1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/mm.h>
33 
34 #include "gem/i915_gem_context.h"
35 #include "gt/intel_breadcrumbs.h"
36 #include "gt/intel_context.h"
37 #include "gt/intel_engine.h"
38 #include "gt/intel_engine_heartbeat.h"
39 #include "gt/intel_gpu_commands.h"
40 #include "gt/intel_reset.h"
41 #include "gt/intel_ring.h"
42 #include "gt/intel_rps.h"
43 
44 #include "i915_active.h"
45 #include "i915_drv.h"
46 #include "i915_trace.h"
47 #include "intel_pm.h"
48 
49 struct execute_cb {
50 	struct irq_work work;
51 	struct i915_sw_fence *fence;
52 	struct i915_request *signal;
53 };
54 
55 static struct kmem_cache *slab_requests;
56 static struct kmem_cache *slab_execute_cbs;
57 
i915_fence_get_driver_name(struct dma_fence * fence)58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60 	return dev_name(to_request(fence)->engine->i915->drm.dev);
61 }
62 
i915_fence_get_timeline_name(struct dma_fence * fence)63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65 	const struct i915_gem_context *ctx;
66 
67 	/*
68 	 * The timeline struct (as part of the ppgtt underneath a context)
69 	 * may be freed when the request is no longer in use by the GPU.
70 	 * We could extend the life of a context to beyond that of all
71 	 * fences, possibly keeping the hw resource around indefinitely,
72 	 * or we just give them a false name. Since
73 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74 	 * lie seems justifiable.
75 	 */
76 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77 		return "signaled";
78 
79 	ctx = i915_request_gem_context(to_request(fence));
80 	if (!ctx)
81 		return "[" DRIVER_NAME "]";
82 
83 	return ctx->name;
84 }
85 
i915_fence_signaled(struct dma_fence * fence)86 static bool i915_fence_signaled(struct dma_fence *fence)
87 {
88 	return i915_request_completed(to_request(fence));
89 }
90 
i915_fence_enable_signaling(struct dma_fence * fence)91 static bool i915_fence_enable_signaling(struct dma_fence *fence)
92 {
93 	return i915_request_enable_breadcrumb(to_request(fence));
94 }
95 
i915_fence_wait(struct dma_fence * fence,bool interruptible,signed long timeout)96 static signed long i915_fence_wait(struct dma_fence *fence,
97 				   bool interruptible,
98 				   signed long timeout)
99 {
100 	return i915_request_wait(to_request(fence),
101 				 interruptible | I915_WAIT_PRIORITY,
102 				 timeout);
103 }
104 
i915_request_slab_cache(void)105 struct kmem_cache *i915_request_slab_cache(void)
106 {
107 	return slab_requests;
108 }
109 
i915_fence_release(struct dma_fence * fence)110 static void i915_fence_release(struct dma_fence *fence)
111 {
112 	struct i915_request *rq = to_request(fence);
113 
114 	GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
115 		   rq->guc_prio != GUC_PRIO_FINI);
116 
117 	/*
118 	 * The request is put onto a RCU freelist (i.e. the address
119 	 * is immediately reused), mark the fences as being freed now.
120 	 * Otherwise the debugobjects for the fences are only marked as
121 	 * freed when the slab cache itself is freed, and so we would get
122 	 * caught trying to reuse dead objects.
123 	 */
124 	i915_sw_fence_fini(&rq->submit);
125 	i915_sw_fence_fini(&rq->semaphore);
126 
127 	/*
128 	 * Keep one request on each engine for reserved use under mempressure,
129 	 * do not use with virtual engines as this really is only needed for
130 	 * kernel contexts.
131 	 */
132 	if (!intel_engine_is_virtual(rq->engine) &&
133 	    !cmpxchg(&rq->engine->request_pool, NULL, rq)) {
134 		intel_context_put(rq->context);
135 		return;
136 	}
137 
138 	intel_context_put(rq->context);
139 
140 	kmem_cache_free(slab_requests, rq);
141 }
142 
143 const struct dma_fence_ops i915_fence_ops = {
144 	.get_driver_name = i915_fence_get_driver_name,
145 	.get_timeline_name = i915_fence_get_timeline_name,
146 	.enable_signaling = i915_fence_enable_signaling,
147 	.signaled = i915_fence_signaled,
148 	.wait = i915_fence_wait,
149 	.release = i915_fence_release,
150 };
151 
irq_execute_cb(struct irq_work * wrk)152 static void irq_execute_cb(struct irq_work *wrk)
153 {
154 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
155 
156 	i915_sw_fence_complete(cb->fence);
157 	kmem_cache_free(slab_execute_cbs, cb);
158 }
159 
160 static __always_inline void
__notify_execute_cb(struct i915_request * rq,bool (* fn)(struct irq_work * wrk))161 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
162 {
163 	struct execute_cb *cb, *cn;
164 
165 	if (llist_empty(&rq->execute_cb))
166 		return;
167 
168 	llist_for_each_entry_safe(cb, cn,
169 				  llist_del_all(&rq->execute_cb),
170 				  work.node.llist)
171 		fn(&cb->work);
172 }
173 
__notify_execute_cb_irq(struct i915_request * rq)174 static void __notify_execute_cb_irq(struct i915_request *rq)
175 {
176 	__notify_execute_cb(rq, irq_work_queue);
177 }
178 
irq_work_imm(struct irq_work * wrk)179 static bool irq_work_imm(struct irq_work *wrk)
180 {
181 	wrk->func(wrk);
182 	return false;
183 }
184 
i915_request_notify_execute_cb_imm(struct i915_request * rq)185 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
186 {
187 	__notify_execute_cb(rq, irq_work_imm);
188 }
189 
free_capture_list(struct i915_request * request)190 static void free_capture_list(struct i915_request *request)
191 {
192 	struct i915_capture_list *capture;
193 
194 	capture = fetch_and_zero(&request->capture_list);
195 	while (capture) {
196 		struct i915_capture_list *next = capture->next;
197 
198 		kfree(capture);
199 		capture = next;
200 	}
201 }
202 
__i915_request_fill(struct i915_request * rq,u8 val)203 static void __i915_request_fill(struct i915_request *rq, u8 val)
204 {
205 	void *vaddr = rq->ring->vaddr;
206 	u32 head;
207 
208 	head = rq->infix;
209 	if (rq->postfix < head) {
210 		memset(vaddr + head, val, rq->ring->size - head);
211 		head = 0;
212 	}
213 	memset(vaddr + head, val, rq->postfix - head);
214 }
215 
216 /**
217  * i915_request_active_engine
218  * @rq: request to inspect
219  * @active: pointer in which to return the active engine
220  *
221  * Fills the currently active engine to the @active pointer if the request
222  * is active and still not completed.
223  *
224  * Returns true if request was active or false otherwise.
225  */
226 bool
i915_request_active_engine(struct i915_request * rq,struct intel_engine_cs ** active)227 i915_request_active_engine(struct i915_request *rq,
228 			   struct intel_engine_cs **active)
229 {
230 	struct intel_engine_cs *engine, *locked;
231 	bool ret = false;
232 
233 	/*
234 	 * Serialise with __i915_request_submit() so that it sees
235 	 * is-banned?, or we know the request is already inflight.
236 	 *
237 	 * Note that rq->engine is unstable, and so we double
238 	 * check that we have acquired the lock on the final engine.
239 	 */
240 	locked = READ_ONCE(rq->engine);
241 	spin_lock_irq(&locked->sched_engine->lock);
242 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
243 		spin_unlock(&locked->sched_engine->lock);
244 		locked = engine;
245 		spin_lock(&locked->sched_engine->lock);
246 	}
247 
248 	if (i915_request_is_active(rq)) {
249 		if (!__i915_request_is_complete(rq))
250 			*active = locked;
251 		ret = true;
252 	}
253 
254 	spin_unlock_irq(&locked->sched_engine->lock);
255 
256 	return ret;
257 }
258 
__rq_init_watchdog(struct i915_request * rq)259 static void __rq_init_watchdog(struct i915_request *rq)
260 {
261 	rq->watchdog.timer.function = NULL;
262 }
263 
__rq_watchdog_expired(struct hrtimer * hrtimer)264 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
265 {
266 	struct i915_request *rq =
267 		container_of(hrtimer, struct i915_request, watchdog.timer);
268 	struct intel_gt *gt = rq->engine->gt;
269 
270 	if (!i915_request_completed(rq)) {
271 		if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
272 			schedule_work(&gt->watchdog.work);
273 	} else {
274 		i915_request_put(rq);
275 	}
276 
277 	return HRTIMER_NORESTART;
278 }
279 
__rq_arm_watchdog(struct i915_request * rq)280 static void __rq_arm_watchdog(struct i915_request *rq)
281 {
282 	struct i915_request_watchdog *wdg = &rq->watchdog;
283 	struct intel_context *ce = rq->context;
284 
285 	if (!ce->watchdog.timeout_us)
286 		return;
287 
288 	i915_request_get(rq);
289 
290 	hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
291 	wdg->timer.function = __rq_watchdog_expired;
292 	hrtimer_start_range_ns(&wdg->timer,
293 			       ns_to_ktime(ce->watchdog.timeout_us *
294 					   NSEC_PER_USEC),
295 			       NSEC_PER_MSEC,
296 			       HRTIMER_MODE_REL);
297 }
298 
__rq_cancel_watchdog(struct i915_request * rq)299 static void __rq_cancel_watchdog(struct i915_request *rq)
300 {
301 	struct i915_request_watchdog *wdg = &rq->watchdog;
302 
303 	if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
304 		i915_request_put(rq);
305 }
306 
i915_request_retire(struct i915_request * rq)307 bool i915_request_retire(struct i915_request *rq)
308 {
309 	if (!__i915_request_is_complete(rq))
310 		return false;
311 
312 	RQ_TRACE(rq, "\n");
313 
314 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
315 	trace_i915_request_retire(rq);
316 	i915_request_mark_complete(rq);
317 
318 	__rq_cancel_watchdog(rq);
319 
320 	/*
321 	 * We know the GPU must have read the request to have
322 	 * sent us the seqno + interrupt, so use the position
323 	 * of tail of the request to update the last known position
324 	 * of the GPU head.
