1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7 
8 #include <linux/fault-inject.h>
9 #include <linux/sched/mm.h>
10 
11 #include "gem/i915_gem_lmem.h"
12 #include "i915_trace.h"
13 #include "intel_gt.h"
14 #include "intel_gtt.h"
15 
alloc_pt_lmem(struct i915_address_space * vm,int sz)16 struct drm_i915_gem_object *alloc_pt_lmem(struct i915_address_space *vm, int sz)
17 {
18 	struct drm_i915_gem_object *obj;
19 
20 	/*
21 	 * To avoid severe over-allocation when dealing with min_page_size
22 	 * restrictions, we override that behaviour here by allowing an object
23 	 * size and page layout which can be smaller. In practice this should be
24 	 * totally fine, since GTT paging structures are not typically inserted
25 	 * into the GTT.
26 	 *
27 	 * Note that we also hit this path for the scratch page, and for this
28 	 * case it might need to be 64K, but that should work fine here since we
29 	 * used the passed in size for the page size, which should ensure it
30 	 * also has the same alignment.
31 	 */
32 	obj = __i915_gem_object_create_lmem_with_ps(vm->i915, sz, sz,
33 						    vm->lmem_pt_obj_flags);
34 	/*
35 	 * Ensure all paging structures for this vm share the same dma-resv
36 	 * object underneath, with the idea that one object_lock() will lock
37 	 * them all at once.
38 	 */
39 	if (!IS_ERR(obj)) {
40 		obj->base.resv = i915_vm_resv_get(vm);
41 		obj->shares_resv_from = vm;
42 	}
43 
44 	return obj;
45 }
46 
alloc_pt_dma(struct i915_address_space * vm,int sz)47 struct drm_i915_gem_object *alloc_pt_dma(struct i915_address_space *vm, int sz)
48 {
49 	struct drm_i915_gem_object *obj;
50 
51 	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
52 		i915_gem_shrink_all(vm->i915);
53 
54 	obj = i915_gem_object_create_internal(vm->i915, sz);
55 	/*
56 	 * Ensure all paging structures for this vm share the same dma-resv
57 	 * object underneath, with the idea that one object_lock() will lock
58 	 * them all at once.
59 	 */
60 	if (!IS_ERR(obj)) {
61 		obj->base.resv = i915_vm_resv_get(vm);
62 		obj->shares_resv_from = vm;
63 	}
64 
65 	return obj;
66 }
67 
map_pt_dma(struct i915_address_space * vm,struct drm_i915_gem_object * obj)68 int map_pt_dma(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
69 {
70 	enum i915_map_type type;
71 	void *vaddr;
72 
73 	type = i915_coherent_map_type(vm->i915, obj, true);
74 	vaddr = i915_gem_object_pin_map_unlocked(obj, type);
75 	if (IS_ERR(vaddr))
76 		return PTR_ERR(vaddr);
77 
78 	i915_gem_object_make_unshrinkable(obj);
79 	return 0;
80 }
81 
map_pt_dma_locked(struct i915_address_space * vm,struct drm_i915_gem_object * obj)82 int map_pt_dma_locked(struct i915_address_space *vm, struct drm_i915_gem_object *obj)
83 {
84 	enum i915_map_type type;
85 	void *vaddr;
86 
87 	type = i915_coherent_map_type(vm->i915, obj, true);
88 	vaddr = i915_gem_object_pin_map(obj, type);
89 	if (IS_ERR(vaddr))
90 		return PTR_ERR(vaddr);
91 
92 	i915_gem_object_make_unshrinkable(obj);
93 	return 0;
94 }
95 
__i915_vm_close(struct i915_address_space * vm)96 void __i915_vm_close(struct i915_address_space *vm)
97 {
98 	struct i915_vma *vma, *vn;
99 
100 	if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex))
101 		return;
102 
103 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
104 		struct drm_i915_gem_object *obj = vma->obj;
105 
106 		/* Keep the obj (and hence the vma) alive as _we_ destroy it */
107 		if (!kref_get_unless_zero(&obj->base.refcount))
108 			continue;
109 
110 		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
111 		WARN_ON(__i915_vma_unbind(vma));
112 		__i915_vma_put(vma);
113 
114 		i915_gem_object_put(obj);
115 	}
116 	GEM_BUG_ON(!list_empty(&vm->bound_list));
117 
118 	mutex_unlock(&vm->mutex);
119 }
120 
121 /* lock the vm into the current ww, if we lock one, we lock all */
i915_vm_lock_objects(struct i915_address_space * vm,struct i915_gem_ww_ctx * ww)122 int i915_vm_lock_objects(struct i915_address_space *vm,
123 			 struct i915_gem_ww_ctx *ww)
124 {
125 	if (vm->scratch[0]->base.resv == &vm->_resv) {
126 		return i915_gem_object_lock(vm->scratch[0], ww);
127 	} else {
128 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
129 
130 		/* We borrowed the scratch page from ggtt, take the top level object */
131 		return i915_gem_object_lock(ppgtt->pd->pt.base, ww);
132 	}
133 }
134 
i915_address_space_fini(struct i915_address_space * vm)135 void i915_address_space_fini(struct i915_address_space *vm)
136 {
137 	drm_mm_takedown(&vm->mm);
138 	mutex_destroy(&vm->mutex);
139 }
140 
141 /**
142  * i915_vm_resv_release - Final struct i915_address_space destructor
143  * @kref: Pointer to the &i915_address_space.resv_ref member.
