1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Tegra host1x Command DMA
4  *
5  * Copyright (c) 2010-2013, NVIDIA Corporation.
6  */
7 
8 
9 #include <asm/cacheflush.h>
10 #include <linux/device.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/host1x.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel.h>
15 #include <linux/kfifo.h>
16 #include <linux/slab.h>
17 #include <trace/events/host1x.h>
18 
19 #include "cdma.h"
20 #include "channel.h"
21 #include "dev.h"
22 #include "debug.h"
23 #include "job.h"
24 
25 /*
26  * push_buffer
27  *
28  * The push buffer is a circular array of words to be fetched by command DMA.
29  * Note that it works slightly differently to the sync queue; fence == pos
30  * means that the push buffer is full, not empty.
31  */
32 
33 /*
34  * Typically the commands written into the push buffer are a pair of words. We
35  * use slots to represent each of these pairs and to simplify things. Note the
36  * strange number of slots allocated here. 512 slots will fit exactly within a
37  * single memory page. We also need one additional word at the end of the push
38  * buffer for the RESTART opcode that will instruct the CDMA to jump back to
39  * the beginning of the push buffer. With 512 slots, this means that we'll use
40  * 2 memory pages and waste 4092 bytes of the second page that will never be
41  * used.
42  */
43 #define HOST1X_PUSHBUFFER_SLOTS	511
44 
45 /*
46  * Clean up push buffer resources
47  */
host1x_pushbuffer_destroy(struct push_buffer * pb)48 static void host1x_pushbuffer_destroy(struct push_buffer *pb)
49 {
50 	struct host1x_cdma *cdma = pb_to_cdma(pb);
51 	struct host1x *host1x = cdma_to_host1x(cdma);
52 
53 	if (!pb->mapped)
54 		return;
55 
56 	if (host1x->domain) {
57 		iommu_unmap(host1x->domain, pb->dma, pb->alloc_size);
58 		free_iova(&host1x->iova, iova_pfn(&host1x->iova, pb->dma));
59 	}
60 
61 	dma_free_wc(host1x->dev, pb->alloc_size, pb->mapped, pb->phys);
62 
63 	pb->mapped = NULL;
64 	pb->phys = 0;
65 }
66 
67 /*
68  * Init push buffer resources
69  */
host1x_pushbuffer_init(struct push_buffer * pb)70 static int host1x_pushbuffer_init(struct push_buffer *pb)
71 {
72 	struct host1x_cdma *cdma = pb_to_cdma(pb);
73 	struct host1x *host1x = cdma_to_host1x(cdma);
74 	struct iova *alloc;
75 	u32 size;
76 	int err;
77 
78 	pb->mapped = NULL;
79 	pb->phys = 0;
80 	pb->size = HOST1X_PUSHBUFFER_SLOTS * 8;
81 
82 	size = pb->size + 4;
83 
84 	/* initialize buffer pointers */
85 	pb->fence = pb->size - 8;
86 	pb->pos = 0;
87 
88 	if (host1x->domain) {
89 		unsigned long shift;
90 
91 		size = iova_align(&host1x->iova, size);
92 
93 		pb->mapped = dma_alloc_wc(host1x->dev, size, &pb->phys,
94 					  GFP_KERNEL);
95 		if (!pb->mapped)
96 			return -ENOMEM;
97 
98 		shift = iova_shift(&host1x->iova);
99 		alloc = alloc_iova(&host1x->iova, size >> shift,
100 				   host1x->iova_end >> shift, true);
101 		if (!alloc) {
102 			err = -ENOMEM;
103 			goto iommu_free_mem;
104 		}
105 
106 		pb->dma = iova_dma_addr(&host1x->iova, alloc);
107 		err = iommu_map(host1x->domain, pb->dma, pb->phys, size,
108 				IOMMU_READ);
109 		if (err)
110 			goto iommu_free_iova;
111 	} else {
112 		pb->mapped = dma_alloc_wc(host1x->dev, size, &pb->phys,