325 	 *
326 	 * Note this requires that we are always called in request
327 	 * completion order.
328 	 */
329 	GEM_BUG_ON(!list_is_first(&rq->link,
330 				  &i915_request_timeline(rq)->requests));
331 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
332 		/* Poison before we release our space in the ring */
333 		__i915_request_fill(rq, POISON_FREE);
334 	rq->ring->head = rq->postfix;
335 
336 	if (!i915_request_signaled(rq)) {
337 		spin_lock_irq(&rq->lock);
338 		dma_fence_signal_locked(&rq->fence);
339 		spin_unlock_irq(&rq->lock);
340 	}
341 
342 	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
343 		atomic_dec(&rq->engine->gt->rps.num_waiters);
344 
345 	/*
346 	 * We only loosely track inflight requests across preemption,
347 	 * and so we may find ourselves attempting to retire a _completed_
348 	 * request that we have removed from the HW and put back on a run
349 	 * queue.
350 	 *
351 	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
352 	 * after removing the breadcrumb and signaling it, so that we do not
353 	 * inadvertently attach the breadcrumb to a completed request.
354 	 */
355 	rq->engine->remove_active_request(rq);
356 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
357 
358 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
359 
360 	intel_context_exit(rq->context);
361 	intel_context_unpin(rq->context);
362 
363 	free_capture_list(rq);
364 	i915_sched_node_fini(&rq->sched);
365 	i915_request_put(rq);
366 
367 	return true;
368 }
369 
i915_request_retire_upto(struct i915_request * rq)370 void i915_request_retire_upto(struct i915_request *rq)
371 {
372 	struct intel_timeline * const tl = i915_request_timeline(rq);
373 	struct i915_request *tmp;
374 
375 	RQ_TRACE(rq, "\n");
376 	GEM_BUG_ON(!__i915_request_is_complete(rq));
377 
378 	do {
379 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
380 		GEM_BUG_ON(!i915_request_completed(tmp));
381 	} while (i915_request_retire(tmp) && tmp != rq);
382 }
383 
384 static struct i915_request * const *
__engine_active(struct intel_engine_cs * engine)385 __engine_active(struct intel_engine_cs *engine)
386 {
387 	return READ_ONCE(engine->execlists.active);
388 }
389 
__request_in_flight(const struct i915_request * signal)390 static bool __request_in_flight(const struct i915_request *signal)
391 {
392 	struct i915_request * const *port, *rq;
393 	bool inflight = false;
394 
395 	if (!i915_request_is_ready(signal))
396 		return false;
397 
398 	/*
399 	 * Even if we have unwound the request, it may still be on
400 	 * the GPU (preempt-to-busy). If that request is inside an
401 	 * unpreemptible critical section, it will not be removed. Some
402 	 * GPU functions may even be stuck waiting for the paired request
403 	 * (__await_execution) to be submitted and cannot be preempted
404 	 * until the bond is executing.
405 	 *
406 	 * As we know that there are always preemption points between
407 	 * requests, we know that only the currently executing request
408 	 * may be still active even though we have cleared the flag.
409 	 * However, we can't rely on our tracking of ELSP[0] to know
410 	 * which request is currently active and so maybe stuck, as
411 	 * the tracking maybe an event behind. Instead assume that
412 	 * if the context is still inflight, then it is still active
413 	 * even if the active flag has been cleared.
414 	 *
415 	 * To further complicate matters, if there a pending promotion, the HW
416 	 * may either perform a context switch to the second inflight execlists,
417 	 * or it may switch to the pending set of execlists. In the case of the
418 	 * latter, it may send the ACK and we process the event copying the
419 	 * pending[] over top of inflight[], _overwriting_ our *active. Since
420 	 * this implies the HW is arbitrating and not struck in *active, we do
421 	 * not worry about complete accuracy, but we do require no read/write
422 	 * tearing of the pointer [the read of the pointer must be valid, even
423 	 * as the array is being overwritten, for which we require the writes
424 	 * to avoid tearing.]
425 	 *
426 	 * Note that the read of *execlists->active may race with the promotion
427 	 * of execlists->pending[] to execlists->inflight[], overwritting
428 	 * the value at *execlists->active. This is fine. The promotion implies
429 	 * that we received an ACK from the HW, and so the context is not
430 	 * stuck -- if we do not see ourselves in *active, the inflight status
431 	 * is valid. If instead we see ourselves being copied into *active,
432 	 * we are inflight and may signal the callback.
433 	 */
434 	if (!intel_context_inflight(signal->context))
435 		return false;
436 
437 	rcu_read_lock();
438 	for (port = __engine_active(signal->engine);
439 	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
440 	     port++) {
441 		if (rq->context == signal->context) {
442 			inflight = i915_seqno_passed(rq->fence.seqno,
443 						     signal->fence.seqno);
444 			break;
445 		}
446 	}
447 	rcu_read_unlock();
448 
449 	return inflight;
450 }
451 
452 static int
__await_execution(struct i915_request * rq,struct i915_request * signal,gfp_t gfp)453 __await_execution(struct i915_request *rq,
454 		  struct i915_request *signal,
455 		  gfp_t gfp)
456 {
457 	struct execute_cb *cb;
458 
459 	if (i915_request_is_active(signal))
460 		return 0;
461 
462 	cb = kmem_cache_alloc(slab_execute_cbs, gfp);
463 	if (!cb)
464 		return -ENOMEM;
465 
466 	cb->fence = &rq->submit;
467 	i915_sw_fence_await(cb->fence);
468 	init_irq_work(&cb->work, irq_execute_cb);
469 
470 	/*
471 	 * Register the callback first, then see if the signaler is already
472 	 * active. This ensures that if we race with the
473 	 * __notify_execute_cb from i915_request_submit() and we are not
474 	 * included in that list, we get a second bite of the cherry and
475 	 * execute it ourselves. After this point, a future
476 	 * i915_request_submit() will notify us.
477 	 *
478 	 * In i915_request_retire() we set the ACTIVE bit on a completed
479 	 * request (then flush the execute_cb). So by registering the
480 	 * callback first, then checking the ACTIVE bit, we serialise with
481 	 * the completed/retired request.
482 	 */
483 	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
484 		if (i915_request_is_active(signal) ||
485 		    __request_in_flight(signal))
486 			i915_request_notify_execute_cb_imm(signal);
487 	}
488 
489 	return 0;
490 }
491 
fatal_error(int error)492 static bool fatal_error(int error)
493 {
494 	switch (error) {
495 	case 0: /* not an error! */
496 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
497 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
498 		return false;
499 	default:
500 		return true;
501 	}
502 }
503 
__i915_request_skip(struct i915_request * rq)504 void __i915_request_skip(struct i915_request *rq)
505 {
506 	GEM_BUG_ON(!fatal_error(rq->fence.error));
507 
508 	if (rq->infix == rq->postfix)
509 		return;
510 
511 	RQ_TRACE(rq, "error: %d\n", rq->fence.error);
512 
513 	/*
514 	 * As this request likely depends on state from the lost
515 	 * context, clear out all the user operations leaving the
516 	 * breadcrumb at the end (so we get the fence notifications).
517 	 */
518 	__i915_request_fill(rq, 0);
519 	rq->infix = rq->postfix;
520 }
521 
i915_request_set_error_once(struct i915_request * rq,int error)522 bool i915_request_set_error_once(struct i915_request *rq, int error)
523 {
524 	int old;
525 
526 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
527 
528 	if (i915_request_signaled(rq))
529 		return false;
530 
531 	old = READ_ONCE(rq->fence.error);
532 	do {
533 		if (fatal_error(old))
534 			return false;
535 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
536 
537 	return true;
538 }
539 
i915_request_mark_eio(struct i915_request * rq)540 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
541 {
542 	if (__i915_request_is_complete(rq))
543 		return NULL;
544 
545 	GEM_BUG_ON(i915_request_signaled(rq));
546 
547 	/* As soon as the request is completed, it may be retired */
548 	rq = i915_request_get(rq);
549 
550 	i915_request_set_error_once(rq, -EIO);
551 	i915_request_mark_complete(rq);
552 
553 	return rq;
554 }
555 
__i915_request_submit(struct i915_request * request)556 bool __i915_request_submit(struct i915_request *request)
557 {
558 	struct intel_engine_cs *engine = request->engine;
559 	bool result = false;
560 
561 	RQ_TRACE(request, "\n");
562 
563 	GEM_BUG_ON(!irqs_disabled());
564 	lockdep_assert_held(&engine->sched_engine->lock);
565 
566 	/*
567 	 * With the advent of preempt-to-busy, we frequently encounter
568 	 * requests that we have unsubmitted from HW, but left running
569 	 * until the next ack and so have completed in the meantime. On
570 	 * resubmission of that completed request, we can skip
571 	 * updating the payload, and execlists can even skip submitting
572 	 * the request.