144  *
145  * This function is called when the last lock sharer no longer shares the
146  * &i915_address_space._resv lock.
147  */
i915_vm_resv_release(struct kref * kref)148 void i915_vm_resv_release(struct kref *kref)
149 {
150 	struct i915_address_space *vm =
151 		container_of(kref, typeof(*vm), resv_ref);
152 
153 	dma_resv_fini(&vm->_resv);
154 	kfree(vm);
155 }
156 
__i915_vm_release(struct work_struct * work)157 static void __i915_vm_release(struct work_struct *work)
158 {
159 	struct i915_address_space *vm =
160 		container_of(work, struct i915_address_space, release_work);
161 
162 	vm->cleanup(vm);
163 	i915_address_space_fini(vm);
164 
165 	i915_vm_resv_put(vm);
166 }
167 
i915_vm_release(struct kref * kref)168 void i915_vm_release(struct kref *kref)
169 {
170 	struct i915_address_space *vm =
171 		container_of(kref, struct i915_address_space, ref);
172 
173 	GEM_BUG_ON(i915_is_ggtt(vm));
174 	trace_i915_ppgtt_release(vm);
175 
176 	queue_work(vm->i915->wq, &vm->release_work);
177 }
178 
i915_address_space_init(struct i915_address_space * vm,int subclass)179 void i915_address_space_init(struct i915_address_space *vm, int subclass)
180 {
181 	kref_init(&vm->ref);
182 
183 	/*
184 	 * Special case for GGTT that has already done an early
185 	 * kref_init here.
186 	 */
187 	if (!kref_read(&vm->resv_ref))
188 		kref_init(&vm->resv_ref);
189 
190 	INIT_WORK(&vm->release_work, __i915_vm_release);
191 	atomic_set(&vm->open, 1);
192 
193 	/*
194 	 * The vm->mutex must be reclaim safe (for use in the shrinker).
195 	 * Do a dummy acquire now under fs_reclaim so that any allocation
196 	 * attempt holding the lock is immediately reported by lockdep.
197 	 */
198 	mutex_init(&vm->mutex);
199 	lockdep_set_subclass(&vm->mutex, subclass);
200 
201 	if (!intel_vm_no_concurrent_access_wa(vm->i915)) {
202 		i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
203 	} else {
204 		/*
205 		 * CHV + BXT VTD workaround use stop_machine(),
206 		 * which is allowed to allocate memory. This means &vm->mutex
207 		 * is the outer lock, and in theory we can allocate memory inside
208 		 * it through stop_machine().
209 		 *
210 		 * Add the annotation for this, we use trylock in shrinker.
