prev->next = last->next;
247 last->next->prev = first->prev;
248
249 head->prev->next = first;
250 first->prev = head->prev;
251
252 last->next = head;
253 head->prev = last;
254 }
255
256 /**
257 * list_is_first -- tests whether @list is the first entry in list @head
258 * @list: the entry to test
259 * @head: the head of the list
260 */
list_is_first(const struct list_head * list,const struct list_head * head)261 static inline int list_is_first(const struct list_head *list,
262 const struct list_head *head)
263 {
264 return list->prev == head;
265 }
266
267 /**
268 * list_is_last - tests whether @list is the last entry in list @head
269 * @list: the entry to test
270 * @head: the head of the list
271 */
list_is_last(const struct list_head * list,const struct list_head * head)272 static inline int list_is_last(const struct list_head *list,
273 const struct list_head *head)
274 {
275 return list->next == head;
276 }
277
278 /**
279 * list_empty - tests whether a list is empty
280 * @head: the list to test.
281 */
list_empty(const struct list_head * head)282 static inline int list_empty(const struct list_head *head)
283 {
284 return READ_ONCE(head->next) == head;
285 }
286
287 /**
288 * list_del_init_careful - deletes entry from list and reinitialize it.
289 * @entry: the element to delete from the list.
290 *
291 * This is the same as list_del_init(), except designed to be used
292 * together with list_empty_careful() in a way to guarantee ordering
293 * of other memory operations.
294 *
295 * Any memory operations done before a list_del_init_careful() are
296 * guaranteed to be visible after a list_empty_careful() test.
297 */
list_del_init_careful(struct list_head * entry)298 static inline void list_del_init_careful(struct list_head *entry)
299 {
300 __list_del_entry(entry);
301 entry->prev = entry;
302 smp_store_release(&entry->next, entry);
303 }
304
305 /**
306 * list_empty_careful - tests whether a list is empty and not being modified
307 * @head: the list to test
308 *
309 * Description:
310 * tests whether a list is empty _and_ checks that no other CPU might be
311 * in the process of modifying either member (next or prev)
312 *
313 * NOTE: using list_empty_careful() without synchronization
314 * can only be safe if the only activity that can happen
315 * to the list entry is list_del_init(). Eg. it cannot be used
316 * if another CPU could re-list_add() it.
317 */
list_empty_careful(const struct list_head * head)318 static inline int list_empty_careful(const struct list_head *head)
319 {
320 struct list_head *next = smp_load_acquire(&head->next);
321 return (next == head) && (next == head->prev);
322 }
323
324 /**
325 * list_rotate_left - rotate the list to the left
326 * @head: the head of the list
327 */
list_rotate_left(struct list_head * head)328 static inline void list_rotate_left(struct list_head *head)
329 {
330 struct list_head *first;
331
332 if (!list_empty(head)) {
333 first = head->next;
334 list_move_tail(first, head);
335 }
336 }
337
338 /**
339 * list_rotate_to_front() - Rotate list to specific item.
340 * @list: The desired new front of the list.
341 * @head: The head of the list.
342 *
343 * Rotates list so that @list becomes the new front of the list.
344 */
list_rotate_to_front(struct list_head * list,struct list_head * head)345 static inline void list_rotate_to_front(struct list_head *list,
346 struct list_head *head)
347 {
348 /*
349 * Deletes the list head from the list denoted by @head and
350 * places it as the tail of @list, this effectively rotates the
351 * list so that @list is at the front.
352 */
353 list_move_tail(head, list);
354 }
355
356 /**
357 * list_is_singular - tests whether a list has just one entry.
358 * @head: the list to test.
