1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright 2011-2014 Autronica Fire and Security AS
3 *
4 * Author(s):
5 * 2011-2014 Arvid Brodin, arvid.brodin@alten.se
6 *
7 * The HSR spec says never to forward the same frame twice on the same
8 * interface. A frame is identified by its source MAC address and its HSR
9 * sequence number. This code keeps track of senders and their sequence numbers
10 * to allow filtering of duplicate frames, and to detect HSR ring errors.
11 * Same code handles filtering of duplicates for PRP as well.
12 */
13
14 #include <linux/if_ether.h>
15 #include <linux/etherdevice.h>
16 #include <linux/slab.h>
17 #include <linux/rculist.h>
18 #include "hsr_main.h"
19 #include "hsr_framereg.h"
20 #include "hsr_netlink.h"
21
22 /* TODO: use hash lists for mac addresses (linux/jhash.h)? */
23
24 /* seq_nr_after(a, b) - return true if a is after (higher in sequence than) b,
25 * false otherwise.
26 */
seq_nr_after(u16 a,u16 b)27 static bool seq_nr_after(u16 a, u16 b)
28 {
29 /* Remove inconsistency where
30 * seq_nr_after(a, b) == seq_nr_before(a, b)
31 */
32 if ((int)b - a == 32768)
33 return false;
34
35 return (((s16)(b - a)) < 0);
36 }
37
38 #define seq_nr_before(a, b) seq_nr_after((b), (a))
39 #define seq_nr_before_or_eq(a, b) (!seq_nr_after((a), (b)))
40
hsr_addr_is_self(struct hsr_priv * hsr,unsigned char * addr)41 bool hsr_addr_is_self(struct hsr_priv *hsr, unsigned char *addr)
42 {
43 struct hsr_node *node;
44
45 node = list_first_or_null_rcu(&hsr->self_node_db, struct hsr_node,
46 mac_list);
47 if (!node) {
48 WARN_ONCE(1, "HSR: No self node\n");
49 return false;
50 }
51
52 if (ether_addr_equal(addr, node->macaddress_A))
53 return true;
54 if (ether_addr_equal(addr, node->macaddress_B))
55 return true;
56
57 return false;
58 }
59
60 /* Search for mac entry. Caller must hold rcu read lock.
61 */
find_node_by_addr_A(struct list_head * node_db,const unsigned char addr[ETH_ALEN])62 static struct hsr_node *find_node_by_addr_A(struct list_head *node_db,
63 const unsigned char addr[ETH_ALEN])
64 {
65 struct hsr_node *node;
66
67 list_for_each_entry_rcu(node, node_db, mac_list) {
68 if (ether_addr_equal(node->macaddress_A, addr))
69 return node;
70 }
71
72 return NULL;
73 }
74
75 /* Helper for device init; the self_node_db is used in hsr_rcv() to recognize
76 * frames from self that's been looped over the HSR ring.
77 */
hsr_create_self_node(struct hsr_priv * hsr,const unsigned char addr_a[ETH_ALEN],const unsigned char addr_b[ETH_ALEN])78 int hsr_create_self_node(struct hsr_priv *hsr,
79 const unsigned char addr_a[ETH_ALEN],
80 const unsigned char addr_b[ETH_ALEN])
81 {
82 struct list_head *self_node_db = &hsr->self_node_db;
83 struct hsr_node *node, *oldnode;
84
85 node = kmalloc(sizeof(*node), GFP_KERNEL);
86 if (!node)
87 return -ENOMEM;
88
89 ether_addr_copy(node->macaddress_A, addr_a);
90 ether_addr_copy(node->macaddress_B, addr_b);
91
92 spin_lock_bh(&hsr->list_lock);
93 oldnode = list_first_or_null_rcu(self_node_db,
94 struct hsr_node, mac_list);
95 if (oldnode) {
96 list_replace_rcu(&oldnode->mac_list, &node->mac_list);
97 spin_unlock_bh(&hsr->list_lock);
98 kfree_rcu(oldnode, rcu_head);
99 } else {
100 list_add_tail_rcu(&node->mac_list, self_node_db);
101 spin_unlock_bh(&hsr->list_lock);
102 }
103
104 return 0;
105 }
106
hsr_del_self_node(struct hsr_priv * hsr)107 void hsr_del_self_node(struct hsr_priv *hsr)
108 {
109 struct list_head *self_node_db = &hsr->self_node_db;
110 struct hsr_node *node;
111
112 spin_lock_bh(&hsr->list_lock);
113 node = list_first_or_null_rcu(self_node_db, struct hsr_node, mac_list);
114 if (node) {
115 list_del_rcu(&node->mac_list);
116 kfree_rcu(node, rcu_head);
117 }