211 		 */
212 		mutex_acquire(&vm->mutex.dep_map, 0, 0, _THIS_IP_);
213 		might_alloc(GFP_KERNEL);
214 		mutex_release(&vm->mutex.dep_map, _THIS_IP_);
215 	}
216 	dma_resv_init(&vm->_resv);
217 
218 	GEM_BUG_ON(!vm->total);
219 	drm_mm_init(&vm->mm, 0, vm->total);
220 	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
221 
222 	INIT_LIST_HEAD(&vm->bound_list);
223 }
224 
clear_pages(struct i915_vma * vma)225 void clear_pages(struct i915_vma *vma)
226 {
227 	GEM_BUG_ON(!vma->pages);
228 
229 	if (vma->pages != vma->obj->mm.pages) {
230 		sg_free_table(vma->pages);
231 		kfree(vma->pages);
232 	}
233 	vma->pages = NULL;
234 
235 	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
236 }
237 
__px_vaddr(struct drm_i915_gem_object * p)238 void *__px_vaddr(struct drm_i915_gem_object *p)
239 {
240 	enum i915_map_type type;
241 
242 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
243 	return page_unpack_bits(p->mm.mapping, &type);
244 }
245 
__px_dma(struct drm_i915_gem_object * p)246 dma_addr_t __px_dma(struct drm_i915_gem_object *p)
247 {
248 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
249 	return sg_dma_address(p->mm.pages->sgl);
250 }
251 
__px_page(struct drm_i915_gem_object * p)252 struct page *__px_page(struct drm_i915_gem_object *p)
253 {
254 	GEM_BUG_ON(!i915_gem_object_has_pages(p));
255 	return sg_page(p->mm.pages->sgl);
256 }
257 
258 void
fill_page_dma(struct drm_i915_gem_object * p,const u64 val,unsigned int count)259 fill_page_dma(struct drm_i915_gem_object *p, const u64 val, unsigned int count)
260 {
261 	void *vaddr = __px_vaddr(p);
262 
263 	memset64(vaddr, val, count);
264 	clflush_cache_range(vaddr, PAGE_SIZE);
265 }
266 
poison_scratch_page(struct drm_i915_gem_object * scratch)267 static void poison_scratch_page(struct drm_i915_gem_object *scratch)
268 {
269 	void *vaddr = __px_vaddr(scratch);
270 	u8 val;
271 
272 	val = 0;
273 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
274 		val = POISON_FREE;
275 
276 	memset(vaddr, val, scratch->base.size);
277 }
278 
setup_scratch_page(struct i915_address_space * vm)279 int setup_scratch_page(struct i915_address_space *vm)
280 {
281 	unsigned long size;
282 
283 	/*
284 	 * In order to utilize 64K pages for an object with a size < 2M, we will
285 	 * need to support a 64K scratch page, given that every 16th entry for a
286 	 * page-table operating in 64K mode must point to a properly aligned 64K
287 	 * region, including any PTEs which happen to point to scratch.
288 	 *
289 	 * This is only relevant for the 48b PPGTT where we support
290 	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
291 	 * scratch (read-only) between all vm, we create one 64k scratch page
292 	 * for all.
293 	 */
294 	size = I915_GTT_PAGE_SIZE_4K;
295 	if (i915_vm_is_4lvl(vm) &&
296 	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K))
297 		size = I915_GTT_PAGE_SIZE_64K;
298 
299 	do {
300 		struct drm_i915_gem_object *obj;
301 
302 		obj = vm->alloc_pt_dma(vm, size);
303 		if (IS_ERR(obj))
304 			goto skip;
305 
306 		if (map_pt_dma(vm, obj))
307 			goto skip_obj;
308 
309 		/* We need a single contiguous page for our scratch */
310 		if (obj->mm.page_sizes.sg < size)
311 			goto skip_obj;
312 
313 		/* And it needs to be correspondingly aligned */
314 		if (__px_dma(obj) & (size - 1))
315 			goto skip_obj;
316 
317 		/*
318 		 * Use a non-zero scratch page for debugging.
319 		 *
320 		 * We want a value that should be reasonably obvious
321 		 * to spot in the error state, while also causing a GPU hang
322 		 * if executed. We prefer using a clear page in production, so
323 		 * should it ever be accidentally used, the effect should be
324 		 * fairly benign.
