1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/mm.h>
33
34 #include "gem/i915_gem_context.h"
35 #include "gt/intel_breadcrumbs.h"
36 #include "gt/intel_context.h"
37 #include "gt/intel_engine.h"
38 #include "gt/intel_engine_heartbeat.h"
39 #include "gt/intel_gpu_commands.h"
40 #include "gt/intel_reset.h"
41 #include "gt/intel_ring.h"
42 #include "gt/intel_rps.h"
43
44 #include "i915_active.h"
45 #include "i915_drv.h"
46 #include "i915_trace.h"
47 #include "intel_pm.h"
48
49 struct execute_cb {
50 struct irq_work work;
51 struct i915_sw_fence *fence;
52 struct i915_request *signal;
53 };
54
55 static struct kmem_cache *slab_requests;
56 static struct kmem_cache *slab_execute_cbs;
57
i915_fence_get_driver_name(struct dma_fence * fence)58 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 {
60 return dev_name(to_request(fence)->engine->i915->drm.dev);
61 }
62
i915_fence_get_timeline_name(struct dma_fence * fence)63 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 {
65 const struct i915_gem_context *ctx;
66
67 /*
68 * The timeline struct (as part of the ppgtt underneath a context)
69 * may be freed when the request is no longer in use by the GPU.
70 * We could extend the life of a context to beyond that of all
71 * fences, possibly keeping the hw resource around indefinitely,
72 * or we just give them a false name. Since
73 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
74 * lie seems justifiable.
75 */
76 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
77 return "signaled";
78
79 ctx = i915_request_gem_context(to_request(fence));
80 if (!ctx)
81 return "[" DRIVER_NAME "]";
82
83 return ctx->name;
84 }
85
i915_fence_signaled(struct dma_fence * fence)86 static bool i915_fence_signaled(struct dma_fence *fence)
87 {
88 return i915_request_completed(to_request(fence));
89 }
90
i915_fence_enable_signaling(struct dma_fence * fence)91 static bool i915_fence_enable_signaling(struct dma_fence *fence)
92 {
93 return i915_request_enable_breadcrumb(to_request(fence));
94 }
95
i915_fence_wait(struct dma_fence * fence,bool interruptible,signed long timeout)96 static signed long i915_fence_wait(struct dma_fence *fence,
97 bool interruptible,
98 signed long timeout)
99 {
100 return i915_request_wait(to_request(fence),
101 interruptible | I915_WAIT_PRIORITY,
102 timeout);
103 }
104
i915_request_slab_cache(void)105 struct kmem_cache *i915_request_slab_cache(void)
106 {
107 return slab_requests;
108 }
109
i915_fence_release(struct dma_fence * fence)110 static void i915_fence_release(struct dma_fence *fence)
111 {
112 struct i915_request *rq = to_request(fence);
113
114 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
115 rq->guc_prio != GUC_PRIO_FINI);
116
117 /*
118 * The request is put onto a RCU freelist (i.e. the address
119 * is immediately reused), mark the fences as being freed now.
120 * Otherwise the debugobjects for the fences are only marked as
121 * freed when the slab cache itself is freed, and so we would get
122 * caught trying to reuse dead objects.
123 */
124 i915_sw_fence_fini(&rq->submit);
125 i915_sw_fence_fini(&rq->semaphore);
126
127 /*
128 * Keep one request on each engine for reserved use under mempressure,
129 * do not use with virtual engines as this really is only needed for
130 * kernel contexts.