359 */
list_is_singular(const struct list_head * head)360 static inline int list_is_singular(const struct list_head *head)
361 {
362 return !list_empty(head) && (head->next == head->prev);
363 }
364
__list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)365 static inline void __list_cut_position(struct list_head *list,
366 struct list_head *head, struct list_head *entry)
367 {
368 struct list_head *new_first = entry->next;
369 list->next = head->next;
370 list->next->prev = list;
371 list->prev = entry;
372 entry->next = list;
373 head->next = new_first;
374 new_first->prev = head;
375 }
376
377 /**
378 * list_cut_position - cut a list into two
379 * @list: a new list to add all removed entries
380 * @head: a list with entries
381 * @entry: an entry within head, could be the head itself
382 * and if so we won't cut the list
383 *
384 * This helper moves the initial part of @head, up to and
385 * including @entry, from @head to @list. You should
386 * pass on @entry an element you know is on @head. @list
387 * should be an empty list or a list you do not care about
388 * losing its data.
389 *
390 */
list_cut_position(struct list_head * list,struct list_head * head,struct list_head * entry)391 static inline void list_cut_position(struct list_head *list,
392 struct list_head *head, struct list_head *entry)
393 {
394 if (list_empty(head))
395 return;
396 if (list_is_singular(head) &&
397 (head->next != entry && head != entry))
398 return;
399 if (entry == head)
400 INIT_LIST_HEAD(list);
401 else
402 __list_cut_position(list, head, entry);
403 }
404
405 /**
406 * list_cut_before - cut a list into two, before given entry
407 * @list: a new list to add all removed entries
408 * @head: a list with entries
409 * @entry: an entry within head, could be the head itself
410 *
411 * This helper moves the initial part of @head, up to but
412 * excluding @entry, from @head to @list. You should pass
413 * in @entry an element you know is on @head. @list should
414 * be an empty list or a list you do not care about losing
415 * its data.
416 * If @entry == @head, all entries on @head are moved to
417 * @list.
418 */
list_cut_before(struct list_head * list,struct list_head * head,struct list_head * entry)419 static inline void list_cut_before(struct list_head *list,
420 struct list_head *head,
421 struct list_head *entry)
422 {
423 if (head->next == entry) {
424 INIT_LIST_HEAD(list);
425 return;
426 }
427 list->next = head->next;
428 list->next->prev = list;
429 list->prev = entry->prev;
430 list->prev->next = list;
431 head->next = entry;
432 entry->prev = head;
433 }
434
__list_splice(const struct list_head * list,struct list_head * prev,struct list_head * next)435 static inline void __list_splice(const struct list_head *list,
436 struct list_head *prev,
437 struct list_head *next)
438 {
439 struct list_head *first = list->next;
440 struct list_head *last = list->prev;
441
442 first->prev = prev;
443 prev->next = first;
444
445 last->next = next;
446 next->prev = last;
447 }
448
449 /**
450 * list_splice - join two lists, this is designed for stacks
451 * @list: the new list to add.
452 * @head: the place to add it in the first list.
453 */
list_splice(const struct list_head * list,struct list_head * head)454 static inline void list_splice(const struct list_head *list,
455 struct list_head *head)
456 {
457 if (!list_empty(list))
458 __list_splice(list, head, head->next);
459 }
460
461 /**
462 * list_splice_tail - join two lists, each list being a queue
463 * @list: the new list to add.
464 * @head: the place to add it in the first list.
465 */
list_splice_tail(struct list_head * list,struct list_head * head)466 static inline void list_splice_tail(struct list_head *list,
467 struct list_head *head)
468 {
469 if (!list_empty(list))
470 __list_splice(list, head->prev, head);
471 }
472
473 /**
474 * list_splice_init - join two lists and reinitialise the emptied list.
475 * @list: the new list to add.
476 * @head: the place to add it in the first list.
477 *
478 * The list at @list is reinitialised
479 */
list_splice_init(struct list_head * list,struct list_head * head)480 static inline void list_splice_init(struct list_head *list,
481 struct list_head *head)
482 {
483 if (!list_empty(list)) {
484 __list_splice(list, head, head->next);
485 INIT_LIST_HEAD(list);
486 }
487 }
488
489 /**
490 * list_splice_tail_init - join two lists and reinitialise the emptied list
491 * @list: the new list to add.