325 		 */
326 		poison_scratch_page(obj);
327 
328 		vm->scratch[0] = obj;
329 		vm->scratch_order = get_order(size);
330 		return 0;
331 
332 skip_obj:
333 		i915_gem_object_put(obj);
334 skip:
335 		if (size == I915_GTT_PAGE_SIZE_4K)
336 			return -ENOMEM;
337 
338 		size = I915_GTT_PAGE_SIZE_4K;
339 	} while (1);
340 }
341 
free_scratch(struct i915_address_space * vm)342 void free_scratch(struct i915_address_space *vm)
343 {
344 	int i;
345 
346 	for (i = 0; i <= vm->top; i++)
347 		i915_gem_object_put(vm->scratch[i]);
348 }
349 
gtt_write_workarounds(struct intel_gt * gt)350 void gtt_write_workarounds(struct intel_gt *gt)
351 {
352 	struct drm_i915_private *i915 = gt->i915;
353 	struct intel_uncore *uncore = gt->uncore;
354 
355 	/*
356 	 * This function is for gtt related workarounds. This function is
357 	 * called on driver load and after a GPU reset, so you can place
358 	 * workarounds here even if they get overwritten by GPU reset.
359 	 */
360 	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
361 	if (IS_BROADWELL(i915))
362 		intel_uncore_write(uncore,
363 				   GEN8_L3_LRA_1_GPGPU,
364 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
365 	else if (IS_CHERRYVIEW(i915))
366 		intel_uncore_write(uncore,
367 				   GEN8_L3_LRA_1_GPGPU,
368 				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
369 	else if (IS_GEN9_LP(i915))
370 		intel_uncore_write(uncore,
371 				   GEN8_L3_LRA_1_GPGPU,
372 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
373 	else if (GRAPHICS_VER(i915) >= 9 && GRAPHICS_VER(i915) <= 11)
374 		intel_uncore_write(uncore,
375 				   GEN8_L3_LRA_1_GPGPU,
376 				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
377 
378 	/*
379 	 * To support 64K PTEs we need to first enable the use of the
380 	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
381 	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
382 	 * shouldn't be needed after GEN10.
383 	 *
384 	 * 64K pages were first introduced from BDW+, although technically they
385 	 * only *work* from gen9+. For pre-BDW we instead have the option for
386 	 * 32K pages, but we don't currently have any support for it in our
387 	 * driver.
388 	 */
389 	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
390 	    GRAPHICS_VER(i915) <= 10)
391 		intel_uncore_rmw(uncore,
392 				 GEN8_GAMW_ECO_DEV_RW_IA,
393 				 0,
394 				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
395 
396 	if (IS_GRAPHICS_VER(i915, 8, 11)) {
397 		bool can_use_gtt_cache = true;
398 
399 		/*
400 		 * According to the BSpec if we use 2M/1G pages then we also
401 		 * need to disable the GTT cache. At least on BDW we can see
402 		 * visual corruption when using 2M pages, and not disabling the
403 		 * GTT cache.
404 		 */
405 		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
406 			can_use_gtt_cache = false;
407 
408 		/* WaGttCachingOffByDefault */
409 		intel_uncore_write(uncore,
410 				   HSW_GTT_CACHE_EN,
411 				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
412 		drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
413 				 intel_uncore_read(uncore,
414 						   HSW_GTT_CACHE_EN) == 0);
415 	}
416 }
417 
tgl_setup_private_ppat(struct intel_uncore * uncore)418 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
419 {
420 	/* TGL doesn't support LLC or AGE settings */
421 	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
422 	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
423 	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
424 	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
425 	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
426 	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
427 	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
428 	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
429 }
430 
icl_setup_private_ppat(struct intel_uncore * uncore)431 static void icl_setup_private_ppat(struct intel_uncore *uncore)
432 {
433 	intel_uncore_write(uncore,
434 			   GEN10_PAT_INDEX(0),
435 			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
436 	intel_uncore_write(uncore,
437 			   GEN10_PAT_INDEX(1),
438 			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
439 	intel_uncore_write(uncore,
440 			   GEN10_PAT_INDEX(2),
441 			   GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
442 	intel_uncore_write(uncore,
443 			   GEN10_PAT_INDEX(3),
444 			   GEN8_PPAT_UC);
445 	intel_uncore_write(uncore,
446 			   GEN10_PAT_INDEX(4),
447 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
448 	intel_uncore_write(uncore,
449 			   GEN10_PAT_INDEX(5),
450 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
451 	intel_uncore_write(uncore,
452 			   GEN10_PAT_INDEX(6),
453 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
454 	intel_uncore_write(uncore,
455 			   GEN10_PAT_INDEX(7),
456 			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
457 }
458 
459 /*
460  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
461  * bits. When using advanced contexts each context stores its own PAT, but
462  * writing this data shouldn't be harmful even in those cases.