131 */
132 if (!intel_engine_is_virtual(rq->engine) &&
133 !cmpxchg(&rq->engine->request_pool, NULL, rq)) {
134 intel_context_put(rq->context);
135 return;
136 }
137
138 intel_context_put(rq->context);
139
140 kmem_cache_free(slab_requests, rq);
141 }
142
143 const struct dma_fence_ops i915_fence_ops = {
144 .get_driver_name = i915_fence_get_driver_name,
145 .get_timeline_name = i915_fence_get_timeline_name,
146 .enable_signaling = i915_fence_enable_signaling,
147 .signaled = i915_fence_signaled,
148 .wait = i915_fence_wait,
149 .release = i915_fence_release,
150 };
151
irq_execute_cb(struct irq_work * wrk)152 static void irq_execute_cb(struct irq_work *wrk)
153 {
154 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
155
156 i915_sw_fence_complete(cb->fence);
157 kmem_cache_free(slab_execute_cbs, cb);
158 }
159
160 static __always_inline void
__notify_execute_cb(struct i915_request * rq,bool (* fn)(struct irq_work * wrk))161 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
162 {
163 struct execute_cb *cb, *cn;
164
165 if (llist_empty(&rq->execute_cb))
166 return;
167
168 llist_for_each_entry_safe(cb, cn,
169 llist_del_all(&rq->execute_cb),
170 work.node.llist)
171 fn(&cb->work);
172 }
173
__notify_execute_cb_irq(struct i915_request * rq)174 static void __notify_execute_cb_irq(struct i915_request *rq)
175 {
176 __notify_execute_cb(rq, irq_work_queue);
177 }
178
irq_work_imm(struct irq_work * wrk)179 static bool irq_work_imm(struct irq_work *wrk)
180 {
181 wrk->func(wrk);
182 return false;
183 }
184
i915_request_notify_execute_cb_imm(struct i915_request * rq)185 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
186 {
187 __notify_execute_cb(rq, irq_work_imm);
188 }
189
free_capture_list(struct i915_request * request)190 static void free_capture_list(struct i915_request *request)
191 {
192 struct i915_capture_list *capture;
193
194 capture = fetch_and_zero(&request->capture_list);
195 while (capture) {
196 struct i915_capture_list *next = capture->next;
197
198 kfree(capture);
199 capture = next;
200 }
201 }
202
__i915_request_fill(struct i915_request * rq,u8 val)203 static void __i915_request_fill(struct i915_request *rq, u8 val)
204 {
205 void *vaddr = rq->ring->vaddr;
206 u32 head;
207
208 head = rq->infix;
209 if (rq->postfix < head) {
210 memset(vaddr + head, val, rq->ring->size - head);
211 head = 0;
212 }
213 memset(vaddr + head, val, rq->postfix - head);
214 }
215
216 /**
217 * i915_request_active_engine
218 * @rq: request to inspect
219 * @active: pointer in which to return the active engine
220 *
221 * Fills the currently active engine to the @active pointer if the request
222 * is active and still not completed.
223 *
224 * Returns true if request was active or false otherwise.
225 */
226 bool
i915_request_active_engine(struct i915_request * rq,struct intel_engine_cs ** active)227 i915_request_active_engine(struct i915_request *rq,
228 struct intel_engine_cs **active)
229 {
230 struct intel_engine_cs *engine, *locked;
231 bool ret = false;
232
233 /*
234 * Serialise with __i915_request_submit() so that it sees
235 * is-banned?, or we know the request is already inflight.
236 *
237 * Note that rq->engine is unstable, and so we double
238 * check that we have acquired the lock on the final engine.
239 */
240 locked = READ_ONCE(rq->engine);
241 spin_lock_irq(&locked->sched_engine->lock);
242 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
243 spin_unlock(&locked->sched_engine->lock);
244 locked = engine;
245 spin_lock(&locked->sched_engine->lock);
246 }
247
248 if (i915_request_is_active(rq)) {
249 if (!__i915_request_is_complete(rq))
250 *active = locked;
251 ret = true;
252 }
253
254 spin_unlock_irq(&locked->sched_engine->lock);
255
256 return ret;
257 }
258
__rq_init_watchdog(struct i915_request * rq)259 static void __rq_init_watchdog(struct i915_request *rq)
260 {
261 rq->watchdog.timer.function = NULL;
262 }
263
__rq_watchdog_expired(struct hrtimer * hrtimer)264 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
265 {
266 struct i915_request *rq =
267 container_of(hrtimer, struct i915_request, watchdog.timer);
268 struct intel_gt *gt = rq->engine->gt;
269
270 if (!i915_request_completed(rq)) {
271 if (llist_add(&rq->watchdog.link, >->watchdog.list))
272 schedule_work(>->watchdog.work);
273 } else {
274 i915_request_put(rq);
275 }
276
277 return HRTIMER_NORESTART;
278 }
279
__rq_arm_watchdog(struct i915_request * rq)280 static void __rq_arm_watchdog(struct i915_request *rq)
281 {
282 struct i915_request_watchdog *wdg = &rq->watchdog;
283 struct intel_context *ce = rq->context;
284
285 if (!ce->watchdog.timeout_us)
286 return;
287
288 i915_request_get(rq);
289
290 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
291 wdg->timer.function = __rq_watchdog_expired;
292 hrtimer_start_range_ns(&wdg->timer,
293 ns_to_ktime(ce->watchdog.timeout_us *
294 NSEC_PER_USEC),
295 NSEC_PER_MSEC,
296 HRTIMER_MODE_REL);
297 }
298
__rq_cancel_watchdog(struct i915_request * rq)299 static void __rq_cancel_watchdog(struct i915_request *rq)
300 {
301 struct i915_request_watchdog *wdg = &rq->watchdog;
302
303 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
304 i915_request_put(rq);
305 }
306
i915_request_retire(struct i915_request * rq)307 bool i915_request_retire(struct i915_request *rq)
308 {
309 if (!__i915_request_is_complete(rq))
310 return false;
311
312 RQ_TRACE(rq, "\n");
313
314 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
315 trace_i915_request_retire(rq);
316 i915_request_mark_complete(rq);
317
318 __rq_cancel_watchdog(rq);
319
320 /*
321 * We know the GPU must have read the request to have
322 * sent us the seqno + interrupt, so use the position
323 * of tail of the request to update the last known position
324 * of the GPU head.