492 * @head: the place to add it in the first list.
493 *
494 * Each of the lists is a queue.
495 * The list at @list is reinitialised
496 */
list_splice_tail_init(struct list_head * list,struct list_head * head)497 static inline void list_splice_tail_init(struct list_head *list,
498 struct list_head *head)
499 {
500 if (!list_empty(list)) {
501 __list_splice(list, head->prev, head);
502 INIT_LIST_HEAD(list);
503 }
504 }
505
506 /**
507 * list_entry - get the struct for this entry
508 * @ptr: the &struct list_head pointer.
509 * @type: the type of the struct this is embedded in.
510 * @member: the name of the list_head within the struct.
511 */
512 #define list_entry(ptr, type, member) \
513 container_of(ptr, type, member)
514
515 /**
516 * list_first_entry - get the first element from a list
517 * @ptr: the list head to take the element from.
518 * @type: the type of the struct this is embedded in.
519 * @member: the name of the list_head within the struct.
520 *
521 * Note, that list is expected to be not empty.
522 */
523 #define list_first_entry(ptr, type, member) \
524 list_entry((ptr)->next, type, member)
525
526 /**
527 * list_last_entry - get the last element from a list
528 * @ptr: the list head to take the element from.
529 * @type: the type of the struct this is embedded in.
530 * @member: the name of the list_head within the struct.
531 *
532 * Note, that list is expected to be not empty.
533 */
534 #define list_last_entry(ptr, type, member) \
535 list_entry((ptr)->prev, type, member)
536
537 /**
538 * list_first_entry_or_null - get the first element from a list
539 * @ptr: the list head to take the element from.
540 * @type: the type of the struct this is embedded in.
541 * @member: the name of the list_head within the struct.
542 *
543 * Note that if the list is empty, it returns NULL.
544 */
545 #define list_first_entry_or_null(ptr, type, member) ({ \
546 struct list_head *head__ = (ptr); \
547 struct list_head *pos__ = READ_ONCE(head__->next); \
548 pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
549 })
550
551 /**
552 * list_next_entry - get the next element in list
553 * @pos: the type * to cursor
554 * @member: the name of the list_head within the struct.
555 */
556 #define list_next_entry(pos, member) \
557 list_entry((pos)->member.next, typeof(*(pos)), member)
558
559 /**
560 * list_prev_entry - get the prev element in list
561 * @pos: the type * to cursor
562 * @member: the name of the list_head within the struct.
563 */
564 #define list_prev_entry(pos, member) \
565 list_entry((pos)->member.prev, typeof(*(pos)), member)
566
567 /**
568 * list_for_each - iterate over a list
569 * @pos: the &struct list_head to use as a loop cursor.
570 * @head: the head for your list.
571 */
572 #define list_for_each(pos, head) \
573 for (pos = (head)->next; pos != (head); pos = pos->next)
574
575 /**
576 * list_for_each_continue - continue iteration over a list
577 * @pos: the &struct list_head to use as a loop cursor.
578 * @head: the head for your list.
579 *
580 * Continue to iterate over a list, continuing after the current position.
581 */
582 #define list_for_each_continue(pos, head) \
583 for (pos = pos->next; pos != (head); pos = pos->next)
584
585 /**
586 * list_for_each_prev - iterate over a list backwards
587 * @pos: the &struct list_head to use as a loop cursor.
588 * @head: the head for your list.
589 */
590 #define list_for_each_prev(pos, head) \
591 for (pos = (head)->prev; pos != (head); pos = pos->prev)
592
593 /**
594 * list_for_each_safe - iterate over a list safe against removal of list entry
595 * @pos: the &struct list_head to use as a loop cursor.
596 * @n: another &struct list_head to use as temporary storage
597 * @head: the head for your list.