463  */
bdw_setup_private_ppat(struct intel_uncore * uncore)464 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
465 {
466 	struct drm_i915_private *i915 = uncore->i915;
467 	u64 pat;
468 
469 	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
470 	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
471 	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
472 	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
473 	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
474 	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
475 	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
476 
477 	/* for scanout with eLLC */
478 	if (GRAPHICS_VER(i915) >= 9)
479 		pat |= GEN8_PPAT(2, GEN8_PPAT_WB | GEN8_PPAT_ELLC_OVERRIDE);
480 	else
481 		pat |= GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
482 
483 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
484 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
485 }
486 
chv_setup_private_ppat(struct intel_uncore * uncore)487 static void chv_setup_private_ppat(struct intel_uncore *uncore)
488 {
489 	u64 pat;
490 
491 	/*
492 	 * Map WB on BDW to snooped on CHV.
493 	 *
494 	 * Only the snoop bit has meaning for CHV, the rest is
495 	 * ignored.
496 	 *
497 	 * The hardware will never snoop for certain types of accesses:
498 	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
499 	 * - PPGTT page tables
500 	 * - some other special cycles
501 	 *
502 	 * As with BDW, we also need to consider the following for GT accesses:
503 	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
504 	 * so RTL will always use the value corresponding to
505 	 * pat_sel = 000".
506 	 * Which means we must set the snoop bit in PAT entry 0
507 	 * in order to keep the global status page working.
508 	 */
509 
510 	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
511 	      GEN8_PPAT(1, 0) |
512 	      GEN8_PPAT(2, 0) |
513 	      GEN8_PPAT(3, 0) |
514 	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
515 	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
516 	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
517 	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
518 
519 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
520 	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
521 }
522 
setup_private_pat(struct intel_uncore * uncore)523 void setup_private_pat(struct intel_uncore *uncore)
524 {
525 	struct drm_i915_private *i915 = uncore->i915;
526 
527 	GEM_BUG_ON(GRAPHICS_VER(i915) < 8);
528 
529 	if (GRAPHICS_VER(i915) >= 12)
530 		tgl_setup_private_ppat(uncore);
531 	else if (GRAPHICS_VER(i915) >= 11)
532 		icl_setup_private_ppat(uncore);
533 	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
534 		chv_setup_private_ppat(uncore);
535 	else
536 		bdw_setup_private_ppat(uncore);
537 }
538 
539 struct i915_vma *
__vm_create_scratch_for_read(struct i915_address_space * vm,unsigned long size)540 __vm_create_scratch_for_read(struct i915_address_space *vm, unsigned long size)
541 {
542 	struct drm_i915_gem_object *obj;
543 	struct i915_vma *vma;
544 
545 	obj = i915_gem_object_create_internal(vm->i915, PAGE_ALIGN(size));
546 	if (IS_ERR(obj))
547 		return ERR_CAST(obj);
548 
549 	i915_gem_object_set_cache_coherency(obj, I915_CACHING_CACHED);
550 
551 	vma = i915_vma_instance(obj, vm, NULL);
552 	if (IS_ERR(vma)) {
553 		i915_gem_object_put(obj);
554 		return vma;
555 	}
556 
557 	return vma;
558 }
559 
560 struct i915_vma *
__vm_create_scratch_for_read_pinned(struct i915_address_space * vm,unsigned long size)561 __vm_create_scratch_for_read_pinned(struct i915_address_space *vm, unsigned long size)
562 {
563 	struct i915_vma *vma;
564 	int err;
565 
566 	vma = __vm_create_scratch_for_read(vm, size);
567 	if (IS_ERR(vma))
568 		return vma;
569 
570 	err = i915_vma_pin(vma, 0, 0,
571 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
572 	if (err) {
573 		i915_vma_put(vma);
574 		return ERR_PTR(err);
575 	}
576 
577 	return vma;
578 }
579 
580 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
581 #include "selftests/mock_gtt.c"
582 #endif
583