573 	 *
574 	 * We must remove the request from the caller's priority queue,
575 	 * and the caller must only call us when the request is in their
576 	 * priority queue, under the sched_engine->lock. This ensures that the
577 	 * request has *not* yet been retired and we can safely move
578 	 * the request into the engine->active.list where it will be
579 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
580 	 * request, this would be a horrible use-after-free.)
581 	 */
582 	if (__i915_request_is_complete(request)) {
583 		list_del_init(&request->sched.link);
584 		goto active;
585 	}
586 
587 	if (unlikely(intel_context_is_banned(request->context)))
588 		i915_request_set_error_once(request, -EIO);
589 
590 	if (unlikely(fatal_error(request->fence.error)))
591 		__i915_request_skip(request);
592 
593 	/*
594 	 * Are we using semaphores when the gpu is already saturated?
595 	 *
596 	 * Using semaphores incurs a cost in having the GPU poll a
597 	 * memory location, busywaiting for it to change. The continual
598 	 * memory reads can have a noticeable impact on the rest of the
599 	 * system with the extra bus traffic, stalling the cpu as it too
600 	 * tries to access memory across the bus (perf stat -e bus-cycles).
601 	 *
602 	 * If we installed a semaphore on this request and we only submit
603 	 * the request after the signaler completed, that indicates the
604 	 * system is overloaded and using semaphores at this time only
605 	 * increases the amount of work we are doing. If so, we disable
606 	 * further use of semaphores until we are idle again, whence we
607 	 * optimistically try again.
608 	 */
609 	if (request->sched.semaphores &&
610 	    i915_sw_fence_signaled(&request->semaphore))
611 		engine->saturated |= request->sched.semaphores;
612 
613 	engine->emit_fini_breadcrumb(request,
614 				     request->ring->vaddr + request->postfix);
615 
616 	trace_i915_request_execute(request);
617 	if (engine->bump_serial)
618 		engine->bump_serial(engine);
619 	else
620 		engine->serial++;
621 
622 	result = true;
623 
624 	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
625 	engine->add_active_request(request);
626 active:
627 	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
628 	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
629 
630 	/*
631 	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
632 	 *
633 	 * In the future, perhaps when we have an active time-slicing scheduler,
634 	 * it will be interesting to unsubmit parallel execution and remove
635 	 * busywaits from the GPU until their master is restarted. This is
636 	 * quite hairy, we have to carefully rollback the fence and do a
637 	 * preempt-to-idle cycle on the target engine, all the while the
638 	 * master execute_cb may refire.
639 	 */
640 	__notify_execute_cb_irq(request);
641 
642 	/* We may be recursing from the signal callback of another i915 fence */
643 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
644 		i915_request_enable_breadcrumb(request);
645 
646 	return result;
647 }
648 
i915_request_submit(struct i915_request * request)649 void i915_request_submit(struct i915_request *request)
650 {
651 	struct intel_engine_cs *engine = request->engine;
652 	unsigned long flags;
653 
654 	/* Will be called from irq-context when using foreign fences. */
655 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
656 
657 	__i915_request_submit(request);
658 
659 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
660 }
661 
__i915_request_unsubmit(struct i915_request * request)662 void __i915_request_unsubmit(struct i915_request *request)
663 {
664 	struct intel_engine_cs *engine = request->engine;
665 
666 	/*
667 	 * Only unwind in reverse order, required so that the per-context list
668 	 * is kept in seqno/ring order.
669 	 */
670 	RQ_TRACE(request, "\n");
671 
672 	GEM_BUG_ON(!irqs_disabled());
673 	lockdep_assert_held(&engine->sched_engine->lock);
674 
675 	/*
676 	 * Before we remove this breadcrumb from the signal list, we have
677 	 * to ensure that a concurrent dma_fence_enable_signaling() does not
678 	 * attach itself. We first mark the request as no longer active and
679 	 * make sure that is visible to other cores, and then remove the
680 	 * breadcrumb if attached.
681 	 */
682 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
683 	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
684 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
685 		i915_request_cancel_breadcrumb(request);
686 
687 	/* We've already spun, don't charge on resubmitting. */
688 	if (request->sched.semaphores && __i915_request_has_started(request))
689 		request->sched.semaphores = 0;
690 
691 	/*
692 	 * We don't need to wake_up any waiters on request->execute, they
693 	 * will get woken by any other event or us re-adding this request
694 	 * to the engine timeline (__i915_request_submit()). The waiters
695 	 * should be quite adapt at finding that the request now has a new
696 	 * global_seqno to the one they went to sleep on.
697 	 */
698 }
699 
i915_request_unsubmit(struct i915_request * request)700 void i915_request_unsubmit(struct i915_request *request)
701 {
702 	struct intel_engine_cs *engine = request->engine;
703 	unsigned long flags;
704 
705 	/* Will be called from irq-context when using foreign fences. */
706 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
707 
708 	__i915_request_unsubmit(request);
709 
710 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
711 }
712 
i915_request_cancel(struct i915_request * rq,int error)713 void i915_request_cancel(struct i915_request *rq, int error)
714 {
715 	if (!i915_request_set_error_once(rq, error))
716 		return;
717 
718 	set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
719 
720 	intel_context_cancel_request(rq->context, rq);
721 }
722 
723 static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)724 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
725 {
726 	struct i915_request *request =
727 		container_of(fence, typeof(*request), submit);
728 
729 	switch (state) {
730 	case FENCE_COMPLETE:
731 		trace_i915_request_submit(request);
732 
733 		if (unlikely(fence->error))
734 			i915_request_set_error_once(request, fence->error);
735 		else
736 			__rq_arm_watchdog(request);
737 
738 		/*
739 		 * We need to serialize use of the submit_request() callback
740 		 * with its hotplugging performed during an emergency
741 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
742 		 * critical section in order to force i915_gem_set_wedged() to
743 		 * wait until the submit_request() is completed before
744 		 * proceeding.
745 		 */
746 		rcu_read_lock();
747 		request->engine->submit_request(request);
748 		rcu_read_unlock();
749 		break;
750 
751 	case FENCE_FREE:
752 		i915_request_put(request);
753 		break;
754 	}
755 
756 	return NOTIFY_DONE;
757 }
758 
759 static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)760 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
761 {
762 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
763 
764 	switch (state) {
765 	case FENCE_COMPLETE:
766 		break;
767 
768 	case FENCE_FREE:
769 		i915_request_put(rq);
770 		break;
771 	}
772 
773 	return NOTIFY_DONE;
774 }
775 
retire_requests(struct intel_timeline * tl)776 static void retire_requests(struct intel_timeline *tl)
777 {
778 	struct i915_request *rq, *rn;
779 
780 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
781 		if (!i915_request_retire(rq))
782 			break;
783 }
784 
785 static noinline struct i915_request *
request_alloc_slow(struct intel_timeline * tl,struct i915_request ** rsvd,gfp_t gfp)786 request_alloc_slow(struct intel_timeline *tl,
787 		   struct i915_request **rsvd,
788 		   gfp_t gfp)
789 {
790 	struct i915_request *rq;
791 
792 	/* If we cannot wait, dip into our reserves */
793 	if (!gfpflags_allow_blocking(gfp)) {
794 		rq = xchg(rsvd, NULL);
795 		if (!rq) /* Use the normal failure path for one final WARN */
796 			goto out;
797 
798 		return rq;
799 	}
800 
801 	if (list_empty(&tl->requests))
802 		goto out;
803 
804 	/* Move our oldest request to the slab-cache (if not in use!) */
805 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
806 	i915_request_retire(rq);
807 
808 	rq = kmem_cache_alloc(slab_requests,
809 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
810 	if (rq)
811 		return rq;
812 
813 	/* Ratelimit ourselves to prevent oom from malicious clients */
814 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
815 	cond_synchronize_rcu(rq->rcustate);
816 
817 	/* Retire our old requests in the hope that we free some */
818 	retire_requests(tl);
819 
820 out:
821 	return kmem_cache_alloc(slab_requests, gfp);
822 }
823 
__i915_request_ctor(void * arg)824 static void __i915_request_ctor(void *arg)
825 {
826 	struct i915_request *rq = arg;
827 
828 	spin_lock_init(&rq->lock);
829 	i915_sched_node_init(&rq->sched);
830 	i915_sw_fence_init(&rq->submit, submit_notify);
831 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
832 
833 	rq->capture_list = NULL;
834 
835 	init_llist_head(&rq->execute_cb);
836 }
837 
838 struct i915_request *
__i915_request_create(struct intel_context * ce,gfp_t gfp)839 __i915_request_create(struct intel_context *ce, gfp_t gfp)
840 {
841 	struct intel_timeline *tl = ce->timeline;
842 	struct i915_request *rq;
843 	u32 seqno;
844 	int ret;
845 
846 	might_alloc(gfp);
847 
848 	/* Check that the caller provided an already pinned context */
849 	__intel_context_pin(ce);
850 
851 	/*
852 	 * Beware: Dragons be flying overhead.
853 	 *
854 	 * We use RCU to look up requests in flight. The lookups may
855 	 * race with the request being allocated from the slab freelist.
856 	 * That is the request we are writing to here, may be in the process
857 	 * of being read by __i915_active_request_get_rcu(). As such,
858 	 * we have to be very careful when overwriting the contents. During
859 	 * the RCU lookup, we change chase the request->engine pointer,
860 	 * read the request->global_seqno and increment the reference count.