598 */
599 #define list_for_each_safe(pos, n, head) \
600 for (pos = (head)->next, n = pos->next; pos != (head); \
601 pos = n, n = pos->next)
602
603 /**
604 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
605 * @pos: the &struct list_head to use as a loop cursor.
606 * @n: another &struct list_head to use as temporary storage
607 * @head: the head for your list.
608 */
609 #define list_for_each_prev_safe(pos, n, head) \
610 for (pos = (head)->prev, n = pos->prev; \
611 pos != (head); \
612 pos = n, n = pos->prev)
613
614 /**
615 * list_entry_is_head - test if the entry points to the head of the list
616 * @pos: the type * to cursor
617 * @head: the head for your list.
618 * @member: the name of the list_head within the struct.
619 */
620 #define list_entry_is_head(pos, head, member) \
621 (&pos->member == (head))
622
623 /**
624 * list_for_each_entry - iterate over list of given type
625 * @pos: the type * to use as a loop cursor.
626 * @head: the head for your list.
627 * @member: the name of the list_head within the struct.
628 */
629 #define list_for_each_entry(pos, head, member) \
630 for (pos = list_first_entry(head, typeof(*pos), member); \
631 !list_entry_is_head(pos, head, member); \
632 pos = list_next_entry(pos, member))
633
634 /**
635 * list_for_each_entry_reverse - iterate backwards over list of given type.
636 * @pos: the type * to use as a loop cursor.
637 * @head: the head for your list.
638 * @member: the name of the list_head within the struct.
639 */
640 #define list_for_each_entry_reverse(pos, head, member) \
641 for (pos = list_last_entry(head, typeof(*pos), member); \
642 !list_entry_is_head(pos, head, member); \
643 pos = list_prev_entry(pos, member))
644
645 /**
646 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
647 * @pos: the type * to use as a start point
648 * @head: the head of the list
649 * @member: the name of the list_head within the struct.
650 *
651 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
652 */
653 #define list_prepare_entry(pos, head, member) \
654 ((pos) ? : list_entry(head, typeof(*pos), member))
655
656 /**
657 * list_for_each_entry_continue - continue iteration over list of given type
658 * @pos: the type * to use as a loop cursor.
659 * @head: the head for your list.
660 * @member: the name of the list_head within the struct.
661 *
662 * Continue to iterate over list of given type, continuing after
663 * the current position.
664 */
665 #define list_for_each_entry_continue(pos, head, member) \
666 for (pos = list_next_entry(pos, member); \
667 !list_entry_is_head(pos, head, member); \
668 pos = list_next_entry(pos, member))
669
670 /**
671 * list_for_each_entry_continue_reverse - iterate backwards from the given point
672 * @pos: the type * to use as a loop cursor.
673 * @head: the head for your list.
674 * @member: the name of the list_head within the struct.
675 *
676 * Start to iterate over list of given type backwards, continuing after
677 * the current position.
678 */
679 #define list_for_each_entry_continue_reverse(pos, head, member) \
680 for (pos = list_prev_entry(pos, member); \
681 !list_entry_is_head(pos, head, member); \
682 pos = list_prev_entry(pos, member))
683
684 /**
685 * list_for_each_entry_from - iterate over list of given type from the current point
686 * @pos: the type * to use as a loop cursor.
687 * @head: the head for your list.
688 * @member: the name of the list_head within the struct.
689 *
690 * Iterate over list of given type, continuing from current position.
691 */
692 #define list_for_each_entry_from(pos, head, member) \
693 for (; !list_entry_is_head(pos, head, member); \
694 pos = list_next_entry(pos, member))
695
696 /**
697 * list_for_each_entry_from_reverse - iterate backwards over list of given type
698 * from the current point
699 * @pos: the type * to use as a loop cursor.
700 * @head: the head for your list.
701 * @member: the name of the list_head within the struct.
702 *
703 * Iterate backwards over list of given type, continuing from current position.