118 spin_unlock_bh(&hsr->list_lock);
119 }
120
hsr_del_nodes(struct list_head * node_db)121 void hsr_del_nodes(struct list_head *node_db)
122 {
123 struct hsr_node *node;
124 struct hsr_node *tmp;
125
126 list_for_each_entry_safe(node, tmp, node_db, mac_list)
127 kfree(node);
128 }
129
prp_handle_san_frame(bool san,enum hsr_port_type port,struct hsr_node * node)130 void prp_handle_san_frame(bool san, enum hsr_port_type port,
131 struct hsr_node *node)
132 {
133 /* Mark if the SAN node is over LAN_A or LAN_B */
134 if (port == HSR_PT_SLAVE_A) {
135 node->san_a = true;
136 return;
137 }
138
139 if (port == HSR_PT_SLAVE_B)
140 node->san_b = true;
141 }
142
143 /* Allocate an hsr_node and add it to node_db. 'addr' is the node's address_A;
144 * seq_out is used to initialize filtering of outgoing duplicate frames
145 * originating from the newly added node.
146 */
hsr_add_node(struct hsr_priv * hsr,struct list_head * node_db,unsigned char addr[],u16 seq_out,bool san,enum hsr_port_type rx_port)147 static struct hsr_node *hsr_add_node(struct hsr_priv *hsr,
148 struct list_head *node_db,
149 unsigned char addr[],
150 u16 seq_out, bool san,
151 enum hsr_port_type rx_port)
152 {
153 struct hsr_node *new_node, *node;
154 unsigned long now;
155 int i;
156
157 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
158 if (!new_node)
159 return NULL;
160
161 ether_addr_copy(new_node->macaddress_A, addr);
162
163 /* We are only interested in time diffs here, so use current jiffies
164 * as initialization. (0 could trigger an spurious ring error warning).
165 */
166 now = jiffies;
167 for (i = 0; i < HSR_PT_PORTS; i++) {
168 new_node->time_in[i] = now;
169 new_node->time_out[i] = now;
170 }
171 for (i = 0; i < HSR_PT_PORTS; i++)
172 new_node->seq_out[i] = seq_out;
173
174 if (san && hsr->proto_ops->handle_san_frame)
175 hsr->proto_ops->handle_san_frame(san, rx_port, new_node);
176
177 spin_lock_bh(&hsr->list_lock);
178 list_for_each_entry_rcu(node, node_db, mac_list,
179 lockdep_is_held(&hsr->list_lock)) {
180 if (ether_addr_equal(node->macaddress_A, addr))
181 goto out;
182 if (ether_addr_equal(node->macaddress_B, addr))
183 goto out;
184 }
185 list_add_tail_rcu(&new_node->mac_list, node_db);
186 spin_unlock_bh(&hsr->list_lock);
187 return new_node;
188 out:
189 spin_unlock_bh(&hsr->list_lock);
190 kfree(new_node);
191 return node;
192 }
193
prp_update_san_info(struct hsr_node * node,bool is_sup)194 void prp_update_san_info(struct hsr_node *node, bool is_sup)
195 {
196 if (!is_sup)
197 return;
198
199 node->san_a = false;
200 node->san_b = false;
201 }
202
203 /* Get the hsr_node from which 'skb' was sent.
204 */
hsr_get_node(struct hsr_port * port,struct list_head * node_db,struct sk_buff * skb,bool is_sup,enum hsr_port_type rx_port)205 struct hsr_node *hsr_get_node(struct hsr_port *port, struct list_head *node_db,
206 struct sk_buff *skb, bool is_sup,
207 enum hsr_port_type rx_port)
208 {
209 struct hsr_priv *hsr = port->hsr;
210 struct hsr_node *node;
211 struct ethhdr *ethhdr;
212 struct prp_rct *rct;
213 bool san = false;
214 u16 seq_out;
215
216 if (!skb_mac_header_was_set(skb))
217 return NULL;
218
219 ethhdr = (struct ethhdr *)skb_mac_header(skb);
220
221 list_for_each_entry_rcu(node, node_db, mac_list) {
222 if (ether_addr_equal(node->macaddress_A, ethhdr->h_source)) {
223 if (hsr->proto_ops->update_san_info)
224 hsr->proto_ops->update_san_info(node, is_sup);
225 return node;
226 }
227 if (ether_addr_equal(node->macaddress_B, ethhdr->h_source)) {
228 if (hsr->proto_ops->update_san_info)
229 hsr->proto_ops->update_san_info(node, is_sup);
230 return node;
231 }
232 }
233
234 /* Everyone may create a node entry, connected node to a HSR/PRP
235 * device.