325 *
326 * Note this requires that we are always called in request
327 * completion order.
328 */
329 GEM_BUG_ON(!list_is_first(&rq->link,
330 &i915_request_timeline(rq)->requests));
331 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
332 /* Poison before we release our space in the ring */
333 __i915_request_fill(rq, POISON_FREE);
334 rq->ring->head = rq->postfix;
335
336 if (!i915_request_signaled(rq)) {
337 spin_lock_irq(&rq->lock);
338 dma_fence_signal_locked(&rq->fence);
339 spin_unlock_irq(&rq->lock);
340 }
341
342 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
343 atomic_dec(&rq->engine->gt->rps.num_waiters);
344
345 /*
346 * We only loosely track inflight requests across preemption,
347 * and so we may find ourselves attempting to retire a _completed_
348 * request that we have removed from the HW and put back on a run
349 * queue.
350 *
351 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
352 * after removing the breadcrumb and signaling it, so that we do not
353 * inadvertently attach the breadcrumb to a completed request.
354 */
355 rq->engine->remove_active_request(rq);
356 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
357
358 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
359
360 intel_context_exit(rq->context);
361 intel_context_unpin(rq->context);
362
363 free_capture_list(rq);
364 i915_sched_node_fini(&rq->sched);
365 i915_request_put(rq);
366
367 return true;
368 }
369
i915_request_retire_upto(struct i915_request * rq)370 void i915_request_retire_upto(struct i915_request *rq)
371 {
372 struct intel_timeline * const tl = i915_request_timeline(rq);
373 struct i915_request *tmp;
374
375 RQ_TRACE(rq, "\n");
376 GEM_BUG_ON(!__i915_request_is_complete(rq));
377
378 do {
379 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
380 GEM_BUG_ON(!i915_request_completed(tmp));
381 } while (i915_request_retire(tmp) && tmp != rq);
382 }
383
384 static struct i915_request * const *
__engine_active(struct intel_engine_cs * engine)385 __engine_active(struct intel_engine_cs *engine)
386 {
387 return READ_ONCE(engine->execlists.active);
388 }
389
__request_in_flight(const struct i915_request * signal)390 static bool __request_in_flight(const struct i915_request *signal)
391 {
392 struct i915_request * const *port, *rq;
393 bool inflight = false;
394
395 if (!i915_request_is_ready(signal))
396 return false;
397
398 /*
399 * Even if we have unwound the request, it may still be on
400 * the GPU (preempt-to-busy). If that request is inside an
401 * unpreemptible critical section, it will not be removed. Some
402 * GPU functions may even be stuck waiting for the paired request
403 * (__await_execution) to be submitted and cannot be preempted
404 * until the bond is executing.
405 *
406 * As we know that there are always preemption points between
407 * requests, we know that only the currently executing request
408 * may be still active even though we have cleared the flag.
409 * However, we can't rely on our tracking of ELSP[0] to know
410 * which request is currently active and so maybe stuck, as
411 * the tracking maybe an event behind. Instead assume that
412 * if the context is still inflight, then it is still active
413 * even if the active flag has been cleared.