861 	 *
862 	 * The reference count is incremented atomically. If it is zero,
863 	 * the lookup knows the request is unallocated and complete. Otherwise,
864 	 * it is either still in use, or has been reallocated and reset
865 	 * with dma_fence_init(). This increment is safe for release as we
866 	 * check that the request we have a reference to and matches the active
867 	 * request.
868 	 *
869 	 * Before we increment the refcount, we chase the request->engine
870 	 * pointer. We must not call kmem_cache_zalloc() or else we set
871 	 * that pointer to NULL and cause a crash during the lookup. If
872 	 * we see the request is completed (based on the value of the
873 	 * old engine and seqno), the lookup is complete and reports NULL.
874 	 * If we decide the request is not completed (new engine or seqno),
875 	 * then we grab a reference and double check that it is still the
876 	 * active request - which it won't be and restart the lookup.
877 	 *
878 	 * Do not use kmem_cache_zalloc() here!
879 	 */
880 	rq = kmem_cache_alloc(slab_requests,
881 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
882 	if (unlikely(!rq)) {
883 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
884 		if (!rq) {
885 			ret = -ENOMEM;
886 			goto err_unreserve;
887 		}
888 	}
889 
890 	/*
891 	 * Hold a reference to the intel_context over life of an i915_request.
892 	 * Without this an i915_request can exist after the context has been
893 	 * destroyed (e.g. request retired, context closed, but user space holds
894 	 * a reference to the request from an out fence). In the case of GuC
895 	 * submission + virtual engine, the engine that the request references
896 	 * is also destroyed which can trigger bad pointer dref in fence ops
897 	 * (e.g. i915_fence_get_driver_name). We could likely change these
898 	 * functions to avoid touching the engine but let's just be safe and
899 	 * hold the intel_context reference. In execlist mode the request always
900 	 * eventually points to a physical engine so this isn't an issue.
901 	 */
902 	rq->context = intel_context_get(ce);
903 	rq->engine = ce->engine;
904 	rq->ring = ce->ring;
905 	rq->execution_mask = ce->engine->mask;
906 
907 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
908 	if (ret)
909 		goto err_free;
910 
911 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
912 		       tl->fence_context, seqno);
913 
914 	RCU_INIT_POINTER(rq->timeline, tl);
915 	rq->hwsp_seqno = tl->hwsp_seqno;
916 	GEM_BUG_ON(__i915_request_is_complete(rq));
917 
918 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
919 
920 	rq->guc_prio = GUC_PRIO_INIT;
921 
922 	/* We bump the ref for the fence chain */
923 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
924 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
925 
926 	i915_sched_node_reinit(&rq->sched);
927 
928 	/* No zalloc, everything must be cleared after use */
929 	rq->batch = NULL;
930 	__rq_init_watchdog(rq);
931 	GEM_BUG_ON(rq->capture_list);
932 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
933 
934 	/*
935 	 * Reserve space in the ring buffer for all the commands required to
936 	 * eventually emit this request. This is to guarantee that the
937 	 * i915_request_add() call can't fail. Note that the reserve may need
938 	 * to be redone if the request is not actually submitted straight
939 	 * away, e.g. because a GPU scheduler has deferred it.
940 	 *
941 	 * Note that due to how we add reserved_space to intel_ring_begin()
942 	 * we need to double our request to ensure that if we need to wrap
943 	 * around inside i915_request_add() there is sufficient space at
944 	 * the beginning of the ring as well.
945 	 */
946 	rq->reserved_space =
947 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
948 
949 	/*
950 	 * Record the position of the start of the request so that
951 	 * should we detect the updated seqno part-way through the
952 	 * GPU processing the request, we never over-estimate the
953 	 * position of the head.
954 	 */
955 	rq->head = rq->ring->emit;
956 
957 	ret = rq->engine->request_alloc(rq);
958 	if (ret)
959 		goto err_unwind;
960 
961 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
962 
963 	intel_context_mark_active(ce);
964 	list_add_tail_rcu(&rq->link, &tl->requests);
965 
966 	return rq;
967 
968 err_unwind:
969 	ce->ring->emit = rq->head;
970 
971 	/* Make sure we didn't add ourselves to external state before freeing */
972 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
973 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
974 
975 err_free:
976 	intel_context_put(ce);
977 	kmem_cache_free(slab_requests, rq);
978 err_unreserve:
979 	intel_context_unpin(ce);
980 	return ERR_PTR(ret);
981 }
982 
983 struct i915_request *
i915_request_create(struct intel_context * ce)984 i915_request_create(struct intel_context *ce)
985 {
986 	struct i915_request *rq;
987 	struct intel_timeline *tl;
988 
989 	tl = intel_context_timeline_lock(ce);
990 	if (IS_ERR(tl))
991 		return ERR_CAST(tl);
992 
993 	/* Move our oldest request to the slab-cache (if not in use!) */
994 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
995 	if (!list_is_last(&rq->link, &tl->requests))
996 		i915_request_retire(rq);
997 
998 	intel_context_enter(ce);
999 	rq = __i915_request_create(ce, GFP_KERNEL);
1000 	intel_context_exit(ce); /* active reference transferred to request */
1001 	if (IS_ERR(rq))
1002 		goto err_unlock;
1003 
1004 	/* Check that we do not interrupt ourselves with a new request */
1005 	rq->cookie = lockdep_pin_lock(&tl->mutex);
1006 
1007 	return rq;
1008 
1009 err_unlock:
1010 	intel_context_timeline_unlock(tl);
1011 	return rq;
1012 }
1013 
1014 static int
i915_request_await_start(struct i915_request * rq,struct i915_request * signal)1015 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1016 {
1017 	struct dma_fence *fence;
1018 	int err;
1019 
1020 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1021 		return 0;
1022 
1023 	if (i915_request_started(signal))
1024 		return 0;
1025 
1026 	/*
1027 	 * The caller holds a reference on @signal, but we do not serialise
1028 	 * against it being retired and removed from the lists.
1029 	 *
1030 	 * We do not hold a reference to the request before @signal, and
1031 	 * so must be very careful to ensure that it is not _recycled_ as
1032 	 * we follow the link backwards.
1033 	 */
1034 	fence = NULL;
1035 	rcu_read_lock();
1036 	do {
1037 		struct list_head *pos = READ_ONCE(signal->link.prev);
1038 		struct i915_request *prev;
1039 
1040 		/* Confirm signal has not been retired, the link is valid */
1041 		if (unlikely(__i915_request_has_started(signal)))
1042 			break;
1043 
1044 		/* Is signal the earliest request on its timeline? */
1045 		if (pos == &rcu_dereference(signal->timeline)->requests)
1046 			break;
1047 
1048 		/*
1049 		 * Peek at the request before us in the timeline. That
1050 		 * request will only be valid before it is retired, so
1051 		 * after acquiring a reference to it, confirm that it is
1052 		 * still part of the signaler's timeline.
1053 		 */
1054 		prev = list_entry(pos, typeof(*prev), link);
1055 		if (!i915_request_get_rcu(prev))
1056 			break;
1057 
1058 		/* After the strong barrier, confirm prev is still attached */
1059 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1060 			i915_request_put(prev);
1061 			break;
1062 		}
1063 
1064 		fence = &prev->fence;
1065 	} while (0);
1066 	rcu_read_unlock();
1067 	if (!fence)
1068 		return 0;
1069 
1070 	err = 0;
1071 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1072 		err = i915_sw_fence_await_dma_fence(&rq->submit,
1073 						    fence, 0,
1074 						    I915_FENCE_GFP);
1075 	dma_fence_put(fence);
1076 
1077 	return err;
1078 }
1079 
1080 static intel_engine_mask_t
already_busywaiting(struct i915_request * rq)1081 already_busywaiting(struct i915_request *rq)
1082 {
1083 	/*
1084 	 * Polling a semaphore causes bus traffic, delaying other users of
1085 	 * both the GPU and CPU. We want to limit the impact on others,
1086 	 * while taking advantage of early submission to reduce GPU
1087 	 * latency. Therefore we restrict ourselves to not using more
1088 	 * than one semaphore from each source, and not using a semaphore
1089 	 * if we have detected the engine is saturated (i.e. would not be
1090 	 * submitted early and cause bus traffic reading an already passed
1091 	 * semaphore).
1092 	 *
1093 	 * See the are-we-too-late? check in __i915_request_submit().
1094 	 */
1095 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1096 }
1097 
1098 static int
__emit_semaphore_wait(struct i915_request * to,struct i915_request * from,u32 seqno)1099 __emit_semaphore_wait(struct i915_request *to,
1100 		      struct i915_request *from,
1101 		      u32 seqno)
1102 {
1103 	const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1104 	u32 hwsp_offset;
1105 	int len, err;
1106 	u32 *cs;
1107 
1108 	GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1109 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1110 
1111 	/* We need to pin the signaler's HWSP until we are finished reading. */
1112 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1113 	if (err)
1114 		return err;
1115 
1116 	len = 4;
1117 	if (has_token)
1118 		len += 2;
1119 
1120 	cs = intel_ring_begin(to, len);
1121 	if (IS_ERR(cs))
1122 		return PTR_ERR(cs);
1123 
1124 	/*
1125 	 * Using greater-than-or-equal here means we have to worry
1126 	 * about seqno wraparound. To side step that issue, we swap
1127 	 * the timeline HWSP upon wrapping, so that everyone listening
1128 	 * for the old (pre-wrap) values do not see the much smaller
1129 	 * (post-wrap) values than they were expecting (and so wait
1130 	 * forever).