236 */
237 if (ethhdr->h_proto == htons(ETH_P_PRP) ||
238 ethhdr->h_proto == htons(ETH_P_HSR)) {
239 /* Use the existing sequence_nr from the tag as starting point
240 * for filtering duplicate frames.
241 */
242 seq_out = hsr_get_skb_sequence_nr(skb) - 1;
243 } else {
244 rct = skb_get_PRP_rct(skb);
245 if (rct && prp_check_lsdu_size(skb, rct, is_sup)) {
246 seq_out = prp_get_skb_sequence_nr(rct);
247 } else {
248 if (rx_port != HSR_PT_MASTER)
249 san = true;
250 seq_out = HSR_SEQNR_START;
251 }
252 }
253
254 return hsr_add_node(hsr, node_db, ethhdr->h_source, seq_out,
255 san, rx_port);
256 }
257
258 /* Use the Supervision frame's info about an eventual macaddress_B for merging
259 * nodes that has previously had their macaddress_B registered as a separate
260 * node.
261 */
hsr_handle_sup_frame(struct hsr_frame_info * frame)262 void hsr_handle_sup_frame(struct hsr_frame_info *frame)
263 {
264 struct hsr_node *node_curr = frame->node_src;
265 struct hsr_port *port_rcv = frame->port_rcv;
266 struct hsr_priv *hsr = port_rcv->hsr;
267 struct hsr_sup_payload *hsr_sp;
268 struct hsr_sup_tlv *hsr_sup_tlv;
269 struct hsr_node *node_real;
270 struct sk_buff *skb = NULL;
271 struct list_head *node_db;
272 struct ethhdr *ethhdr;
273 int i;
274 unsigned int pull_size = 0;
275 unsigned int total_pull_size = 0;
276
277 /* Here either frame->skb_hsr or frame->skb_prp should be
278 * valid as supervision frame always will have protocol
279 * header info.
280 */
281 if (frame->skb_hsr)
282 skb = frame->skb_hsr;
283 else if (frame->skb_prp)
284 skb = frame->skb_prp;
285 else if (frame->skb_std)
286 skb = frame->skb_std;
287 if (!skb)
288 return;
289
290 /* Leave the ethernet header. */
291 pull_size = sizeof(struct ethhdr);
292 skb_pull(skb, pull_size);
293 total_pull_size += pull_size;
294
295 ethhdr = (struct ethhdr *)skb_mac_header(skb);
296
297 /* And leave the HSR tag. */
298 if (ethhdr->h_proto == htons(ETH_P_HSR)) {
299 pull_size = sizeof(struct ethhdr);
300 skb_pull(skb, pull_size);
301 total_pull_size += pull_size;
302 }
303
304 /* And leave the HSR sup tag. */
305 pull_size = sizeof(struct hsr_tag);
306 skb_pull(skb, pull_size);
307 total_pull_size += pull_size;
308
309 /* get HSR sup payload */
310 hsr_sp = (struct hsr_sup_payload *)skb->data;
311
312 /* Merge node_curr (registered on macaddress_B) into node_real */
313 node_db = &port_rcv->hsr->node_db;
314 node_real = find_node_by_addr_A(node_db, hsr_sp->macaddress_A);
315 if (!node_real)
316 /* No frame received from AddrA of this node yet */
317 node_real = hsr_add_node(hsr, node_db, hsr_sp->macaddress_A,
318 HSR_SEQNR_START - 1, true,
319 port_rcv->type);
320 if (!node_real)
321 goto done; /* No mem */
322 if (node_real == node_curr)
323 /* Node has already been merged */
324 goto done;
325
326 /* Leave the first HSR sup payload. */
327 pull_size = sizeof(struct hsr_sup_payload);
328 skb_pull(skb, pull_size);
329 total_pull_size += pull_size;
330
331 /* Get second supervision tlv */
332 hsr_sup_tlv = (struct hsr_sup_tlv *)skb->data;
333 /* And check if it is a redbox mac TLV */
334 if (hsr_sup_tlv->HSR_TLV_type == PRP_TLV_REDBOX_MAC) {
335 /* We could stop here after pushing hsr_sup_payload,
336 * or proceed and allow macaddress_B and for redboxes.