414 *
415 * To further complicate matters, if there a pending promotion, the HW
416 * may either perform a context switch to the second inflight execlists,
417 * or it may switch to the pending set of execlists. In the case of the
418 * latter, it may send the ACK and we process the event copying the
419 * pending[] over top of inflight[], _overwriting_ our *active. Since
420 * this implies the HW is arbitrating and not struck in *active, we do
421 * not worry about complete accuracy, but we do require no read/write
422 * tearing of the pointer [the read of the pointer must be valid, even
423 * as the array is being overwritten, for which we require the writes
424 * to avoid tearing.]
425 *
426 * Note that the read of *execlists->active may race with the promotion
427 * of execlists->pending[] to execlists->inflight[], overwritting
428 * the value at *execlists->active. This is fine. The promotion implies
429 * that we received an ACK from the HW, and so the context is not
430 * stuck -- if we do not see ourselves in *active, the inflight status
431 * is valid. If instead we see ourselves being copied into *active,
432 * we are inflight and may signal the callback.
433 */
434 if (!intel_context_inflight(signal->context))
435 return false;
436
437 rcu_read_lock();
438 for (port = __engine_active(signal->engine);
439 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
440 port++) {
441 if (rq->context == signal->context) {
442 inflight = i915_seqno_passed(rq->fence.seqno,
443 signal->fence.seqno);
444 break;
445 }
446 }
447 rcu_read_unlock();
448
449 return inflight;
450 }
451
452 static int
__await_execution(struct i915_request * rq,struct i915_request * signal,gfp_t gfp)453 __await_execution(struct i915_request *rq,
454 struct i915_request *signal,
455 gfp_t gfp)
456 {
457 struct execute_cb *cb;
458
459 if (i915_request_is_active(signal))
460 return 0;
461
462 cb = kmem_cache_alloc(slab_execute_cbs, gfp);
463 if (!cb)
464 return -ENOMEM;
465
466 cb->fence = &rq->submit;
467 i915_sw_fence_await(cb->fence);
468 init_irq_work(&cb->work, irq_execute_cb);
469
470 /*
471 * Register the callback first, then see if the signaler is already
472 * active. This ensures that if we race with the
473 * __notify_execute_cb from i915_request_submit() and we are not
474 * included in that list, we get a second bite of the cherry and
475 * execute it ourselves. After this point, a future
476 * i915_request_submit() will notify us.
477 *
478 * In i915_request_retire() we set the ACTIVE bit on a completed
479 * request (then flush the execute_cb). So by registering the
480 * callback first, then checking the ACTIVE bit, we serialise with
481 * the completed/retired request.
482 */
483 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
484 if (i915_request_is_active(signal) ||
485 __request_in_flight(signal))
486 i915_request_notify_execute_cb_imm(signal);
487 }
488
489 return 0;
490 }
491
fatal_error(int error)492 static bool fatal_error(int error)
493 {
494 switch (error) {
495 case 0: /* not an error! */
496 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
497 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
498 return false;
499 default:
500 return true;
501 }
502 }
503
__i915_request_skip(struct i915_request * rq)504 void __i915_request_skip(struct i915_request *rq)
505 {
506 GEM_BUG_ON(!fatal_error(rq->fence.error));
507
508 if (rq->infix == rq->postfix)
509 return;
510
511 RQ_TRACE(rq, "error: %d\n", rq->fence.error);
512
513 /*
514 * As this request likely depends on state from the lost
515 * context, clear out all the user operations leaving the
516 * breadcrumb at the end (so we get the fence notifications).
517 */
518 __i915_request_fill(rq, 0);
519 rq->infix = rq->postfix;
520 }
521
i915_request_set_error_once(struct i915_request * rq,int error)522 bool i915_request_set_error_once(struct i915_request *rq, int error)
523 {
524 int old;
525
526 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
527
528 if (i915_request_signaled(rq))
529 return false;
530
531 old = READ_ONCE(rq->fence.error);
532 do {
533 if (fatal_error(old))
534 return false;
535 } while (!try_cmpxchg(&rq->fence.error, &old, error));
536
537 return true;
538 }
539
i915_request_mark_eio(struct i915_request * rq)540 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
541 {
542 if (__i915_request_is_complete(rq))
543 return NULL;
544
545 GEM_BUG_ON(i915_request_signaled(rq));
546
547 /* As soon as the request is completed, it may be retired */
548 rq = i915_request_get(rq);
549
550 i915_request_set_error_once(rq, -EIO);
551 i915_request_mark_complete(rq);
552
553 return rq;
554 }
555
__i915_request_submit(struct i915_request * request)556 bool __i915_request_submit(struct i915_request *request)
557 {
558 struct intel_engine_cs *engine = request->engine;
559 bool result = false;
560
561 RQ_TRACE(request, "\n");
562
563 GEM_BUG_ON(!irqs_disabled());
564 lockdep_assert_held(&engine->sched_engine->lock);
565
566 /*
567 * With the advent of preempt-to-busy, we frequently encounter
568 * requests that we have unsubmitted from HW, but left running
569 * until the next ack and so have completed in the meantime. On
570 * resubmission of that completed request, we can skip
571 * updating the payload, and execlists can even skip submitting
572 * the request.
