1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2014-2016 Intel Corporation
5 */
6
7 #include <linux/pagevec.h>
8 #include <linux/swap.h>
9
10 #include "gem/i915_gem_region.h"
11 #include "i915_drv.h"
12 #include "i915_gemfs.h"
13 #include "i915_gem_object.h"
14 #include "i915_scatterlist.h"
15 #include "i915_trace.h"
16
17 /*
18 * Move pages to appropriate lru and release the pagevec, decrementing the
19 * ref count of those pages.
20 */
check_release_pagevec(struct pagevec * pvec)21 static void check_release_pagevec(struct pagevec *pvec)
22 {
23 check_move_unevictable_pages(pvec);
24 __pagevec_release(pvec);
25 cond_resched();
26 }
27
shmem_get_pages(struct drm_i915_gem_object * obj)28 static int shmem_get_pages(struct drm_i915_gem_object *obj)
29 {
30 struct drm_i915_private *i915 = to_i915(obj->base.dev);
31 struct intel_memory_region *mem = obj->mm.region;
32 const unsigned long page_count = obj->base.size / PAGE_SIZE;
33 unsigned long i;
34 struct address_space *mapping;
35 struct sg_table *st;
36 struct scatterlist *sg;
37 struct sgt_iter sgt_iter;
38 struct page *page;
39 unsigned long last_pfn = 0; /* suppress gcc warning */
40 unsigned int max_segment = i915_sg_segment_size();
41 unsigned int sg_page_sizes;
42 gfp_t noreclaim;
43 int ret;
44
45 /*
46 * Assert that the object is not currently in any GPU domain. As it
47 * wasn't in the GTT, there shouldn't be any way it could have been in
48 * a GPU cache
49 */
50 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
51 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
52
53 /*
54 * If there's no chance of allocating enough pages for the whole
55 * object, bail early.
56 */
57 if (obj->base.size > resource_size(&mem->region))
58 return -ENOMEM;
59
60 st = kmalloc(sizeof(*st), GFP_KERNEL);
61 if (!st)
62 return -ENOMEM;
63
64 rebuild_st:
65 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
66 kfree(st);
67 return -ENOMEM;
68 }
69
70 /*
71 * Get the list of pages out of our struct file. They'll be pinned
72 * at this point until we release them.
73 *
74 * Fail silently without starting the shrinker
75 */
76 mapping = obj->base.filp->f_mapping;
77 mapping_set_unevictable(mapping);
78 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
79 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
80
81 sg = st->sgl;
82 st->nents = 0;
83 sg_page_sizes = 0;
84 for (i = 0; i < page_count; i++) {
85 const unsigned int shrink[] = {
86 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND,
87 0,
88 }, *s = shrink;
89 gfp_t gfp = noreclaim;
90
91 do {
92 cond_resched();
93 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
94 if (!IS_ERR(page))
95 break;
96
97 if (!*s) {
98 ret = PTR_ERR(page);
99 goto err_sg;
100 }
101
102 i915_gem_shrink(NULL, i915, 2 * page_count, NULL, *s++);
103
104 /*
105 * We've tried hard to allocate the memory by reaping
106 * our own buffer, now let the real VM do its job and
107 * go down in flames if truly OOM.
108 *
109 * However, since graphics tend to be disposable,
110 * defer the oom here by reporting the ENOMEM back
111 * to userspace.
112 */
113 if (!*s) {
114 /* reclaim and warn, but no oom */
115 gfp = mapping_gfp_mask(mapping);
116
117 /*
118 * Our bo are always dirty and so we require
119 * kswapd to reclaim our pages (direct reclaim
120 * does not effectively begin pageout of our
121 * buffers on its own). However, direct reclaim
122 * only waits for kswapd when under allocation
123 * congestion. So as a result __GFP_RECLAIM is
124 * unreliable and fails to actually reclaim our
125 * dirty pages -- unless you try over and over
126 * again with !__GFP_NORETRY. However, we still
127 * want to fail this allocation rather than
128 * trigger the out-of-memory killer and for
129 * this we want __GFP_RETRY_MAYFAIL.