113 					  GFP_KERNEL);
114 		if (!pb->mapped)
115 			return -ENOMEM;
116 
117 		pb->dma = pb->phys;
118 	}
119 
120 	pb->alloc_size = size;
121 
122 	host1x_hw_pushbuffer_init(host1x, pb);
123 
124 	return 0;
125 
126 iommu_free_iova:
127 	__free_iova(&host1x->iova, alloc);
128 iommu_free_mem:
129 	dma_free_wc(host1x->dev, size, pb->mapped, pb->phys);
130 
131 	return err;
132 }
133 
134 /*
135  * Push two words to the push buffer
136  * Caller must ensure push buffer is not full
137  */
host1x_pushbuffer_push(struct push_buffer * pb,u32 op1,u32 op2)138 static void host1x_pushbuffer_push(struct push_buffer *pb, u32 op1, u32 op2)
139 {
140 	u32 *p = (u32 *)((void *)pb->mapped + pb->pos);
141 
142 	WARN_ON(pb->pos == pb->fence);
143 	*(p++) = op1;
144 	*(p++) = op2;
145 	pb->pos += 8;
146 
147 	if (pb->pos >= pb->size)
148 		pb->pos -= pb->size;
149 }
150 
151 /*
152  * Pop a number of two word slots from the push buffer
153  * Caller must ensure push buffer is not empty
154  */
host1x_pushbuffer_pop(struct push_buffer * pb,unsigned int slots)155 static void host1x_pushbuffer_pop(struct push_buffer *pb, unsigned int slots)
156 {
157 	/* Advance the next write position */
158 	pb->fence += slots * 8;
159 
160 	if (pb->fence >= pb->size)
161 		pb->fence -= pb->size;
162 }
163 
164 /*
165  * Return the number of two word slots free in the push buffer
166  */
host1x_pushbuffer_space(struct push_buffer * pb)167 static u32 host1x_pushbuffer_space(struct push_buffer *pb)
168 {
169 	unsigned int fence = pb->fence;
170 
171 	if (pb->fence < pb->pos)
172 		fence += pb->size;
173 
174 	return (fence - pb->pos) / 8;
175 }
176 
177 /*
178  * Sleep (if necessary) until the requested event happens
179  *   - CDMA_EVENT_SYNC_QUEUE_EMPTY : sync queue is completely empty.
180  *     - Returns 1
181  *   - CDMA_EVENT_PUSH_BUFFER_SPACE : there is space in the push buffer
182  *     - Return the amount of space (> 0)
183  * Must be called with the cdma lock held.
184  */
host1x_cdma_wait_locked(struct host1x_cdma * cdma,enum cdma_event event)185 unsigned int host1x_cdma_wait_locked(struct host1x_cdma *cdma,
186 				     enum cdma_event event)
187 {
188 	for (;;) {
189 		struct push_buffer *pb = &cdma->push_buffer;
190 		unsigned int space;
191 
192 		switch (event) {
193 		case CDMA_EVENT_SYNC_QUEUE_EMPTY:
194 			space = list_empty(&cdma->sync_queue) ? 1 : 0;
195 			break;
196 
197 		case CDMA_EVENT_PUSH_BUFFER_SPACE:
198 			space = host1x_pushbuffer_space(pb);
199 			break;
200 
201 		default:
202 			WARN_ON(1);
203 			return -EINVAL;
204 		}
205 
206 		if (space)
207 			return space;
208 
209 		trace_host1x_wait_cdma(dev_name(cdma_to_channel(cdma)->dev),
210 				       event);
211 
212 		/* If somebody has managed to already start waiting, yield */
213 		if (cdma->event != CDMA_EVENT_NONE) {
214 			mutex_unlock(&cdma->lock);
215 			schedule();
216 			mutex_lock(&cdma->lock);
217 			continue;
218 		}
219 
220 		cdma->event = event;
221 
222 		mutex_unlock(&cdma->lock);
223 		wait_for_completion(&cdma->complete);
224 		mutex_lock(&cdma->lock);
225 	}
226 
227 	return 0;
228 }
229 
230 /*
231  * Sleep (if necessary) until the push buffer has enough free space.
232  *
233  * Must be called with the cdma lock held.