573 *
574 * We must remove the request from the caller's priority queue,
575 * and the caller must only call us when the request is in their
576 * priority queue, under the sched_engine->lock. This ensures that the
577 * request has *not* yet been retired and we can safely move
578 * the request into the engine->active.list where it will be
579 * dropped upon retiring. (Otherwise if resubmit a *retired*
580 * request, this would be a horrible use-after-free.)
581 */
582 if (__i915_request_is_complete(request)) {
583 list_del_init(&request->sched.link);
584 goto active;
585 }
586
587 if (unlikely(intel_context_is_banned(request->context)))
588 i915_request_set_error_once(request, -EIO);
589
590 if (unlikely(fatal_error(request->fence.error)))
591 __i915_request_skip(request);
592
593 /*
594 * Are we using semaphores when the gpu is already saturated?
595 *
596 * Using semaphores incurs a cost in having the GPU poll a
597 * memory location, busywaiting for it to change. The continual
598 * memory reads can have a noticeable impact on the rest of the
599 * system with the extra bus traffic, stalling the cpu as it too
600 * tries to access memory across the bus (perf stat -e bus-cycles).
601 *
602 * If we installed a semaphore on this request and we only submit
603 * the request after the signaler completed, that indicates the
604 * system is overloaded and using semaphores at this time only
605 * increases the amount of work we are doing. If so, we disable
606 * further use of semaphores until we are idle again, whence we
607 * optimistically try again.
608 */
609 if (request->sched.semaphores &&
610 i915_sw_fence_signaled(&request->semaphore))
611 engine->saturated |= request->sched.semaphores;
612
613 engine->emit_fini_breadcrumb(request,
614 request->ring->vaddr + request->postfix);
615
616 trace_i915_request_execute(request);
617 if (engine->bump_serial)
618 engine->bump_serial(engine);
619 else
620 engine->serial++;
621
622 result = true;
623
624 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
625 engine->add_active_request(request);
626 active:
627 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
628 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
629
630 /*
631 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
632 *
633 * In the future, perhaps when we have an active time-slicing scheduler,
634 * it will be interesting to unsubmit parallel execution and remove
635 * busywaits from the GPU until their master is restarted. This is
636 * quite hairy, we have to carefully rollback the fence and do a
637 * preempt-to-idle cycle on the target engine, all the while the
638 * master execute_cb may refire.
639 */
640 __notify_execute_cb_irq(request);
641
642 /* We may be recursing from the signal callback of another i915 fence */
643 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
644 i915_request_enable_breadcrumb(request);
645
646 return result;
647 }
648
i915_request_submit(struct i915_request * request)649 void i915_request_submit(struct i915_request *request)
650 {
651 struct intel_engine_cs *engine = request->engine;
652 unsigned long flags;
653
654 /* Will be called from irq-context when using foreign fences. */
655 spin_lock_irqsave(&engine->sched_engine->lock, flags);
656
657 __i915_request_submit(request);
658
659 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
660 }
661
__i915_request_unsubmit(struct i915_request * request)662 void __i915_request_unsubmit(struct i915_request *request)
663 {
664 struct intel_engine_cs *engine = request->engine;
665
666 /*
667 * Only unwind in reverse order, required so that the per-context list
668 * is kept in seqno/ring order.
669 */
670 RQ_TRACE(request, "\n");
671
672 GEM_BUG_ON(!irqs_disabled());
673 lockdep_assert_held(&engine->sched_engine->lock);
674
675 /*
676 * Before we remove this breadcrumb from the signal list, we have
677 * to ensure that a concurrent dma_fence_enable_signaling() does not
678 * attach itself. We first mark the request as no longer active and
679 * make sure that is visible to other cores, and then remove the
680 * breadcrumb if attached.