1131 	 */
1132 	*cs++ = (MI_SEMAPHORE_WAIT |
1133 		 MI_SEMAPHORE_GLOBAL_GTT |
1134 		 MI_SEMAPHORE_POLL |
1135 		 MI_SEMAPHORE_SAD_GTE_SDD) +
1136 		has_token;
1137 	*cs++ = seqno;
1138 	*cs++ = hwsp_offset;
1139 	*cs++ = 0;
1140 	if (has_token) {
1141 		*cs++ = 0;
1142 		*cs++ = MI_NOOP;
1143 	}
1144 
1145 	intel_ring_advance(to, cs);
1146 	return 0;
1147 }
1148 
1149 static bool
can_use_semaphore_wait(struct i915_request * to,struct i915_request * from)1150 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1151 {
1152 	return to->engine->gt->ggtt == from->engine->gt->ggtt;
1153 }
1154 
1155 static int
emit_semaphore_wait(struct i915_request * to,struct i915_request * from,gfp_t gfp)1156 emit_semaphore_wait(struct i915_request *to,
1157 		    struct i915_request *from,
1158 		    gfp_t gfp)
1159 {
1160 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1161 	struct i915_sw_fence *wait = &to->submit;
1162 
1163 	if (!can_use_semaphore_wait(to, from))
1164 		goto await_fence;
1165 
1166 	if (!intel_context_use_semaphores(to->context))
1167 		goto await_fence;
1168 
1169 	if (i915_request_has_initial_breadcrumb(to))
1170 		goto await_fence;
1171 
1172 	/*
1173 	 * If this or its dependents are waiting on an external fence
1174 	 * that may fail catastrophically, then we want to avoid using
1175 	 * sempahores as they bypass the fence signaling metadata, and we
1176 	 * lose the fence->error propagation.
1177 	 */
1178 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1179 		goto await_fence;
1180 
1181 	/* Just emit the first semaphore we see as request space is limited. */
1182 	if (already_busywaiting(to) & mask)
1183 		goto await_fence;
1184 
1185 	if (i915_request_await_start(to, from) < 0)
1186 		goto await_fence;
1187 
1188 	/* Only submit our spinner after the signaler is running! */
1189 	if (__await_execution(to, from, gfp))
1190 		goto await_fence;
1191 
1192 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1193 		goto await_fence;
1194 
1195 	to->sched.semaphores |= mask;
1196 	wait = &to->semaphore;
1197 
1198 await_fence:
1199 	return i915_sw_fence_await_dma_fence(wait,
1200 					     &from->fence, 0,
1201 					     I915_FENCE_GFP);
1202 }
1203 
intel_timeline_sync_has_start(struct intel_timeline * tl,struct dma_fence * fence)1204 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1205 					  struct dma_fence *fence)
1206 {
1207 	return __intel_timeline_sync_is_later(tl,
1208 					      fence->context,
1209 					      fence->seqno - 1);
1210 }
1211 
intel_timeline_sync_set_start(struct intel_timeline * tl,const struct dma_fence * fence)1212 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1213 					 const struct dma_fence *fence)
1214 {
1215 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1216 }
1217 
1218 static int
__i915_request_await_execution(struct i915_request * to,struct i915_request * from)1219 __i915_request_await_execution(struct i915_request *to,
1220 			       struct i915_request *from)
1221 {
1222 	int err;
1223 
1224 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1225 
1226 	/* Submit both requests at the same time */
1227 	err = __await_execution(to, from, I915_FENCE_GFP);
1228 	if (err)
1229 		return err;
1230 
1231 	/* Squash repeated depenendices to the same timelines */
1232 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1233 					  &from->fence))
1234 		return 0;
1235 
1236 	/*
1237 	 * Wait until the start of this request.
1238 	 *
1239 	 * The execution cb fires when we submit the request to HW. But in
1240 	 * many cases this may be long before the request itself is ready to
1241 	 * run (consider that we submit 2 requests for the same context, where
1242 	 * the request of interest is behind an indefinite spinner). So we hook
1243 	 * up to both to reduce our queues and keep the execution lag minimised
1244 	 * in the worst case, though we hope that the await_start is elided.
1245 	 */
1246 	err = i915_request_await_start(to, from);
1247 	if (err < 0)
1248 		return err;
1249 
1250 	/*
1251 	 * Ensure both start together [after all semaphores in signal]
1252 	 *
1253 	 * Now that we are queued to the HW at roughly the same time (thanks
1254 	 * to the execute cb) and are ready to run at roughly the same time
1255 	 * (thanks to the await start), our signaler may still be indefinitely
1256 	 * delayed by waiting on a semaphore from a remote engine. If our
1257 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1258 	 * want to start our payload until our signaler also starts theirs.
1259 	 * So we wait.
1260 	 *
1261 	 * However, there is also a second condition for which we need to wait
1262 	 * for the precise start of the signaler. Consider that the signaler
1263 	 * was submitted in a chain of requests following another context
1264 	 * (with just an ordinary intra-engine fence dependency between the
1265 	 * two). In this case the signaler is queued to HW, but not for
1266 	 * immediate execution, and so we must wait until it reaches the
1267 	 * active slot.
1268 	 */
1269 	if (can_use_semaphore_wait(to, from) &&
1270 	    intel_engine_has_semaphores(to->engine) &&
1271 	    !i915_request_has_initial_breadcrumb(to)) {
1272 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1273 		if (err < 0)
1274 			return err;
1275 	}
1276 
1277 	/* Couple the dependency tree for PI on this exposed to->fence */
1278 	if (to->engine->sched_engine->schedule) {
1279 		err = i915_sched_node_add_dependency(&to->sched,
1280 						     &from->sched,
1281 						     I915_DEPENDENCY_WEAK);
1282 		if (err < 0)
1283 			return err;
1284 	}
1285 
1286 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1287 					     &from->fence);
1288 }
1289 
mark_external(struct i915_request * rq)1290 static void mark_external(struct i915_request *rq)
1291 {
1292 	/*
1293 	 * The downside of using semaphores is that we lose metadata passing
1294 	 * along the signaling chain. This is particularly nasty when we
1295 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1296 	 * fatal errors we want to scrub the request before it is executed,
1297 	 * which means that we cannot preload the request onto HW and have
1298 	 * it wait upon a semaphore.
1299 	 */
1300 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1301 }
1302 
1303 static int
__i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1304 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1305 {
1306 	mark_external(rq);
1307 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1308 					     i915_fence_context_timeout(rq->engine->i915,
1309 									fence->context),
1310 					     I915_FENCE_GFP);
1311 }
1312 
1313 static int
i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1314 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1315 {
1316 	struct dma_fence *iter;
1317 	int err = 0;
1318 
1319 	if (!to_dma_fence_chain(fence))
1320 		return __i915_request_await_external(rq, fence);
1321 
1322 	dma_fence_chain_for_each(iter, fence) {
1323 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1324 
1325 		if (!dma_fence_is_i915(chain->fence)) {
1326 			err = __i915_request_await_external(rq, iter);
1327 			break;
1328 		}
1329 
1330 		err = i915_request_await_dma_fence(rq, chain->fence);
1331 		if (err < 0)
1332 			break;
1333 	}
1334 
1335 	dma_fence_put(iter);
1336 	return err;
1337 }
1338 
is_parallel_rq(struct i915_request * rq)1339 static inline bool is_parallel_rq(struct i915_request *rq)
1340 {
1341 	return intel_context_is_parallel(rq->context);
1342 }
1343 
request_to_parent(struct i915_request * rq)1344 static inline struct intel_context *request_to_parent(struct i915_request *rq)
1345 {
1346 	return intel_context_to_parent(rq->context);
1347 }
1348 
is_same_parallel_context(struct i915_request * to,struct i915_request * from)1349 static bool is_same_parallel_context(struct i915_request *to,
1350 				     struct i915_request *from)
1351 {
1352 	if (is_parallel_rq(to))
1353 		return request_to_parent(to) == request_to_parent(from);
1354 
1355 	return false;
1356 }
1357 
1358 int
i915_request_await_execution(struct i915_request * rq,struct dma_fence * fence)1359 i915_request_await_execution(struct i915_request *rq,
1360 			     struct dma_fence *fence)
1361 {
1362 	struct dma_fence **child = &fence;
1363 	unsigned int nchild = 1;
1364 	int ret;
1365 
1366 	if (dma_fence_is_array(fence)) {
1367 		struct dma_fence_array *array = to_dma_fence_array(fence);
1368 
1369 		/* XXX Error for signal-on-any fence arrays */
1370 
1371 		child = array->fences;
1372 		nchild = array->num_fences;
1373 		GEM_BUG_ON(!nchild);
1374 	}
1375 
1376 	do {
1377 		fence = *child++;
1378 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1379 			continue;
1380 
1381 		if (fence->context == rq->fence.context)
1382 			continue;
1383 
1384 		/*
1385 		 * We don't squash repeated fence dependencies here as we
1386 		 * want to run our callback in all cases.