130 */
131 gfp |= __GFP_RETRY_MAYFAIL;
132 }
133 } while (1);
134
135 if (!i ||
136 sg->length >= max_segment ||
137 page_to_pfn(page) != last_pfn + 1) {
138 if (i) {
139 sg_page_sizes |= sg->length;
140 sg = sg_next(sg);
141 }
142 st->nents++;
143 sg_set_page(sg, page, PAGE_SIZE, 0);
144 } else {
145 sg->length += PAGE_SIZE;
146 }
147 last_pfn = page_to_pfn(page);
148
149 /* Check that the i965g/gm workaround works. */
150 GEM_BUG_ON(gfp & __GFP_DMA32 && last_pfn >= 0x00100000UL);
151 }
152 if (sg) { /* loop terminated early; short sg table */
153 sg_page_sizes |= sg->length;
154 sg_mark_end(sg);
155 }
156
157 /* Trim unused sg entries to avoid wasting memory. */
158 i915_sg_trim(st);
159
160 ret = i915_gem_gtt_prepare_pages(obj, st);
161 if (ret) {
162 /*
163 * DMA remapping failed? One possible cause is that
164 * it could not reserve enough large entries, asking
165 * for PAGE_SIZE chunks instead may be helpful.
166 */
167 if (max_segment > PAGE_SIZE) {
168 for_each_sgt_page(page, sgt_iter, st)
169 put_page(page);
170 sg_free_table(st);
171
172 max_segment = PAGE_SIZE;
173 goto rebuild_st;
174 } else {
175 dev_warn(i915->drm.dev,
176 "Failed to DMA remap %lu pages\n",
177 page_count);
178 goto err_pages;
179 }
180 }
181
182 if (i915_gem_object_needs_bit17_swizzle(obj))
183 i915_gem_object_do_bit_17_swizzle(obj, st);
184
185 if (i915_gem_object_can_bypass_llc(obj))
186 obj->cache_dirty = true;
187
188 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
189
190 return 0;
191
192 err_sg:
193 sg_mark_end(sg);
194 err_pages:
195 mapping_clear_unevictable(mapping);
196 if (sg != st->sgl) {
197 struct pagevec pvec;
198
199 pagevec_init(&pvec);
200 for_each_sgt_page(page, sgt_iter, st) {
201 if (!pagevec_add(&pvec, page))
202 check_release_pagevec(&pvec);
203 }
204 if (pagevec_count(&pvec))
205 check_release_pagevec(&pvec);
206 }
207 sg_free_table(st);
208 kfree(st);
209
210 /*
211 * shmemfs first checks if there is enough memory to allocate the page
212 * and reports ENOSPC should there be insufficient, along with the usual
213 * ENOMEM for a genuine allocation failure.
214 *
215 * We use ENOSPC in our driver to mean that we have run out of aperture
216 * space and so want to translate the error from shmemfs back to our
217 * usual understanding of ENOMEM.
218 */
219 if (ret == -ENOSPC)
220 ret = -ENOMEM;
221
222 return ret;
223 }
224
225 static void
shmem_truncate(struct drm_i915_gem_object * obj)226 shmem_truncate(struct drm_i915_gem_object *obj)
227 {
228 /*
229 * Our goal here is to return as much of the memory as
230 * is possible back to the system as we are called from OOM.
231 * To do this we must instruct the shmfs to drop all of its
232 * backing pages, *now*.
233 */
234 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
235 obj->mm.madv = __I915_MADV_PURGED;
236 obj->mm.pages = ERR_PTR(-EFAULT);
237 }
238
239 static void
shmem_writeback(struct drm_i915_gem_object * obj)240 shmem_writeback(struct drm_i915_gem_object *obj)
241 {
242 struct address_space *mapping;
243 struct writeback_control wbc = {
244 .sync_mode = WB_SYNC_NONE,
245 .nr_to_write = SWAP_CLUSTER_MAX,
246 .range_start = 0,
247 .range_end = LLONG_MAX,
248 .for_reclaim = 1,
249 };
250 unsigned long i;
251
252 /*
253 * Leave mmapings intact (GTT will have been revoked on unbinding,
254 * leaving only CPU mmapings around) and add those pages to the LRU
255 * instead of invoking writeback so they are aged and paged out
256 * as normal.