704 */
705 #define list_for_each_entry_from_reverse(pos, head, member) \
706 for (; !list_entry_is_head(pos, head, member); \
707 pos = list_prev_entry(pos, member))
708
709 /**
710 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
711 * @pos: the type * to use as a loop cursor.
712 * @n: another type * to use as temporary storage
713 * @head: the head for your list.
714 * @member: the name of the list_head within the struct.
715 */
716 #define list_for_each_entry_safe(pos, n, head, member) \
717 for (pos = list_first_entry(head, typeof(*pos), member), \
718 n = list_next_entry(pos, member); \
719 !list_entry_is_head(pos, head, member); \
720 pos = n, n = list_next_entry(n, member))
721
722 /**
723 * list_for_each_entry_safe_continue - continue list iteration safe against removal
724 * @pos: the type * to use as a loop cursor.
725 * @n: another type * to use as temporary storage
726 * @head: the head for your list.
727 * @member: the name of the list_head within the struct.
728 *
729 * Iterate over list of given type, continuing after current point,
730 * safe against removal of list entry.
731 */
732 #define list_for_each_entry_safe_continue(pos, n, head, member) \
733 for (pos = list_next_entry(pos, member), \
734 n = list_next_entry(pos, member); \
735 !list_entry_is_head(pos, head, member); \
736 pos = n, n = list_next_entry(n, member))
737
738 /**
739 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
740 * @pos: the type * to use as a loop cursor.
741 * @n: another type * to use as temporary storage
742 * @head: the head for your list.
743 * @member: the name of the list_head within the struct.
744 *
745 * Iterate over list of given type from current point, safe against
746 * removal of list entry.
747 */
748 #define list_for_each_entry_safe_from(pos, n, head, member) \
749 for (n = list_next_entry(pos, member); \
750 !list_entry_is_head(pos, head, member); \
751 pos = n, n = list_next_entry(n, member))
752
753 /**
754 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
755 * @pos: the type * to use as a loop cursor.
756 * @n: another type * to use as temporary storage
757 * @head: the head for your list.
758 * @member: the name of the list_head within the struct.
759 *
760 * Iterate backwards over list of given type, safe against removal
761 * of list entry.
762 */
763 #define list_for_each_entry_safe_reverse(pos, n, head, member) \
764 for (pos = list_last_entry(head, typeof(*pos), member), \
765 n = list_prev_entry(pos, member); \
766 !list_entry_is_head(pos, head, member); \
767 pos = n, n = list_prev_entry(n, member))
768
769 /**
770 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
771 * @pos: the loop cursor used in the list_for_each_entry_safe loop
772 * @n: temporary storage used in list_for_each_entry_safe
773 * @member: the name of the list_head within the struct.
774 *
775 * list_safe_reset_next is not safe to use in general if the list may be
776 * modified concurrently (eg. the lock is dropped in the loop body). An
777 * exception to this is if the cursor element (pos) is pinned in the list,
778 * and list_safe_reset_next is called after re-taking the lock and before
779 * completing the current iteration of the loop body.
780 */
781 #define list_safe_reset_next(pos, n, member) \
782 n = list_next_entry(pos, member)
783
784 /*
785 * Double linked lists with a single pointer list head.
786 * Mostly useful for hash tables where the two pointer list head is
787 * too wasteful.
788 * You lose the ability to access the tail in O(1).
789 */
790
791 #define HLIST_HEAD_INIT { .first = NULL }
792 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
793 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
INIT_HLIST_NODE(struct hlist_node * h)794 static inline void INIT_HLIST_NODE(struct hlist_node *h)
795 {
796 h->next = NULL;
797 h->pprev = NULL;
798 }
799
800 /**
801 * hlist_unhashed - Has node been removed from list and reinitialized?
802 * @h: Node to be checked
803 *
804 * Not that not all removal functions will leave a node in unhashed
805 * state. For example, hlist_nulls_del_init_rcu() does leave the
806 * node in unhashed state, but hlist_nulls_del() does not.