1387 		 */
1388 
1389 		if (dma_fence_is_i915(fence)) {
1390 			if (is_same_parallel_context(rq, to_request(fence)))
1391 				continue;
1392 			ret = __i915_request_await_execution(rq,
1393 							     to_request(fence));
1394 		} else {
1395 			ret = i915_request_await_external(rq, fence);
1396 		}
1397 		if (ret < 0)
1398 			return ret;
1399 	} while (--nchild);
1400 
1401 	return 0;
1402 }
1403 
1404 static int
await_request_submit(struct i915_request * to,struct i915_request * from)1405 await_request_submit(struct i915_request *to, struct i915_request *from)
1406 {
1407 	/*
1408 	 * If we are waiting on a virtual engine, then it may be
1409 	 * constrained to execute on a single engine *prior* to submission.
1410 	 * When it is submitted, it will be first submitted to the virtual
1411 	 * engine and then passed to the physical engine. We cannot allow
1412 	 * the waiter to be submitted immediately to the physical engine
1413 	 * as it may then bypass the virtual request.
1414 	 */
1415 	if (to->engine == READ_ONCE(from->engine))
1416 		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1417 							&from->submit,
1418 							I915_FENCE_GFP);
1419 	else
1420 		return __i915_request_await_execution(to, from);
1421 }
1422 
1423 static int
i915_request_await_request(struct i915_request * to,struct i915_request * from)1424 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1425 {
1426 	int ret;
1427 
1428 	GEM_BUG_ON(to == from);
1429 	GEM_BUG_ON(to->timeline == from->timeline);
1430 
1431 	if (i915_request_completed(from)) {
1432 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1433 		return 0;
1434 	}
1435 
1436 	if (to->engine->sched_engine->schedule) {
1437 		ret = i915_sched_node_add_dependency(&to->sched,
1438 						     &from->sched,
1439 						     I915_DEPENDENCY_EXTERNAL);
1440 		if (ret < 0)
1441 			return ret;
1442 	}
1443 
1444 	if (!intel_engine_uses_guc(to->engine) &&
1445 	    is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1446 		ret = await_request_submit(to, from);
1447 	else
1448 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1449 	if (ret < 0)
1450 		return ret;
1451 
1452 	return 0;
1453 }
1454 
1455 int
i915_request_await_dma_fence(struct i915_request * rq,struct dma_fence * fence)1456 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1457 {
1458 	struct dma_fence **child = &fence;
1459 	unsigned int nchild = 1;
1460 	int ret;
1461 
1462 	/*
1463 	 * Note that if the fence-array was created in signal-on-any mode,
1464 	 * we should *not* decompose it into its individual fences. However,
1465 	 * we don't currently store which mode the fence-array is operating
1466 	 * in. Fortunately, the only user of signal-on-any is private to
1467 	 * amdgpu and we should not see any incoming fence-array from
1468 	 * sync-file being in signal-on-any mode.
1469 	 */
1470 	if (dma_fence_is_array(fence)) {
1471 		struct dma_fence_array *array = to_dma_fence_array(fence);
1472 
1473 		child = array->fences;
1474 		nchild = array->num_fences;
1475 		GEM_BUG_ON(!nchild);
1476 	}
1477 
1478 	do {
1479 		fence = *child++;
1480 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1481 			continue;
1482 
1483 		/*
1484 		 * Requests on the same timeline are explicitly ordered, along
1485 		 * with their dependencies, by i915_request_add() which ensures
1486 		 * that requests are submitted in-order through each ring.
1487 		 */
1488 		if (fence->context == rq->fence.context)
1489 			continue;
1490 
1491 		/* Squash repeated waits to the same timelines */
1492 		if (fence->context &&
1493 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1494 						 fence))
1495 			continue;
1496 
1497 		if (dma_fence_is_i915(fence)) {
1498 			if (is_same_parallel_context(rq, to_request(fence)))
1499 				continue;
1500 			ret = i915_request_await_request(rq, to_request(fence));
1501 		} else {
1502 			ret = i915_request_await_external(rq, fence);
1503 		}
1504 		if (ret < 0)
1505 			return ret;
1506 
1507 		/* Record the latest fence used against each timeline */
1508 		if (fence->context)
1509 			intel_timeline_sync_set(i915_request_timeline(rq),
1510 						fence);
1511 	} while (--nchild);
1512 
1513 	return 0;
1514 }
1515 
1516 /**
1517  * i915_request_await_object - set this request to (async) wait upon a bo
1518  * @to: request we are wishing to use
1519  * @obj: object which may be in use on another ring.
1520  * @write: whether the wait is on behalf of a writer
1521  *
1522  * This code is meant to abstract object synchronization with the GPU.
1523  * Conceptually we serialise writes between engines inside the GPU.
1524  * We only allow one engine to write into a buffer at any time, but
1525  * multiple readers. To ensure each has a coherent view of memory, we must:
1526  *
1527  * - If there is an outstanding write request to the object, the new
1528  *   request must wait for it to complete (either CPU or in hw, requests
1529  *   on the same ring will be naturally ordered).
1530  *
1531  * - If we are a write request (pending_write_domain is set), the new
1532  *   request must wait for outstanding read requests to complete.
1533  *
1534  * Returns 0 if successful, else propagates up the lower layer error.
1535  */
1536 int
i915_request_await_object(struct i915_request * to,struct drm_i915_gem_object * obj,bool write)1537 i915_request_await_object(struct i915_request *to,
1538 			  struct drm_i915_gem_object *obj,
1539 			  bool write)
1540 {
1541 	struct dma_resv_iter cursor;
1542 	struct dma_fence *fence;
1543 	int ret = 0;
1544 
1545 	dma_resv_for_each_fence(&cursor, obj->base.resv, write, fence) {
1546 		ret = i915_request_await_dma_fence(to, fence);
1547 		if (ret)
1548 			break;
1549 	}
1550 
1551 	return ret;
1552 }
1553 
1554 static struct i915_request *
__i915_request_ensure_parallel_ordering(struct i915_request * rq,struct intel_timeline * timeline)1555 __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1556 					struct intel_timeline *timeline)
1557 {
1558 	struct i915_request *prev;
1559 
1560 	GEM_BUG_ON(!is_parallel_rq(rq));
1561 
1562 	prev = request_to_parent(rq)->parallel.last_rq;
1563 	if (prev) {
1564 		if (!__i915_request_is_complete(prev)) {
1565 			i915_sw_fence_await_sw_fence(&rq->submit,
1566 						     &prev->submit,
1567 						     &rq->submitq);
1568 
1569 			if (rq->engine->sched_engine->schedule)
1570 				__i915_sched_node_add_dependency(&rq->sched,
1571 								 &prev->sched,
1572 								 &rq->dep,
1573 								 0);
1574 		}
1575 		i915_request_put(prev);
1576 	}
1577 
1578 	request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1579 
1580 	return to_request(__i915_active_fence_set(&timeline->last_request,
1581 						  &rq->fence));
1582 }
1583 
1584 static struct i915_request *
__i915_request_ensure_ordering(struct i915_request * rq,struct intel_timeline * timeline)1585 __i915_request_ensure_ordering(struct i915_request *rq,
1586 			       struct intel_timeline *timeline)
1587 {
1588 	struct i915_request *prev;
1589 
1590 	GEM_BUG_ON(is_parallel_rq(rq));
1591 
1592 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1593 						  &rq->fence));
1594 
1595 	if (prev && !__i915_request_is_complete(prev)) {
1596 		bool uses_guc = intel_engine_uses_guc(rq->engine);
1597 		bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1598 					  rq->engine->mask);
1599 		bool same_context = prev->context == rq->context;
1600 
1601 		/*
1602 		 * The requests are supposed to be kept in order. However,
1603 		 * we need to be wary in case the timeline->last_request
1604 		 * is used as a barrier for external modification to this
1605 		 * context.
1606 		 */
1607 		GEM_BUG_ON(same_context &&
1608 			   i915_seqno_passed(prev->fence.seqno,
1609 					     rq->fence.seqno));
1610 
1611 		if ((same_context && uses_guc) || (!uses_guc && pow2))
1612 			i915_sw_fence_await_sw_fence(&rq->submit,
1613 						     &prev->submit,
1614 						     &rq->submitq);
1615 		else
1616 			__i915_sw_fence_await_dma_fence(&rq->submit,
1617 							&prev->fence,
1618 							&rq->dmaq);
1619 		if (rq->engine->sched_engine->schedule)
1620 			__i915_sched_node_add_dependency(&rq->sched,
1621 							 &prev->sched,
1622 							 &rq->dep,
1623 							 0);
1624 	}
1625 
1626 	return prev;
1627 }
1628 
1629 static struct i915_request *
__i915_request_add_to_timeline(struct i915_request * rq)1630 __i915_request_add_to_timeline(struct i915_request *rq)
1631 {
1632 	struct intel_timeline *timeline = i915_request_timeline(rq);
1633 	struct i915_request *prev;
1634 
1635 	/*
1636 	 * Dependency tracking and request ordering along the timeline
1637 	 * is special cased so that we can eliminate redundant ordering
1638 	 * operations while building the request (we know that the timeline
1639 	 * itself is ordered, and here we guarantee it).
1640 	 *
1641 	 * As we know we will need to emit tracking along the timeline,
1642 	 * we embed the hooks into our request struct -- at the cost of
1643 	 * having to have specialised no-allocation interfaces (which will
1644 	 * be beneficial elsewhere).
1645 	 *
1646 	 * A second benefit to open-coding i915_request_await_request is
1647 	 * that we can apply a slight variant of the rules specialised
1648 	 * for timelines that jump between engines (such as virtual engines).
1649 	 * If we consider the case of virtual engine, we must emit a dma-fence
1650 	 * to prevent scheduling of the second request until the first is
1651 	 * complete (to maximise our greedy late load balancing) and this
1652 	 * precludes optimising to use semaphores serialisation of a single
1653 	 * timeline across engines.