234  */
host1x_cdma_wait_pushbuffer_space(struct host1x * host1x,struct host1x_cdma * cdma,unsigned int needed)235 static int host1x_cdma_wait_pushbuffer_space(struct host1x *host1x,
236 					     struct host1x_cdma *cdma,
237 					     unsigned int needed)
238 {
239 	while (true) {
240 		struct push_buffer *pb = &cdma->push_buffer;
241 		unsigned int space;
242 
243 		space = host1x_pushbuffer_space(pb);
244 		if (space >= needed)
245 			break;
246 
247 		trace_host1x_wait_cdma(dev_name(cdma_to_channel(cdma)->dev),
248 				       CDMA_EVENT_PUSH_BUFFER_SPACE);
249 
250 		host1x_hw_cdma_flush(host1x, cdma);
251 
252 		/* If somebody has managed to already start waiting, yield */
253 		if (cdma->event != CDMA_EVENT_NONE) {
254 			mutex_unlock(&cdma->lock);
255 			schedule();
256 			mutex_lock(&cdma->lock);
257 			continue;
258 		}
259 
260 		cdma->event = CDMA_EVENT_PUSH_BUFFER_SPACE;
261 
262 		mutex_unlock(&cdma->lock);
263 		wait_for_completion(&cdma->complete);
264 		mutex_lock(&cdma->lock);
265 	}
266 
267 	return 0;
268 }
269 /*
270  * Start timer that tracks the time spent by the job.
271  * Must be called with the cdma lock held.
272  */
cdma_start_timer_locked(struct host1x_cdma * cdma,struct host1x_job * job)273 static void cdma_start_timer_locked(struct host1x_cdma *cdma,
274 				    struct host1x_job *job)
275 {
276 	if (cdma->timeout.client) {
277 		/* timer already started */
278 		return;
279 	}
280 
281 	cdma->timeout.client = job->client;
282 	cdma->timeout.syncpt = job->syncpt;
283 	cdma->timeout.syncpt_val = job->syncpt_end;
284 	cdma->timeout.start_ktime = ktime_get();
285 
286 	schedule_delayed_work(&cdma->timeout.wq,
287 			      msecs_to_jiffies(job->timeout));
288 }
289 
290 /*
291  * Stop timer when a buffer submission completes.
292  * Must be called with the cdma lock held.
293  */
stop_cdma_timer_locked(struct host1x_cdma * cdma)294 static void stop_cdma_timer_locked(struct host1x_cdma *cdma)
295 {
296 	cancel_delayed_work(&cdma->timeout.wq);
297 	cdma->timeout.client = NULL;
298 }
299 
300 /*
301  * For all sync queue entries that have already finished according to the
302  * current sync point registers:
303  *  - unpin & unref their mems
304  *  - pop their push buffer slots
305  *  - remove them from the sync queue
306  * This is normally called from the host code's worker thread, but can be
307  * called manually if necessary.
308  * Must be called with the cdma lock held.
309  */
update_cdma_locked(struct host1x_cdma * cdma)310 static void update_cdma_locked(struct host1x_cdma *cdma)
311 {
312 	bool signal = false;
313 	struct host1x_job *job, *n;
314 
315 	/*
316 	 * Walk the sync queue, reading the sync point registers as necessary,
317 	 * to consume as many sync queue entries as possible without blocking
318 	 */
319 	list_for_each_entry_safe(job, n, &cdma->sync_queue, list) {
320 		struct host1x_syncpt *sp = job->syncpt;
321 
322 		/* Check whether this syncpt has completed, and bail if not */
323 		if (!host1x_syncpt_is_expired(sp, job->syncpt_end) &&
324 		    !job->cancelled) {
325 			/* Start timer on next pending syncpt */
326 			if (job->timeout)
327 				cdma_start_timer_locked(cdma, job);
328 
329 			break;
330 		}
331 
332 		/* Cancel timeout, when a buffer completes */
333 		if (cdma->timeout.client)
334 			stop_cdma_timer_locked(cdma);
335 
336 		/* Unpin the memory */
337 		host1x_job_unpin(job);
338 
339 		/* Pop push buffer slots */
340 		if (job->num_slots) {