337 */
338 /* Sanity check length */
339 if (hsr_sup_tlv->HSR_TLV_length != 6)
340 goto done;
341
342 /* Leave the second HSR sup tlv. */
343 pull_size = sizeof(struct hsr_sup_tlv);
344 skb_pull(skb, pull_size);
345 total_pull_size += pull_size;
346
347 /* Get redbox mac address. */
348 hsr_sp = (struct hsr_sup_payload *)skb->data;
349
350 /* Check if redbox mac and node mac are equal. */
351 if (!ether_addr_equal(node_real->macaddress_A, hsr_sp->macaddress_A)) {
352 /* This is a redbox supervision frame for a VDAN! */
353 goto done;
354 }
355 }
356
357 ether_addr_copy(node_real->macaddress_B, ethhdr->h_source);
358 for (i = 0; i < HSR_PT_PORTS; i++) {
359 if (!node_curr->time_in_stale[i] &&
360 time_after(node_curr->time_in[i], node_real->time_in[i])) {
361 node_real->time_in[i] = node_curr->time_in[i];
362 node_real->time_in_stale[i] =
363 node_curr->time_in_stale[i];
364 }
365 if (seq_nr_after(node_curr->seq_out[i], node_real->seq_out[i]))
366 node_real->seq_out[i] = node_curr->seq_out[i];
367 }
368 node_real->addr_B_port = port_rcv->type;
369
370 spin_lock_bh(&hsr->list_lock);
371 list_del_rcu(&node_curr->mac_list);
372 spin_unlock_bh(&hsr->list_lock);
373 kfree_rcu(node_curr, rcu_head);
374
375 done:
376 /* Push back here */
377 skb_push(skb, total_pull_size);
378 }
379
380 /* 'skb' is a frame meant for this host, that is to be passed to upper layers.
381 *
382 * If the frame was sent by a node's B interface, replace the source
383 * address with that node's "official" address (macaddress_A) so that upper
384 * layers recognize where it came from.
385 */
hsr_addr_subst_source(struct hsr_node * node,struct sk_buff * skb)386 void hsr_addr_subst_source(struct hsr_node *node, struct sk_buff *skb)
387 {
388 if (!skb_mac_header_was_set(skb)) {
389 WARN_ONCE(1, "%s: Mac header not set\n", __func__);
390 return;
391 }
392
393 memcpy(ð_hdr(skb)->h_source, node->macaddress_A, ETH_ALEN);
394 }
395
396 /* 'skb' is a frame meant for another host.
397 * 'port' is the outgoing interface
398 *
399 * Substitute the target (dest) MAC address if necessary, so the it matches the
400 * recipient interface MAC address, regardless of whether that is the
401 * recipient's A or B interface.
402 * This is needed to keep the packets flowing through switches that learn on
403 * which "side" the different interfaces are.
404 */
hsr_addr_subst_dest(struct hsr_node * node_src,struct sk_buff * skb,struct hsr_port * port)405 void hsr_addr_subst_dest(struct hsr_node *node_src, struct sk_buff *skb,
406 struct hsr_port *port)
407 {
408 struct hsr_node *node_dst;
409
410 if (!skb_mac_header_was_set(skb)) {
411 WARN_ONCE(1, "%s: Mac header not set\n", __func__);
412 return;
413 }
414
415 if (!is_unicast_ether_addr(eth_hdr(skb)->h_dest))
416 return;
417
418 node_dst = find_node_by_addr_A(&port->hsr->node_db,
419 eth_hdr(skb)->h_dest);
420 if (!node_dst) {
421 if (net_ratelimit())
422 netdev_err(skb->dev, "%s: Unknown node\n", __func__);
423 return;
424 }
425 if (port->type != node_dst->addr_B_port)
426 return;
427
428 if (is_valid_ether_addr(node_dst->macaddress_B))
429 ether_addr_copy(eth_hdr(skb)->h_dest, node_dst->macaddress_B);
430 }
431
hsr_register_frame_in(struct hsr_node * node,struct hsr_port * port,u16 sequence_nr)432 void hsr_register_frame_in(struct hsr_node *node, struct hsr_port *port,
433 u16 sequence_nr)
434 {
435 /* Don't register incoming frames without a valid sequence number. This
436 * ensures entries of restarted nodes gets pruned so that they can
437 * re-register and resume communications.