1654 	 *
1655 	 * We do not order parallel submission requests on the timeline as each
1656 	 * parallel submission context has its own timeline and the ordering
1657 	 * rules for parallel requests are that they must be submitted in the
1658 	 * order received from the execbuf IOCTL. So rather than using the
1659 	 * timeline we store a pointer to last request submitted in the
1660 	 * relationship in the gem context and insert a submission fence
1661 	 * between that request and request passed into this function or
1662 	 * alternatively we use completion fence if gem context has a single
1663 	 * timeline and this is the first submission of an execbuf IOCTL.
1664 	 */
1665 	if (likely(!is_parallel_rq(rq)))
1666 		prev = __i915_request_ensure_ordering(rq, timeline);
1667 	else
1668 		prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1669 
1670 	/*
1671 	 * Make sure that no request gazumped us - if it was allocated after
1672 	 * our i915_request_alloc() and called __i915_request_add() before
1673 	 * us, the timeline will hold its seqno which is later than ours.
1674 	 */
1675 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1676 
1677 	return prev;
1678 }
1679 
1680 /*
1681  * NB: This function is not allowed to fail. Doing so would mean the the
1682  * request is not being tracked for completion but the work itself is
1683  * going to happen on the hardware. This would be a Bad Thing(tm).
1684  */
__i915_request_commit(struct i915_request * rq)1685 struct i915_request *__i915_request_commit(struct i915_request *rq)
1686 {
1687 	struct intel_engine_cs *engine = rq->engine;
1688 	struct intel_ring *ring = rq->ring;
1689 	u32 *cs;
1690 
1691 	RQ_TRACE(rq, "\n");
1692 
1693 	/*
1694 	 * To ensure that this call will not fail, space for its emissions
1695 	 * should already have been reserved in the ring buffer. Let the ring
1696 	 * know that it is time to use that space up.
1697 	 */
1698 	GEM_BUG_ON(rq->reserved_space > ring->space);
1699 	rq->reserved_space = 0;
1700 	rq->emitted_jiffies = jiffies;
1701 
1702 	/*
1703 	 * Record the position of the start of the breadcrumb so that
1704 	 * should we detect the updated seqno part-way through the
1705 	 * GPU processing the request, we never over-estimate the
1706 	 * position of the ring's HEAD.
1707 	 */
1708 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1709 	GEM_BUG_ON(IS_ERR(cs));
1710 	rq->postfix = intel_ring_offset(rq, cs);
1711 
1712 	return __i915_request_add_to_timeline(rq);
1713 }
1714 
__i915_request_queue_bh(struct i915_request * rq)1715 void __i915_request_queue_bh(struct i915_request *rq)
1716 {
1717 	i915_sw_fence_commit(&rq->semaphore);
1718 	i915_sw_fence_commit(&rq->submit);
1719 }
1720 
__i915_request_queue(struct i915_request * rq,const struct i915_sched_attr * attr)1721 void __i915_request_queue(struct i915_request *rq,
1722 			  const struct i915_sched_attr *attr)
1723 {
1724 	/*
1725 	 * Let the backend know a new request has arrived that may need
1726 	 * to adjust the existing execution schedule due to a high priority
1727 	 * request - i.e. we may want to preempt the current request in order
1728 	 * to run a high priority dependency chain *before* we can execute this
1729 	 * request.
1730 	 *
1731 	 * This is called before the request is ready to run so that we can
1732 	 * decide whether to preempt the entire chain so that it is ready to
1733 	 * run at the earliest possible convenience.
1734 	 */
1735 	if (attr && rq->engine->sched_engine->schedule)
1736 		rq->engine->sched_engine->schedule(rq, attr);
1737 
1738 	local_bh_disable();
1739 	__i915_request_queue_bh(rq);
1740 	local_bh_enable(); /* kick tasklets */
1741 }
1742 
i915_request_add(struct i915_request * rq)1743 void i915_request_add(struct i915_request *rq)
1744 {
1745 	struct intel_timeline * const tl = i915_request_timeline(rq);
1746 	struct i915_sched_attr attr = {};
1747 	struct i915_gem_context *ctx;
1748 
1749 	lockdep_assert_held(&tl->mutex);
1750 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1751 
1752 	trace_i915_request_add(rq);
1753 	__i915_request_commit(rq);
1754 
1755 	/* XXX placeholder for selftests */
1756 	rcu_read_lock();
1757 	ctx = rcu_dereference(rq->context->gem_context);
1758 	if (ctx)
1759 		attr = ctx->sched;
1760 	rcu_read_unlock();
1761 
1762 	__i915_request_queue(rq, &attr);
1763 
1764 	mutex_unlock(&tl->mutex);
1765 }
1766 
local_clock_ns(unsigned int * cpu)1767 static unsigned long local_clock_ns(unsigned int *cpu)
1768 {
1769 	unsigned long t;
1770 
1771 	/*
1772 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1773 	 * The result and subsequent calculations are also defined in the same
1774 	 * approximate microseconds units. The principal source of timing
1775 	 * error here is from the simple truncation.
1776 	 *
1777 	 * Note that local_clock() is only defined wrt to the current CPU;
1778 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1779 	 * blocking preemption for the entire busywait, we can detect the CPU
1780 	 * switch and use that as indicator of system load and a reason to
1781 	 * stop busywaiting, see busywait_stop().
1782 	 */
1783 	*cpu = get_cpu();
1784 	t = local_clock();
1785 	put_cpu();
1786 
1787 	return t;
1788 }
1789 
busywait_stop(unsigned long timeout,unsigned int cpu)1790 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1791 {
1792 	unsigned int this_cpu;
1793 
1794 	if (time_after(local_clock_ns(&this_cpu), timeout))
1795 		return true;
1796 
1797 	return this_cpu != cpu;
1798 }
1799 
__i915_spin_request(struct i915_request * const rq,int state)1800 static bool __i915_spin_request(struct i915_request * const rq, int state)
1801 {
1802 	unsigned long timeout_ns;
1803 	unsigned int cpu;
1804 
1805 	/*
1806 	 * Only wait for the request if we know it is likely to complete.
1807 	 *
1808 	 * We don't track the timestamps around requests, nor the average
1809 	 * request length, so we do not have a good indicator that this
1810 	 * request will complete within the timeout. What we do know is the
1811 	 * order in which requests are executed by the context and so we can
1812 	 * tell if the request has been started. If the request is not even
1813 	 * running yet, it is a fair assumption that it will not complete
1814 	 * within our relatively short timeout.
1815 	 */
1816 	if (!i915_request_is_running(rq))
1817 		return false;
1818 
1819 	/*
1820 	 * When waiting for high frequency requests, e.g. during synchronous
1821 	 * rendering split between the CPU and GPU, the finite amount of time
1822 	 * required to set up the irq and wait upon it limits the response
1823 	 * rate. By busywaiting on the request completion for a short while we
1824 	 * can service the high frequency waits as quick as possible. However,
1825 	 * if it is a slow request, we want to sleep as quickly as possible.
1826 	 * The tradeoff between waiting and sleeping is roughly the time it
1827 	 * takes to sleep on a request, on the order of a microsecond.
1828 	 */
1829 
1830 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1831 	timeout_ns += local_clock_ns(&cpu);
1832 	do {
1833 		if (dma_fence_is_signaled(&rq->fence))
1834 			return true;
1835 
1836 		if (signal_pending_state(state, current))
1837 			break;
1838 
1839 		if (busywait_stop(timeout_ns, cpu))
1840 			break;
1841 
1842 		cpu_relax();
1843 	} while (!need_resched());
1844 
1845 	return false;
1846 }
1847 
1848 struct request_wait {
1849 	struct dma_fence_cb cb;
1850 	struct task_struct *tsk;
1851 };
1852 
request_wait_wake(struct dma_fence * fence,struct dma_fence_cb * cb)1853 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1854 {
1855 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1856 
1857 	wake_up_process(fetch_and_zero(&wait->tsk));
1858 }
1859 
1860 /**
1861  * i915_request_wait - wait until execution of request has finished
1862  * @rq: the request to wait upon
1863  * @flags: how to wait
1864  * @timeout: how long to wait in jiffies
1865  *
1866  * i915_request_wait() waits for the request to be completed, for a
1867  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1868  * unbounded wait).
1869  *
1870  * Returns the remaining time (in jiffies) if the request completed, which may
1871  * be zero or -ETIME if the request is unfinished after the timeout expires.
1872  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1873  * pending before the request completes.
1874  */
i915_request_wait(struct i915_request * rq,unsigned int flags,long timeout)1875 long i915_request_wait(struct i915_request *rq,
1876 		       unsigned int flags,
1877 		       long timeout)
1878 {
1879 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1880 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1881 	struct request_wait wait;
1882 
1883 	might_sleep();
1884 	GEM_BUG_ON(timeout < 0);
1885 
1886 	if (dma_fence_is_signaled(&rq->fence))
1887 		return timeout;
1888 
1889 	if (!timeout)
1890 		return -ETIME;
1891 
1892 	trace_i915_request_wait_begin(rq, flags);
1893 
1894 	/*
1895 	 * We must never wait on the GPU while holding a lock as we
1896 	 * may need to perform a GPU reset. So while we don't need to
1897 	 * serialise wait/reset with an explicit lock, we do want
1898 	 * lockdep to detect potential dependency cycles.