257 */
258 mapping = obj->base.filp->f_mapping;
259
260 /* Begin writeback on each dirty page */
261 for (i = 0; i < obj->base.size >> PAGE_SHIFT; i++) {
262 struct page *page;
263
264 page = find_lock_page(mapping, i);
265 if (!page)
266 continue;
267
268 if (!page_mapped(page) && clear_page_dirty_for_io(page)) {
269 int ret;
270
271 SetPageReclaim(page);
272 ret = mapping->a_ops->writepage(page, &wbc);
273 if (!PageWriteback(page))
274 ClearPageReclaim(page);
275 if (!ret)
276 goto put;
277 }
278 unlock_page(page);
279 put:
280 put_page(page);
281 }
282 }
283
284 void
__i915_gem_object_release_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages,bool needs_clflush)285 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
286 struct sg_table *pages,
287 bool needs_clflush)
288 {
289 struct drm_i915_private *i915 = to_i915(obj->base.dev);
290
291 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
292
293 if (obj->mm.madv == I915_MADV_DONTNEED)
294 obj->mm.dirty = false;
295
296 if (needs_clflush &&
297 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
298 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
299 drm_clflush_sg(pages);
300
301 __start_cpu_write(obj);
302 /*
303 * On non-LLC platforms, force the flush-on-acquire if this is ever
304 * swapped-in. Our async flush path is not trust worthy enough yet(and
305 * happens in the wrong order), and with some tricks it's conceivable
306 * for userspace to change the cache-level to I915_CACHE_NONE after the
307 * pages are swapped-in, and since execbuf binds the object before doing
308 * the async flush, we have a race window.
309 */
310 if (!HAS_LLC(i915))
311 obj->cache_dirty = true;
312 }
313
i915_gem_object_put_pages_shmem(struct drm_i915_gem_object * obj,struct sg_table * pages)314 void i915_gem_object_put_pages_shmem(struct drm_i915_gem_object *obj, struct sg_table *pages)
315 {
316 struct sgt_iter sgt_iter;
317 struct pagevec pvec;
318 struct page *page;
319
320 GEM_WARN_ON(IS_DGFX(to_i915(obj->base.dev)));
321 __i915_gem_object_release_shmem(obj, pages, true);
322
323 i915_gem_gtt_finish_pages(obj, pages);
324
325 if (i915_gem_object_needs_bit17_swizzle(obj))
326 i915_gem_object_save_bit_17_swizzle(obj, pages);
327
328 mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);
329
330 pagevec_init(&pvec);
331 for_each_sgt_page(page, sgt_iter, pages) {
332 if (obj->mm.dirty)
333 set_page_dirty(page);
334
335 if (obj->mm.madv == I915_MADV_WILLNEED)
336 mark_page_accessed(page);
337
338 if (!pagevec_add(&pvec, page))
339 check_release_pagevec(&pvec);
340 }
341 if (pagevec_count(&pvec))
342 check_release_pagevec(&pvec);
343 obj->mm.dirty = false;
344
345 sg_free_table(pages);
346 kfree(pages);
347 }
348
349 static void
shmem_put_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)350 shmem_put_pages(struct drm_i915_gem_object *obj, struct sg_table *pages)
351 {
352 if (likely(i915_gem_object_has_struct_page(obj)))
353 i915_gem_object_put_pages_shmem(obj, pages);
354 else
355 i915_gem_object_put_pages_phys(obj, pages);
356 }
357
358 static int
shmem_pwrite(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * arg)359 shmem_pwrite(struct drm_i915_gem_object *obj,
360 const struct drm_i915_gem_pwrite *arg)
361 {
362 struct address_space *mapping = obj->base.filp->f_mapping;
363 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
364 u64 remain, offset;
365 unsigned int pg;
366
367 /* Caller already validated user args */
368 GEM_BUG_ON(!access_ok(user_data, arg->size));
369
370 if (!i915_gem_object_has_struct_page(obj))
371 return i915_gem_object_pwrite_phys(obj, arg);
372
373 /*
374 * Before we instantiate/pin the backing store for our use, we
375 * can prepopulate the shmemfs filp efficiently using a write into
376 * the pagecache. We avoid the penalty of instantiating all the
377 * pages, important if the user is just writing to a few and never
378 * uses the object on the GPU, and using a direct write into shmemfs
379 * allows it to avoid the cost of retrieving a page (either swapin
380 * or clearing-before-use) before it is overwritten.
381 */
382 if (i915_gem_object_has_pages(obj))
383 return -ENODEV;
384
385 if (obj->mm.madv != I915_MADV_WILLNEED)
386 return -EFAULT;
387
388 /*
389 * Before the pages are instantiated the object is treated as being
390 * in the CPU domain. The pages will be clflushed as required before
391 * use, and we can freely write into the pages directly. If userspace
392 * races pwrite with any other operation; corruption will ensue -
393 * that is userspace's prerogative!