438 */
439 if (!(port->dev->features & NETIF_F_HW_HSR_TAG_RM) &&
440 seq_nr_before(sequence_nr, node->seq_out[port->type]))
441 return;
442
443 node->time_in[port->type] = jiffies;
444 node->time_in_stale[port->type] = false;
445 }
446
447 /* 'skb' is a HSR Ethernet frame (with a HSR tag inserted), with a valid
448 * ethhdr->h_source address and skb->mac_header set.
449 *
450 * Return:
451 * 1 if frame can be shown to have been sent recently on this interface,
452 * 0 otherwise, or
453 * negative error code on error
454 */
hsr_register_frame_out(struct hsr_port * port,struct hsr_node * node,u16 sequence_nr)455 int hsr_register_frame_out(struct hsr_port *port, struct hsr_node *node,
456 u16 sequence_nr)
457 {
458 if (seq_nr_before_or_eq(sequence_nr, node->seq_out[port->type]) &&
459 time_is_after_jiffies(node->time_out[port->type] +
460 msecs_to_jiffies(HSR_ENTRY_FORGET_TIME)))
461 return 1;
462
463 node->time_out[port->type] = jiffies;
464 node->seq_out[port->type] = sequence_nr;
465 return 0;
466 }
467
get_late_port(struct hsr_priv * hsr,struct hsr_node * node)468 static struct hsr_port *get_late_port(struct hsr_priv *hsr,
469 struct hsr_node *node)
470 {
471 if (node->time_in_stale[HSR_PT_SLAVE_A])
472 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A);
473 if (node->time_in_stale[HSR_PT_SLAVE_B])
474 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B);
475
476 if (time_after(node->time_in[HSR_PT_SLAVE_B],
477 node->time_in[HSR_PT_SLAVE_A] +
478 msecs_to_jiffies(MAX_SLAVE_DIFF)))
479 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_A);
480 if (time_after(node->time_in[HSR_PT_SLAVE_A],
481 node->time_in[HSR_PT_SLAVE_B] +
482 msecs_to_jiffies(MAX_SLAVE_DIFF)))
483 return hsr_port_get_hsr(hsr, HSR_PT_SLAVE_B);
484
485 return NULL;
486 }
487
488 /* Remove stale sequence_nr records. Called by timer every
489 * HSR_LIFE_CHECK_INTERVAL (two seconds or so).
490 */
hsr_prune_nodes(struct timer_list * t)491 void hsr_prune_nodes(struct timer_list *t)
492 {
493 struct hsr_priv *hsr = from_timer(hsr, t, prune_timer);
494 struct hsr_node *node;
495 struct hsr_node *tmp;
496 struct hsr_port *port;
497 unsigned long timestamp;
498 unsigned long time_a, time_b;
499
500 spin_lock_bh(&hsr->list_lock);
501 list_for_each_entry_safe(node, tmp, &hsr->node_db, mac_list) {
502 /* Don't prune own node. Neither time_in[HSR_PT_SLAVE_A]
503 * nor time_in[HSR_PT_SLAVE_B], will ever be updated for
504 * the master port. Thus the master node will be repeatedly
505 * pruned leading to packet loss.
506 */
507 if (hsr_addr_is_self(hsr, node->macaddress_A))
508 continue;
509
510 /* Shorthand */
511 time_a = node->time_in[HSR_PT_SLAVE_A];
512 time_b = node->time_in[HSR_PT_SLAVE_B];
513
514 /* Check for timestamps old enough to risk wrap-around */
515 if (time_after(jiffies, time_a + MAX_JIFFY_OFFSET / 2))
516 node->time_in_stale[HSR_PT_SLAVE_A] = true;
517 if (time_after(jiffies, time_b + MAX_JIFFY_OFFSET / 2))
518 node->time_in_stale[HSR_PT_SLAVE_B] = true;
519
520 /* Get age of newest frame from node.