341 			struct push_buffer *pb = &cdma->push_buffer;
342 
343 			host1x_pushbuffer_pop(pb, job->num_slots);
344 
345 			if (cdma->event == CDMA_EVENT_PUSH_BUFFER_SPACE)
346 				signal = true;
347 		}
348 
349 		list_del(&job->list);
350 		host1x_job_put(job);
351 	}
352 
353 	if (cdma->event == CDMA_EVENT_SYNC_QUEUE_EMPTY &&
354 	    list_empty(&cdma->sync_queue))
355 		signal = true;
356 
357 	if (signal) {
358 		cdma->event = CDMA_EVENT_NONE;
359 		complete(&cdma->complete);
360 	}
361 }
362 
host1x_cdma_update_sync_queue(struct host1x_cdma * cdma,struct device * dev)363 void host1x_cdma_update_sync_queue(struct host1x_cdma *cdma,
364 				   struct device *dev)
365 {
366 	struct host1x *host1x = cdma_to_host1x(cdma);
367 	u32 restart_addr, syncpt_incrs, syncpt_val;
368 	struct host1x_job *job, *next_job = NULL;
369 
370 	syncpt_val = host1x_syncpt_load(cdma->timeout.syncpt);
371 
372 	dev_dbg(dev, "%s: starting cleanup (thresh %d)\n",
373 		__func__, syncpt_val);
374 
375 	/*
376 	 * Move the sync_queue read pointer to the first entry that hasn't
377 	 * completed based on the current HW syncpt value. It's likely there
378 	 * won't be any (i.e. we're still at the head), but covers the case
379 	 * where a syncpt incr happens just prior/during the teardown.
380 	 */
381 
382 	dev_dbg(dev, "%s: skip completed buffers still in sync_queue\n",
383 		__func__);
384 
385 	list_for_each_entry(job, &cdma->sync_queue, list) {
386 		if (syncpt_val < job->syncpt_end) {
387 
388 			if (!list_is_last(&job->list, &cdma->sync_queue))
389 				next_job = list_next_entry(job, list);
390 
391 			goto syncpt_incr;
392 		}
393 
394 		host1x_job_dump(dev, job);
395 	}
396 
397 	/* all jobs have been completed */
398 	job = NULL;
399 
400 syncpt_incr:
401 
402 	/*
403 	 * Increment with CPU the remaining syncpts of a partially executed job.
404 	 *
405 	 * CDMA will continue execution starting with the next job or will get
406 	 * into idle state.
407 	 */
408 	if (next_job)
409 		restart_addr = next_job->first_get;
410 	else
411 		restart_addr = cdma->last_pos;
412 
413 	if (!job)
414 		goto resume;
415 
416 	/* do CPU increments for the remaining syncpts */
417 	if (job->syncpt_recovery) {
418 		dev_dbg(dev, "%s: perform CPU incr on pending buffers\n",
419 			__func__);
420 
421 		/* won't need a timeout when replayed */
422 		job->timeout = 0;
423 
424 		syncpt_incrs = job->syncpt_end - syncpt_val;
425 		dev_dbg(dev, "%s: CPU incr (%d)\n", __func__, syncpt_incrs);
426 
427 		host1x_job_dump(dev, job);
428 
429 		/* safe to use CPU to incr syncpts */
430 		host1x_hw_cdma_timeout_cpu_incr(host1x, cdma, job->first_get,
431 						syncpt_incrs, job->syncpt_end,
432 						job->num_slots);
433 
434 		dev_dbg(dev, "%s: finished sync_queue modification\n",
435 			__func__);
436 	} else {
437 		struct host1x_job *failed_job = job;
438 
439 		host1x_job_dump(dev, job);
440 
441 		host1x_syncpt_set_locked(job->syncpt);
442 		failed_job->cancelled = true;
443 
444 		list_for_each_entry_continue(job, &cdma->sync_queue, list) {
445 			unsigned int i;
446 
447 			if (job->syncpt != failed_job->syncpt)
448 				continue;
449 
450 			for (i = 0; i < job->num_slots; i++) {
451 				unsigned int slot = (job->first_get/8 + i) %
452 						    HOST1X_PUSHBUFFER_SLOTS;
453 				u32 *mapped = cdma->push_buffer.mapped;
454 
455 				/*
456 				 * Overwrite opcodes with 0 word writes
457 				 * to offset 0xbad. This does nothing but
458 				 * has a easily detected signature in debug
459 				 * traces.