394 */
395
396 remain = arg->size;
397 offset = arg->offset;
398 pg = offset_in_page(offset);
399
400 do {
401 unsigned int len, unwritten;
402 struct page *page;
403 void *data, *vaddr;
404 int err;
405 char c;
406
407 len = PAGE_SIZE - pg;
408 if (len > remain)
409 len = remain;
410
411 /* Prefault the user page to reduce potential recursion */
412 err = __get_user(c, user_data);
413 if (err)
414 return err;
415
416 err = __get_user(c, user_data + len - 1);
417 if (err)
418 return err;
419
420 err = pagecache_write_begin(obj->base.filp, mapping,
421 offset, len, 0,
422 &page, &data);
423 if (err < 0)
424 return err;
425
426 vaddr = kmap_atomic(page);
427 unwritten = __copy_from_user_inatomic(vaddr + pg,
428 user_data,
429 len);
430 kunmap_atomic(vaddr);
431
432 err = pagecache_write_end(obj->base.filp, mapping,
433 offset, len, len - unwritten,
434 page, data);
435 if (err < 0)
436 return err;
437
438 /* We don't handle -EFAULT, leave it to the caller to check */
439 if (unwritten)
440 return -ENODEV;
441
442 remain -= len;
443 user_data += len;
444 offset += len;
445 pg = 0;
446 } while (remain);
447
448 return 0;
449 }
450
451 static int
shmem_pread(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pread * arg)452 shmem_pread(struct drm_i915_gem_object *obj,
453 const struct drm_i915_gem_pread *arg)
454 {
455 if (!i915_gem_object_has_struct_page(obj))
456 return i915_gem_object_pread_phys(obj, arg);
457
458 return -ENODEV;
459 }
460
shmem_release(struct drm_i915_gem_object * obj)461 static void shmem_release(struct drm_i915_gem_object *obj)
462 {
463 if (i915_gem_object_has_struct_page(obj))
464 i915_gem_object_release_memory_region(obj);
465
466 fput(obj->base.filp);
467 }
468
469 const struct drm_i915_gem_object_ops i915_gem_shmem_ops = {
470 .name = "i915_gem_object_shmem",
471 .flags = I915_GEM_OBJECT_IS_SHRINKABLE,
472
473 .get_pages = shmem_get_pages,
474 .put_pages = shmem_put_pages,
475 .truncate = shmem_truncate,
476 .writeback = shmem_writeback,
477
478 .pwrite = shmem_pwrite,
479 .pread = shmem_pread,
480
481 .release = shmem_release,
482 };
483
__create_shmem(struct drm_i915_private * i915,struct drm_gem_object * obj,resource_size_t size)484 static int __create_shmem(struct drm_i915_private *i915,
485 struct drm_gem_object *obj,
486 resource_size_t size)
487 {
488 unsigned long flags = VM_NORESERVE;
489 struct file *filp;
490
491 drm_gem_private_object_init(&i915->drm, obj, size);
492
493 if (i915->mm.gemfs)
494 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
495 flags);
496 else
497 filp = shmem_file_setup("i915", size, flags);
498 if (IS_ERR(filp))
499 return PTR_ERR(filp);
500
501 obj->filp = filp;
502 return 0;
503 }
504
shmem_object_init(struct intel_memory_region * mem,struct drm_i915_gem_object * obj,resource_size_t size,resource_size_t page_size,unsigned int flags)505 static int shmem_object_init(struct intel_memory_region *mem,
506 struct drm_i915_gem_object *obj,
507 resource_size_t size,
508 resource_size_t page_size,
509 unsigned int flags)
510 {
511 static struct lock_class_key lock_class;
512 struct drm_i915_private *i915 = mem->i915;
513 struct address_space *mapping;
514 unsigned int cache_level;
515 gfp_t mask;
516 int ret;
517
518 ret = __create_shmem(i915, &obj->base, size);
519 if (ret)
520 return ret;
521
522 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
523 if (IS_I965GM(i915) || IS_I965G(i915)) {
524 /* 965gm cannot relocate objects above 4GiB. */
525 mask &= ~__GFP_HIGHMEM;
526 mask |= __GFP_DMA32;
527 }
528
529 mapping = obj->base.filp->f_mapping;
530 mapping_set_gfp_mask(mapping, mask);
531 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
532
533 i915_gem_object_init(obj, &i915_gem_shmem_ops, &lock_class, 0);
534 obj->mem_flags |= I915_BO_FLAG_STRUCT_PAGE;
535 obj->write_domain = I915_GEM_DOMAIN_CPU;
536 obj->read_domains = I915_GEM_DOMAIN_CPU;
537
538 if (HAS_LLC(i915))
539 /* On some devices, we can have the GPU use the LLC (the CPU
540 * cache) for about a 10% performance improvement
541 * compared to uncached. Graphics requests other than
542 * display scanout are coherent with the CPU in
543 * accessing this cache. This means in this mode we
544 * don't need to clflush on the CPU side, and on the
545 * GPU side we only need to flush internal caches to
546 * get data visible to the CPU.