681 */
682 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
683 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
684 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
685 i915_request_cancel_breadcrumb(request);
686
687 /* We've already spun, don't charge on resubmitting. */
688 if (request->sched.semaphores && __i915_request_has_started(request))
689 request->sched.semaphores = 0;
690
691 /*
692 * We don't need to wake_up any waiters on request->execute, they
693 * will get woken by any other event or us re-adding this request
694 * to the engine timeline (__i915_request_submit()). The waiters
695 * should be quite adapt at finding that the request now has a new
696 * global_seqno to the one they went to sleep on.
697 */
698 }
699
i915_request_unsubmit(struct i915_request * request)700 void i915_request_unsubmit(struct i915_request *request)
701 {
702 struct intel_engine_cs *engine = request->engine;
703 unsigned long flags;
704
705 /* Will be called from irq-context when using foreign fences. */
706 spin_lock_irqsave(&engine->sched_engine->lock, flags);
707
708 __i915_request_unsubmit(request);
709
710 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
711 }
712
i915_request_cancel(struct i915_request * rq,int error)713 void i915_request_cancel(struct i915_request *rq, int error)
714 {
715 if (!i915_request_set_error_once(rq, error))
716 return;
717
718 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
719
720 intel_context_cancel_request(rq->context, rq);
721 }
722
723 static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)724 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
725 {
726 struct i915_request *request =
727 container_of(fence, typeof(*request), submit);
728
729 switch (state) {
730 case FENCE_COMPLETE:
731 trace_i915_request_submit(request);
732
733 if (unlikely(fence->error))
734 i915_request_set_error_once(request, fence->error);
735 else
736 __rq_arm_watchdog(request);
737
738 /*
739 * We need to serialize use of the submit_request() callback
740 * with its hotplugging performed during an emergency
741 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
742 * critical section in order to force i915_gem_set_wedged() to
743 * wait until the submit_request() is completed before
744 * proceeding.
745 */
746 rcu_read_lock();
747 request->engine->submit_request(request);
748 rcu_read_unlock();
749 break;
750
751 case FENCE_FREE:
752 i915_request_put(request);
753 break;
754 }
755
756 return NOTIFY_DONE;
757 }
758
759 static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)760 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
761 {
762 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
763
764 switch (state) {
765 case FENCE_COMPLETE:
766 break;
767
768 case FENCE_FREE:
769 i915_request_put(rq);
770 break;
771 }
772
773 return NOTIFY_DONE;
774 }
775
retire_requests(struct intel_timeline * tl)776 static void retire_requests(struct intel_timeline *tl)
777 {
778 struct i915_request *rq, *rn;
779
780 list_for_each_entry_safe(rq, rn, &tl->requests, link)
781 if (!i915_request_retire(rq))
782 break;
783 }
784
785 static noinline struct i915_request *
request_alloc_slow(struct intel_timeline * tl,struct i915_request ** rsvd,gfp_t gfp)786 request_alloc_slow(struct intel_timeline *tl,
787 struct i915_request **rsvd,
788 gfp_t gfp)
789 {
790 struct i915_request *rq;
791
792 /* If we cannot wait, dip into our reserves */
793 if (!gfpflags_allow_blocking(gfp)) {
794 rq = xchg(rsvd, NULL);
795 if (!rq) /* Use the normal failure path for one final WARN */
796 goto out;
797
798 return rq;
799 }
800
801 if (list_empty(&tl->requests))
802 goto out;
803
804 /* Move our oldest request to the slab-cache (if not in use!) */
805 rq = list_first_entry(&tl->requests, typeof(*rq), link);
806 i915_request_retire(rq);
807
808 rq = kmem_cache_alloc(slab_requests,
809 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
810 if (rq)
811 return rq;
812
813 /* Ratelimit ourselves to prevent oom from malicious clients */
814 rq = list_last_entry(&tl->requests, typeof(*rq), link);
815 cond_synchronize_rcu(rq->rcustate);
816
817 /* Retire our old requests in the hope that we free some */
818 retire_requests(tl);
819
820 out:
821 return kmem_cache_alloc(slab_requests, gfp);
822 }
823
__i915_request_ctor(void * arg)824 static void __i915_request_ctor(void *arg)
825 {
826 struct i915_request *rq = arg;
827
828 spin_lock_init(&rq->lock);
829 i915_sched_node_init(&rq->sched);
830 i915_sw_fence_init(&rq->submit, submit_notify);
831 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
832
833 rq->capture_list = NULL;
834
835 init_llist_head(&rq->execute_cb);
836 }
837
838 struct i915_request *
__i915_request_create(struct intel_context * ce,gfp_t gfp)839 __i915_request_create(struct intel_context *ce, gfp_t gfp)
840 {
841 struct intel_timeline *tl = ce->timeline;
842 struct i915_request *rq;
843 u32 seqno;
844 int ret;
845
846 might_alloc(gfp);
847
848 /* Check that the caller provided an already pinned context */
849 __intel_context_pin(ce);
850
851 /*
852 * Beware: Dragons be flying overhead.