460 				 */
461 				mapped[2*slot+0] = 0x1bad0000;
462 				mapped[2*slot+1] = 0x1bad0000;
463 			}
464 
465 			job->cancelled = true;
466 		}
467 
468 		wmb();
469 
470 		update_cdma_locked(cdma);
471 	}
472 
473 resume:
474 	/* roll back DMAGET and start up channel again */
475 	host1x_hw_cdma_resume(host1x, cdma, restart_addr);
476 }
477 
478 /*
479  * Create a cdma
480  */
host1x_cdma_init(struct host1x_cdma * cdma)481 int host1x_cdma_init(struct host1x_cdma *cdma)
482 {
483 	int err;
484 
485 	mutex_init(&cdma->lock);
486 	init_completion(&cdma->complete);
487 
488 	INIT_LIST_HEAD(&cdma->sync_queue);
489 
490 	cdma->event = CDMA_EVENT_NONE;
491 	cdma->running = false;
492 	cdma->torndown = false;
493 
494 	err = host1x_pushbuffer_init(&cdma->push_buffer);
495 	if (err)
496 		return err;
497 
498 	return 0;
499 }
500 
501 /*
502  * Destroy a cdma
503  */
host1x_cdma_deinit(struct host1x_cdma * cdma)504 int host1x_cdma_deinit(struct host1x_cdma *cdma)
505 {
506 	struct push_buffer *pb = &cdma->push_buffer;
507 	struct host1x *host1x = cdma_to_host1x(cdma);
508 
509 	if (cdma->running) {
510 		pr_warn("%s: CDMA still running\n", __func__);
511 		return -EBUSY;
512 	}
513 
514 	host1x_pushbuffer_destroy(pb);
515 	host1x_hw_cdma_timeout_destroy(host1x, cdma);
516 
517 	return 0;
518 }
519 
520 /*
521  * Begin a cdma submit
522  */
host1x_cdma_begin(struct host1x_cdma * cdma,struct host1x_job * job)523 int host1x_cdma_begin(struct host1x_cdma *cdma, struct host1x_job *job)
524 {
525 	struct host1x *host1x = cdma_to_host1x(cdma);
526 
527 	mutex_lock(&cdma->lock);
528 
529 	/*
530 	 * Check if syncpoint was locked due to previous job timeout.
531 	 * This needs to be done within the cdma lock to avoid a race
532 	 * with the timeout handler.
533 	 */
534 	if (job->syncpt->locked) {
535 		mutex_unlock(&cdma->lock);
536 		return -EPERM;
537 	}
538 
539 	if (job->timeout) {
540 		/* init state on first submit with timeout value */
541 		if (!cdma->timeout.initialized) {
542 			int err;
543 
544 			err = host1x_hw_cdma_timeout_init(host1x, cdma);
545 			if (err) {
546 				mutex_unlock(&cdma->lock);
547 				return err;
548 			}
549 		}
550 	}
551 
552 	if (!cdma->running)
553 		host1x_hw_cdma_start(host1x, cdma);
554 
555 	cdma->slots_free = 0;
556 	cdma->slots_used = 0;
557 	cdma->first_get = cdma->push_buffer.pos;
558 
559 	trace_host1x_cdma_begin(dev_name(job->channel->dev));
560 	return 0;
561 }
562 
563 /*
564  * Push two words into a push buffer slot
565  * Blocks as necessary if the push buffer is full.
566  */
host1x_cdma_push(struct host1x_cdma * cdma,u32 op1,u32 op2)567 void host1x_cdma_push(struct host1x_cdma *cdma, u32 op1, u32 op2)
568 {
569 	struct host1x *host1x = cdma_to_host1x(cdma);
570 	struct push_buffer *pb = &cdma->push_buffer;
571 	u32 slots_free = cdma->slots_free;
572 
573 	if (host1x_debug_trace_cmdbuf)
574 		trace_host1x_cdma_push(dev_name(cdma_to_channel(cdma)->dev),
575 				       op1, op2);
576 
577 	if (slots_free == 0) {
578 		host1x_hw_cdma_flush(host1x, cdma);
579 		slots_free = host1x_cdma_wait_locked(cdma,
580 						CDMA_EVENT_PUSH_BUFFER_SPACE);
581 	}
582 
583 	cdma->slots_free = slots_free - 1;
584 	cdma->slots_used++;
585 	host1x_pushbuffer_push(pb, op1, op2);
586 }
587 
588 /*
589  * Push four words into two consecutive push buffer slots. Note that extra
590  * care needs to be taken not to split the two slots across the end of the
591  * push buffer. Otherwise the RESTART opcode at the end of the push buffer
592  * that ensures processing will restart at the beginning will break up the
593  * four words.