1899 	 */
1900 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1901 
1902 	/*
1903 	 * Optimistic spin before touching IRQs.
1904 	 *
1905 	 * We may use a rather large value here to offset the penalty of
1906 	 * switching away from the active task. Frequently, the client will
1907 	 * wait upon an old swapbuffer to throttle itself to remain within a
1908 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1909 	 * then it should not be waiting long at all, and a sleep now will incur
1910 	 * extra scheduler latency in producing the next frame. To try to
1911 	 * avoid adding the cost of enabling/disabling the interrupt to the
1912 	 * short wait, we first spin to see if the request would have completed
1913 	 * in the time taken to setup the interrupt.
1914 	 *
1915 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1916 	 * scheduler latency of a context switch, ignoring the secondary
1917 	 * impacts from a context switch such as cache eviction.
1918 	 *
1919 	 * The scheme used for low-latency IO is called "hybrid interrupt
1920 	 * polling". The suggestion there is to sleep until just before you
1921 	 * expect to be woken by the device interrupt and then poll for its
1922 	 * completion. That requires having a good predictor for the request
1923 	 * duration, which we currently lack.
1924 	 */
1925 	if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
1926 	    __i915_spin_request(rq, state))
1927 		goto out;
1928 
1929 	/*
1930 	 * This client is about to stall waiting for the GPU. In many cases
1931 	 * this is undesirable and limits the throughput of the system, as
1932 	 * many clients cannot continue processing user input/output whilst
1933 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1934 	 * to the GPU load and thus incurs additional latency for the client.
1935 	 * We can circumvent that by promoting the GPU frequency to maximum
1936 	 * before we sleep. This makes the GPU throttle up much more quickly
1937 	 * (good for benchmarks and user experience, e.g. window animations),
1938 	 * but at a cost of spending more power processing the workload
1939 	 * (bad for battery).
1940 	 */
1941 	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1942 		intel_rps_boost(rq);
1943 
1944 	wait.tsk = current;
1945 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1946 		goto out;
1947 
1948 	/*
1949 	 * Flush the submission tasklet, but only if it may help this request.
1950 	 *
1951 	 * We sometimes experience some latency between the HW interrupts and
1952 	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1953 	 * be due to lazy CS events), so lets run the tasklet manually if there
1954 	 * is a chance it may submit this request. If the request is not ready
1955 	 * to run, as it is waiting for other fences to be signaled, flushing
1956 	 * the tasklet is busy work without any advantage for this client.
1957 	 *
1958 	 * If the HW is being lazy, this is the last chance before we go to
1959 	 * sleep to catch any pending events. We will check periodically in
1960 	 * the heartbeat to flush the submission tasklets as a last resort
1961 	 * for unhappy HW.
1962 	 */
1963 	if (i915_request_is_ready(rq))
1964 		__intel_engine_flush_submission(rq->engine, false);
1965 
1966 	for (;;) {
1967 		set_current_state(state);
1968 
1969 		if (dma_fence_is_signaled(&rq->fence))
1970 			break;
1971 
1972 		if (signal_pending_state(state, current)) {
1973 			timeout = -ERESTARTSYS;
1974 			break;
1975 		}
1976 
1977 		if (!timeout) {
1978 			timeout = -ETIME;
1979 			break;
1980 		}
1981 
1982 		timeout = io_schedule_timeout(timeout);
1983 	}
1984 	__set_current_state(TASK_RUNNING);
1985 
1986 	if (READ_ONCE(wait.tsk))
1987 		dma_fence_remove_callback(&rq->fence, &wait.cb);
1988 	GEM_BUG_ON(!list_empty(&wait.cb.node));
1989 
1990 out:
1991 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1992 	trace_i915_request_wait_end(rq);
1993 	return timeout;
1994 }
1995 
print_sched_attr(const struct i915_sched_attr * attr,char * buf,int x,int len)1996 static int print_sched_attr(const struct i915_sched_attr *attr,
1997 			    char *buf, int x, int len)
1998 {
1999 	if (attr->priority == I915_PRIORITY_INVALID)
2000 		return x;
2001 
2002 	x += snprintf(buf + x, len - x,
2003 		      " prio=%d", attr->priority);
2004 
2005 	return x;
2006 }
2007 
queue_status(const struct i915_request * rq)2008 static char queue_status(const struct i915_request *rq)
2009 {
2010 	if (i915_request_is_active(rq))
2011 		return 'E';
2012 
2013 	if (i915_request_is_ready(rq))
2014 		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2015 
2016 	return 'U';
2017 }
2018 
run_status(const struct i915_request * rq)2019 static const char *run_status(const struct i915_request *rq)
2020 {
2021 	if (__i915_request_is_complete(rq))
2022 		return "!";
2023 
2024 	if (__i915_request_has_started(rq))
2025 		return "*";
2026 
2027 	if (!i915_sw_fence_signaled(&rq->semaphore))
2028 		return "&";
2029 
2030 	return "";
2031 }
2032 
fence_status(const struct i915_request * rq)2033 static const char *fence_status(const struct i915_request *rq)
2034 {
2035 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2036 		return "+";
2037 
2038 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2039 		return "-";
2040 
2041 	return "";
2042 }
2043 
i915_request_show(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent)2044 void i915_request_show(struct drm_printer *m,
2045 		       const struct i915_request *rq,
2046 		       const char *prefix,
2047 		       int indent)
2048 {
2049 	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2050 	char buf[80] = "";
2051 	int x = 0;
2052 
2053 	/*
2054 	 * The prefix is used to show the queue status, for which we use
2055 	 * the following flags:
2056 	 *
2057 	 *  U [Unready]
2058 	 *    - initial status upon being submitted by the user
2059 	 *
2060 	 *    - the request is not ready for execution as it is waiting
2061 	 *      for external fences
2062 	 *
2063 	 *  R [Ready]
2064 	 *    - all fences the request was waiting on have been signaled,
2065 	 *      and the request is now ready for execution and will be
2066 	 *      in a backend queue
2067 	 *
2068 	 *    - a ready request may still need to wait on semaphores
2069 	 *      [internal fences]
2070 	 *
2071 	 *  V [Ready/virtual]
2072 	 *    - same as ready, but queued over multiple backends
2073 	 *
2074 	 *  E [Executing]
2075 	 *    - the request has been transferred from the backend queue and
2076 	 *      submitted for execution on HW
2077 	 *
2078 	 *    - a completed request may still be regarded as executing, its
2079 	 *      status may not be updated until it is retired and removed
2080 	 *      from the lists
2081 	 */
2082 
2083 	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2084 
2085 	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2086 		   prefix, indent, "                ",
2087 		   queue_status(rq),
2088 		   rq->fence.context, rq->fence.seqno,
2089 		   run_status(rq),
2090 		   fence_status(rq),
2091 		   buf,
2092 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2093 		   name);
2094 }
2095 
engine_match_ring(struct intel_engine_cs * engine,struct i915_request * rq)2096 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2097 {
2098 	u32 ring = ENGINE_READ(engine, RING_START);
2099 
2100 	return ring == i915_ggtt_offset(rq->ring->vma);
2101 }
2102 
match_ring(struct i915_request * rq)2103 static bool match_ring(struct i915_request *rq)
2104 {
2105 	struct intel_engine_cs *engine;
2106 	bool found;
2107 	int i;
2108 
2109 	if (!intel_engine_is_virtual(rq->engine))
2110 		return engine_match_ring(rq->engine, rq);
2111 
2112 	found = false;
2113 	i = 0;
2114 	while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2115 		found = engine_match_ring(engine, rq);
2116 		if (found)
2117 			break;
2118 	}
2119 
2120 	return found;
2121 }
2122 
i915_test_request_state(struct i915_request * rq)2123 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2124 {
2125 	if (i915_request_completed(rq))
2126 		return I915_REQUEST_COMPLETE;
2127 
2128 	if (!i915_request_started(rq))
2129 		return I915_REQUEST_PENDING;
2130 
2131 	if (match_ring(rq))
2132 		return I915_REQUEST_ACTIVE;
2133 
2134 	return I915_REQUEST_QUEUED;
2135 }
2136 
2137 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2138 #include "selftests/mock_request.c"
2139 #include "selftests/i915_request.c"
2140 #endif
2141 
i915_request_module_exit(void)2142 void i915_request_module_exit(void)
2143 {
2144 	kmem_cache_destroy(slab_execute_cbs);
2145 	kmem_cache_destroy(slab_requests);
2146 }
2147 
i915_request_module_init(void)2148 int __init i915_request_module_init(void)
2149 {
2150 	slab_requests =
2151 		kmem_cache_create("i915_request",
2152 				  sizeof(struct i915_request),
2153 				  __alignof__(struct i915_request),
2154 				  SLAB_HWCACHE_ALIGN |
2155 				  SLAB_RECLAIM_ACCOUNT |
2156 				  SLAB_TYPESAFE_BY_RCU,
2157 				  __i915_request_ctor);
2158 	if (!slab_requests)
2159 		return -ENOMEM;
2160 
2161 	slab_execute_cbs = KMEM_CACHE(execute_cb,
2162 					     SLAB_HWCACHE_ALIGN |
2163 					     SLAB_RECLAIM_ACCOUNT |
2164 					     SLAB_TYPESAFE_BY_RCU);
2165 	if (!slab_execute_cbs)
2166 		goto err_requests;
2167 
2168 	return 0;
2169 
2170 err_requests:
2171 	kmem_cache_destroy(slab_requests);
2172 	return -ENOMEM;
2173 }
2174