547 *
548 * However, we maintain the display planes as UC, and so
549 * need to rebind when first used as such.
550 */
551 cache_level = I915_CACHE_LLC;
552 else
553 cache_level = I915_CACHE_NONE;
554
555 i915_gem_object_set_cache_coherency(obj, cache_level);
556
557 i915_gem_object_init_memory_region(obj, mem);
558
559 return 0;
560 }
561
562 struct drm_i915_gem_object *
i915_gem_object_create_shmem(struct drm_i915_private * i915,resource_size_t size)563 i915_gem_object_create_shmem(struct drm_i915_private *i915,
564 resource_size_t size)
565 {
566 return i915_gem_object_create_region(i915->mm.regions[INTEL_REGION_SMEM],
567 size, 0, 0);
568 }
569
570 /* Allocate a new GEM object and fill it with the supplied data */
571 struct drm_i915_gem_object *
i915_gem_object_create_shmem_from_data(struct drm_i915_private * dev_priv,const void * data,resource_size_t size)572 i915_gem_object_create_shmem_from_data(struct drm_i915_private *dev_priv,
573 const void *data, resource_size_t size)
574 {
575 struct drm_i915_gem_object *obj;
576 struct file *file;
577 resource_size_t offset;
578 int err;
579
580 GEM_WARN_ON(IS_DGFX(dev_priv));
581 obj = i915_gem_object_create_shmem(dev_priv, round_up(size, PAGE_SIZE));
582 if (IS_ERR(obj))
583 return obj;
584
585 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
586
587 file = obj->base.filp;
588 offset = 0;
589 do {
590 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
591 struct page *page;
592 void *pgdata, *vaddr;
593
594 err = pagecache_write_begin(file, file->f_mapping,
595 offset, len, 0,
596 &page, &pgdata);
597 if (err < 0)
598 goto fail;
599
600 vaddr = kmap(page);
601 memcpy(vaddr, data, len);
602 kunmap(page);
603
604 err = pagecache_write_end(file, file->f_mapping,
605 offset, len, len,
606 page, pgdata);
607 if (err < 0)
608 goto fail;
609
610 size -= len;
611 data += len;
612 offset += len;
613 } while (size);
614
615 return obj;
616
617 fail:
618 i915_gem_object_put(obj);
619 return ERR_PTR(err);
620 }
621
init_shmem(struct intel_memory_region * mem)622 static int init_shmem(struct intel_memory_region *mem)
623 {
624 int err;
625
626 err = i915_gemfs_init(mem->i915);
627 if (err) {
628 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n",
629 err);
630 }
631
632 intel_memory_region_set_name(mem, "system");
633
634 return 0; /* Don't error, we can simply fallback to the kernel mnt */
635 }
636
release_shmem(struct intel_memory_region * mem)637 static void release_shmem(struct intel_memory_region *mem)
638 {
639 i915_gemfs_fini(mem->i915);
640 }
641
642 static const struct intel_memory_region_ops shmem_region_ops = {
643 .init = init_shmem,
644 .release = release_shmem,
645 .init_object = shmem_object_init,
646 };
647
i915_gem_shmem_setup(struct drm_i915_private * i915,u16 type,u16 instance)648 struct intel_memory_region *i915_gem_shmem_setup(struct drm_i915_private *i915,
649 u16 type, u16 instance)
650 {
651 return intel_memory_region_create(i915, 0,
652 totalram_pages() << PAGE_SHIFT,
653 PAGE_SIZE, 0,
654 type, instance,
655 &shmem_region_ops);
656 }
657
i915_gem_object_is_shmem(const struct drm_i915_gem_object * obj)658 bool i915_gem_object_is_shmem(const struct drm_i915_gem_object *obj)
659 {
660 return obj->ops == &i915_gem_shmem_ops;
661 }
662