853 *
854 * We use RCU to look up requests in flight. The lookups may
855 * race with the request being allocated from the slab freelist.
856 * That is the request we are writing to here, may be in the process
857 * of being read by __i915_active_request_get_rcu(). As such,
858 * we have to be very careful when overwriting the contents. During
859 * the RCU lookup, we change chase the request->engine pointer,
860 * read the request->global_seqno and increment the reference count.
861 *
862 * The reference count is incremented atomically. If it is zero,
863 * the lookup knows the request is unallocated and complete. Otherwise,
864 * it is either still in use, or has been reallocated and reset
865 * with dma_fence_init(). This increment is safe for release as we
866 * check that the request we have a reference to and matches the active
867 * request.
868 *
869 * Before we increment the refcount, we chase the request->engine
870 * pointer. We must not call kmem_cache_zalloc() or else we set
871 * that pointer to NULL and cause a crash during the lookup. If
872 * we see the request is completed (based on the value of the
873 * old engine and seqno), the lookup is complete and reports NULL.
874 * If we decide the request is not completed (new engine or seqno),
875 * then we grab a reference and double check that it is still the
876 * active request - which it won't be and restart the lookup.
877 *
878 * Do not use kmem_cache_zalloc() here!
879 */
880 rq = kmem_cache_alloc(slab_requests,
881 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
882 if (unlikely(!rq)) {
883 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
884 if (!rq) {
885 ret = -ENOMEM;
886 goto err_unreserve;
887 }
888 }
889
890 /*
891 * Hold a reference to the intel_context over life of an i915_request.
892 * Without this an i915_request can exist after the context has been
893 * destroyed (e.g. request retired, context closed, but user space holds
894 * a reference to the request from an out fence). In the case of GuC
895 * submission + virtual engine, the engine that the request references
896 * is also destroyed which can trigger bad pointer dref in fence ops
897 * (e.g. i915_fence_get_driver_name). We could likely change these
898 * functions to avoid touching the engine but let's just be safe and
899 * hold the intel_context reference. In execlist mode the request always
900 * eventually points to a physical engine so this isn't an issue.
901 */
902 rq->context = intel_context_get(ce);
903 rq->engine = ce->engine;
904 rq->ring = ce->ring;
905 rq->execution_mask = ce->engine->mask;
906
907 ret = intel_timeline_get_seqno(tl, rq, &seqno);
908 if (ret)
909 goto err_free;
910
911 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
912 tl->fence_context, seqno);
913
914 RCU_INIT_POINTER(rq->timeline, tl);
915 rq->hwsp_seqno = tl->hwsp_seqno;
916 GEM_BUG_ON(__i915_request_is_complete(rq));
917
918 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
919
920 rq->guc_prio = GUC_PRIO_INIT;
921
922 /* We bump the ref for the fence chain */
923 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
924 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
925
926 i915_sched_node_reinit(&rq->sched);
927
928 /* No zalloc, everything must be cleared after use */
929 rq->batch = NULL;
930 __rq_init_watchdog(rq);
931 GEM_BUG_ON(rq->capture_list);
932 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
933
934 /*
935 * Reserve space in the ring buffer for all the commands required to
936 * eventually emit this request. This is to guarantee that the
937 * i915_request_add() call can't fail. Note that the reserve may need
938 * to be redone if the request is not actually submitted straight
939 * away, e.g. because a GPU scheduler has deferred it.