807 */
hlist_unhashed(const struct hlist_node * h)808 static inline int hlist_unhashed(const struct hlist_node *h)
809 {
810 return !h->pprev;
811 }
812
813 /**
814 * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
815 * @h: Node to be checked
816 *
817 * This variant of hlist_unhashed() must be used in lockless contexts
818 * to avoid potential load-tearing. The READ_ONCE() is paired with the
819 * various WRITE_ONCE() in hlist helpers that are defined below.
820 */
hlist_unhashed_lockless(const struct hlist_node * h)821 static inline int hlist_unhashed_lockless(const struct hlist_node *h)
822 {
823 return !READ_ONCE(h->pprev);
824 }
825
826 /**
827 * hlist_empty - Is the specified hlist_head structure an empty hlist?
828 * @h: Structure to check.
829 */
hlist_empty(const struct hlist_head * h)830 static inline int hlist_empty(const struct hlist_head *h)
831 {
832 return !READ_ONCE(h->first);
833 }
834
__hlist_del(struct hlist_node * n)835 static inline void __hlist_del(struct hlist_node *n)
836 {
837 struct hlist_node *next = n->next;
838 struct hlist_node **pprev = n->pprev;
839
840 WRITE_ONCE(*pprev, next);
841 if (next)
842 WRITE_ONCE(next->pprev, pprev);
843 }
844
845 /**
846 * hlist_del - Delete the specified hlist_node from its list
847 * @n: Node to delete.
848 *
849 * Note that this function leaves the node in hashed state. Use
850 * hlist_del_init() or similar instead to unhash @n.
851 */
hlist_del(struct hlist_node * n)852 static inline void hlist_del(struct hlist_node *n)
853 {
854 __hlist_del(n);
855 n->next = LIST_POISON1;
856 n->pprev = LIST_POISON2;
857 }
858
859 /**
860 * hlist_del_init - Delete the specified hlist_node from its list and initialize
861 * @n: Node to delete.
862 *
863 * Note that this function leaves the node in unhashed state.
864 */
hlist_del_init(struct hlist_node * n)865 static inline void hlist_del_init(struct hlist_node *n)
866 {
867 if (!hlist_unhashed(n)) {
868 __hlist_del(n);
869 INIT_HLIST_NODE(n);
870 }
871 }
872
873 /**
874 * hlist_add_head - add a new entry at the beginning of the hlist
875 * @n: new entry to be added
876 * @h: hlist head to add it after
877 *
878 * Insert a new entry after the specified head.
879 * This is good for implementing stacks.
880 */
hlist_add_head(struct hlist_node * n,struct hlist_head * h)881 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
882 {
883 struct hlist_node *first = h->first;
884 WRITE_ONCE(n->next, first);
885 if (first)
886 WRITE_ONCE(first->pprev, &n->next);
887 WRITE_ONCE(h->first, n);
888 WRITE_ONCE(n->pprev, &h->first);
889 }
890
891 /**
892 * hlist_add_before - add a new entry before the one specified
893 * @n: new entry to be added
894 * @next: hlist node to add it before, which must be non-NULL
895 */
hlist_add_before(struct hlist_node * n,struct hlist_node * next)896 static inline void hlist_add_before(struct hlist_node *n,
897 struct hlist_node *next)
898 {
899 WRITE_ONCE(n->pprev, next->pprev);
900 WRITE_ONCE(n->next, next);
901 WRITE_ONCE(next->pprev, &n->next);
902 WRITE_ONCE(*(n->pprev), n);
903 }
904
905 /**
906 * hlist_add_behind - add a new entry after the one specified
907 * @n: new entry to be added
908 * @prev: hlist node to add it after, which must be non-NULL
909 */
hlist_add_behind(struct hlist_node * n,struct hlist_node * prev)910 static inline void hlist_add_behind(struct hlist_node *n,
911 struct hlist_node *prev)
912 {
913 WRITE_ONCE(n->next, prev->next);
914 WRITE_ONCE(prev->next, n);
915 WRITE_ONCE(n->pprev, &prev->next);
916
917 if (n->next)
918 WRITE_ONCE(n->next->pprev, &n->next);
919 }
920
921 /**
922 * hlist_add_fake - create a fake hlist consisting of a single headless node
923 * @n: Node to make a fake list out of
924 *
925 * This makes @n appear to be its own predecessor on a headless hlist.