521 * At least one time_in is OK here; nodes get pruned long
522 * before both time_ins can get stale
523 */
524 timestamp = time_a;
525 if (node->time_in_stale[HSR_PT_SLAVE_A] ||
526 (!node->time_in_stale[HSR_PT_SLAVE_B] &&
527 time_after(time_b, time_a)))
528 timestamp = time_b;
529
530 /* Warn of ring error only as long as we get frames at all */
531 if (time_is_after_jiffies(timestamp +
532 msecs_to_jiffies(1.5 * MAX_SLAVE_DIFF))) {
533 rcu_read_lock();
534 port = get_late_port(hsr, node);
535 if (port)
536 hsr_nl_ringerror(hsr, node->macaddress_A, port);
537 rcu_read_unlock();
538 }
539
540 /* Prune old entries */
541 if (time_is_before_jiffies(timestamp +
542 msecs_to_jiffies(HSR_NODE_FORGET_TIME))) {
543 hsr_nl_nodedown(hsr, node->macaddress_A);
544 list_del_rcu(&node->mac_list);
545 /* Note that we need to free this entry later: */
546 kfree_rcu(node, rcu_head);
547 }
548 }
549 spin_unlock_bh(&hsr->list_lock);
550
551 /* Restart timer */
552 mod_timer(&hsr->prune_timer,
553 jiffies + msecs_to_jiffies(PRUNE_PERIOD));
554 }
555
hsr_get_next_node(struct hsr_priv * hsr,void * _pos,unsigned char addr[ETH_ALEN])556 void *hsr_get_next_node(struct hsr_priv *hsr, void *_pos,
557 unsigned char addr[ETH_ALEN])
558 {
559 struct hsr_node *node;
560
561 if (!_pos) {
562 node = list_first_or_null_rcu(&hsr->node_db,
563 struct hsr_node, mac_list);
564 if (node)
565 ether_addr_copy(addr, node->macaddress_A);
566 return node;
567 }
568
569 node = _pos;
570 list_for_each_entry_continue_rcu(node, &hsr->node_db, mac_list) {
571 ether_addr_copy(addr, node->macaddress_A);
572 return node;
573 }
574
575 return NULL;
576 }
577
hsr_get_node_data(struct hsr_priv * hsr,const unsigned char * addr,unsigned char addr_b[ETH_ALEN],unsigned int * addr_b_ifindex,int * if1_age,u16 * if1_seq,int * if2_age,u16 * if2_seq)578 int hsr_get_node_data(struct hsr_priv *hsr,
579 const unsigned char *addr,
580 unsigned char addr_b[ETH_ALEN],
581 unsigned int *addr_b_ifindex,
582 int *if1_age,
583 u16 *if1_seq,
584 int *if2_age,
585 u16 *if2_seq)
586 {
587 struct hsr_node *node;
588 struct hsr_port *port;
589 unsigned long tdiff;
590
591 node = find_node_by_addr_A(&hsr->node_db, addr);
592 if (!node)
593 return -ENOENT;
594
595 ether_addr_copy(addr_b, node->macaddress_B);
596
597 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_A];
598 if (node->time_in_stale[HSR_PT_SLAVE_A])
599 *if1_age = INT_MAX;
600 #if HZ <= MSEC_PER_SEC
601 else if (tdiff > msecs_to_jiffies(INT_MAX))
602 *if1_age = INT_MAX;
603 #endif
604 else
605 *if1_age = jiffies_to_msecs(tdiff);
606
607 tdiff = jiffies - node->time_in[HSR_PT_SLAVE_B];
608 if (node->time_in_stale[HSR_PT_SLAVE_B])
609 *if2_age = INT_MAX;
610 #if HZ <= MSEC_PER_SEC
611 else if (tdiff > msecs_to_jiffies(INT_MAX))
612 *if2_age = INT_MAX;
613 #endif
614 else
615 *if2_age = jiffies_to_msecs(tdiff);
616
617 /* Present sequence numbers as if they were incoming on interface */
618 *if1_seq = node->seq_out[HSR_PT_SLAVE_B];
619 *if2_seq = node->seq_out[HSR_PT_SLAVE_A];
620
621 if (node->addr_B_port != HSR_PT_NONE) {
622 port = hsr_port_get_hsr(hsr, node->addr_B_port);
623 *addr_b_ifindex = port->dev->ifindex;
624 } else {
625 *addr_b_ifindex = -1;
626 }
627
628 return 0;
629 }
630