594  *
595  * Blocks as necessary if the push buffer is full.
596  */
host1x_cdma_push_wide(struct host1x_cdma * cdma,u32 op1,u32 op2,u32 op3,u32 op4)597 void host1x_cdma_push_wide(struct host1x_cdma *cdma, u32 op1, u32 op2,
598 			   u32 op3, u32 op4)
599 {
600 	struct host1x_channel *channel = cdma_to_channel(cdma);
601 	struct host1x *host1x = cdma_to_host1x(cdma);
602 	struct push_buffer *pb = &cdma->push_buffer;
603 	unsigned int needed = 2, extra = 0, i;
604 	unsigned int space = cdma->slots_free;
605 
606 	if (host1x_debug_trace_cmdbuf)
607 		trace_host1x_cdma_push_wide(dev_name(channel->dev), op1, op2,
608 					    op3, op4);
609 
610 	/* compute number of extra slots needed for padding */
611 	if (pb->pos + 16 > pb->size) {
612 		extra = (pb->size - pb->pos) / 8;
613 		needed += extra;
614 	}
615 
616 	host1x_cdma_wait_pushbuffer_space(host1x, cdma, needed);
617 	space = host1x_pushbuffer_space(pb);
618 
619 	cdma->slots_free = space - needed;
620 	cdma->slots_used += needed;
621 
622 	/*
623 	 * Note that we rely on the fact that this is only used to submit wide
624 	 * gather opcodes, which consist of 3 words, and they are padded with
625 	 * a NOP to avoid having to deal with fractional slots (a slot always
626 	 * represents 2 words). The fourth opcode passed to this function will
627 	 * therefore always be a NOP.
628 	 *
629 	 * This works around a slight ambiguity when it comes to opcodes. For
630 	 * all current host1x incarnations the NOP opcode uses the exact same
631 	 * encoding (0x20000000), so we could hard-code the value here, but a
632 	 * new incarnation may change it and break that assumption.
633 	 */
634 	for (i = 0; i < extra; i++)
635 		host1x_pushbuffer_push(pb, op4, op4);
636 
637 	host1x_pushbuffer_push(pb, op1, op2);
638 	host1x_pushbuffer_push(pb, op3, op4);
639 }
640 
641 /*
642  * End a cdma submit
643  * Kick off DMA, add job to the sync queue, and a number of slots to be freed
644  * from the pushbuffer. The handles for a submit must all be pinned at the same
645  * time, but they can be unpinned in smaller chunks.
646  */
host1x_cdma_end(struct host1x_cdma * cdma,struct host1x_job * job)647 void host1x_cdma_end(struct host1x_cdma *cdma,
648 		     struct host1x_job *job)
649 {
650 	struct host1x *host1x = cdma_to_host1x(cdma);
651 	bool idle = list_empty(&cdma->sync_queue);
652 
653 	host1x_hw_cdma_flush(host1x, cdma);
654 
655 	job->first_get = cdma->first_get;
656 	job->num_slots = cdma->slots_used;
657 	host1x_job_get(job);
658 	list_add_tail(&job->list, &cdma->sync_queue);
659 
660 	/* start timer on idle -> active transitions */
661 	if (job->timeout && idle)
662 		cdma_start_timer_locked(cdma, job);
663 
664 	trace_host1x_cdma_end(dev_name(job->channel->dev));
665 	mutex_unlock(&cdma->lock);
666 }
667 
668 /*
669  * Update cdma state according to current sync point values
670  */
host1x_cdma_update(struct host1x_cdma * cdma)671 void host1x_cdma_update(struct host1x_cdma *cdma)
672 {
673 	mutex_lock(&cdma->lock);
674 	update_cdma_locked(cdma);
675 	mutex_unlock(&cdma->lock);
676 }
677