926 * The point of this is to allow things like hlist_del() to work correctly
927 * in cases where there is no list.
928 */
hlist_add_fake(struct hlist_node * n)929 static inline void hlist_add_fake(struct hlist_node *n)
930 {
931 n->pprev = &n->next;
932 }
933
934 /**
935 * hlist_fake: Is this node a fake hlist?
936 * @h: Node to check for being a self-referential fake hlist.
937 */
hlist_fake(struct hlist_node * h)938 static inline bool hlist_fake(struct hlist_node *h)
939 {
940 return h->pprev == &h->next;
941 }
942
943 /**
944 * hlist_is_singular_node - is node the only element of the specified hlist?
945 * @n: Node to check for singularity.
946 * @h: Header for potentially singular list.
947 *
948 * Check whether the node is the only node of the head without
949 * accessing head, thus avoiding unnecessary cache misses.
950 */
951 static inline bool
hlist_is_singular_node(struct hlist_node * n,struct hlist_head * h)952 hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
953 {
954 return !n->next && n->pprev == &h->first;
955 }
956
957 /**
958 * hlist_move_list - Move an hlist
959 * @old: hlist_head for old list.
960 * @new: hlist_head for new list.
961 *
962 * Move a list from one list head to another. Fixup the pprev
963 * reference of the first entry if it exists.
964 */
hlist_move_list(struct hlist_head * old,struct hlist_head * new)965 static inline void hlist_move_list(struct hlist_head *old,
966 struct hlist_head *new)
967 {
968 new->first = old->first;
969 if (new->first)
970 new->first->pprev = &new->first;
971 old->first = NULL;
972 }
973
974 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
975
976 #define hlist_for_each(pos, head) \
977 for (pos = (head)->first; pos ; pos = pos->next)
978
979 #define hlist_for_each_safe(pos, n, head) \
980 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
981 pos = n)
982
983 #define hlist_entry_safe(ptr, type, member) \
984 ({ typeof(ptr) ____ptr = (ptr); \
985 ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
986 })
987
988 /**
989 * hlist_for_each_entry - iterate over list of given type
990 * @pos: the type * to use as a loop cursor.
991 * @head: the head for your list.
992 * @member: the name of the hlist_node within the struct.
993 */
994 #define hlist_for_each_entry(pos, head, member) \
995 for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
996 pos; \
997 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
998
999 /**
1000 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
1001 * @pos: the type * to use as a loop cursor.
1002 * @member: the name of the hlist_node within the struct.
1003 */
1004 #define hlist_for_each_entry_continue(pos, member) \
1005 for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
1006 pos; \
1007 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1008
1009 /**
1010 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1011 * @pos: the type * to use as a loop cursor.
1012 * @member: the name of the hlist_node within the struct.
1013 */
1014 #define hlist_for_each_entry_from(pos, member) \
1015 for (; pos; \
1016 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1017
1018 /**
1019 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1020 * @pos: the type * to use as a loop cursor.
1021 * @n: a &struct hlist_node to use as temporary storage
1022 * @head: the head for your list.
1023 * @member: the name of the hlist_node within the struct.
1024 */
1025 #define hlist_for_each_entry_safe(pos, n, head, member) \
1026 for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1027 pos && ({ n = pos->member.next; 1; }); \
1028 pos = hlist_entry_safe(n, typeof(*pos), member))
1029
1030 #endif
1031