940 *
941 * Note that due to how we add reserved_space to intel_ring_begin()
942 * we need to double our request to ensure that if we need to wrap
943 * around inside i915_request_add() there is sufficient space at
944 * the beginning of the ring as well.
945 */
946 rq->reserved_space =
947 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
948
949 /*
950 * Record the position of the start of the request so that
951 * should we detect the updated seqno part-way through the
952 * GPU processing the request, we never over-estimate the
953 * position of the head.
954 */
955 rq->head = rq->ring->emit;
956
957 ret = rq->engine->request_alloc(rq);
958 if (ret)
959 goto err_unwind;
960
961 rq->infix = rq->ring->emit; /* end of header; start of user payload */
962
963 intel_context_mark_active(ce);
964 list_add_tail_rcu(&rq->link, &tl->requests);
965
966 return rq;
967
968 err_unwind:
969 ce->ring->emit = rq->head;
970
971 /* Make sure we didn't add ourselves to external state before freeing */
972 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
973 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
974
975 err_free:
976 intel_context_put(ce);
977 kmem_cache_free(slab_requests, rq);
978 err_unreserve:
979 intel_context_unpin(ce);
980 return ERR_PTR(ret);
981 }
982
983 struct i915_request *
i915_request_create(struct intel_context * ce)984 i915_request_create(struct intel_context *ce)
985 {
986 struct i915_request *rq;
987 struct intel_timeline *tl;
988
989 tl = intel_context_timeline_lock(ce);
990 if (IS_ERR(tl))
991 return ERR_CAST(tl);
992
993 /* Move our oldest request to the slab-cache (if not in use!) */
994 rq = list_first_entry(&tl->requests, typeof(*rq), link);
995 if (!list_is_last(&rq->link, &tl->requests))
996 i915_request_retire(rq);
997
998 intel_context_enter(ce);
999 rq = __i915_request_create(ce, GFP_KERNEL);
1000 intel_context_exit(ce); /* active reference transferred to request */
1001 if (IS_ERR(rq))
1002 goto err_unlock;
1003
1004 /* Check that we do not interrupt ourselves with a new request */
1005 rq->cookie = lockdep_pin_lock(&tl->mutex);
1006
1007 return rq;
1008
1009 err_unlock:
1010 intel_context_timeline_unlock(tl);
1011 return rq;
1012 }
1013
1014 static int
i915_request_await_start(struct i915_request * rq,struct i915_request * signal)1015 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1016 {
1017 struct dma_fence *fence;
1018 int err;
1019
1020 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1021 return 0;
1022
1023 if (i915_request_started(signal))
1024 return 0;
1025
1026 /*
1027 * The caller holds a reference on @signal, but we do not serialise
1028 * against it being retired and removed from the lists.
1029 *
1030 * We do not hold a reference to the request before @signal, and
1031 * so must be very careful to ensure that it is not _recycled_ as
1032 * we follow the link backwards.
1033 */
1034 fence = NULL;
1035 rcu_read_lock();
1036 do {
1037 struct list_head *pos = READ_ONCE(signal->link.prev);
1038 struct i915_request *prev;
1039
1040 /* Confirm signal has not been retired, the link is valid */
1041 if (unlikely(__i915_request_has_started(signal)))
1042 break;
1043
1044 /* Is signal the earliest request on its timeline? */
1045 if (pos == &rcu_dereference(signal->timeline)->requests)
1046 break;
1047
1048 /*
1049 * Peek at the request before us in the timeline. That
1050 * request will only be valid before it is retired, so
1051 * after acquiring a reference to it, confirm that it is
1052 * still part of the signaler's timeline.
1053 */
1054 prev = list_entry(pos, typeof(*prev), link);
1055 if (!i915_request_get_rcu(prev))
1056 break;
1057
1058 /* After the strong barrier, confirm prev is still attached */
1059 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1060 i915_request_put(prev);
1061 break;
1062 }
1063
1064 fence = &prev->fence;
1065 } while (0);
1066 rcu_read_unlock();
1067 if (!fence)
1068 return 0;
1069
1070 err = 0;
1071 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1072 err = i915_sw_fence_await_dma_fence(&rq->submit,
1073 fence, 0,
1074 I915_FENCE_GFP);
1075 dma_fence_put(fence);
1076
1077 return err;
1078 }
1079
1080 static intel_engine_mask_t
already_busywaiting(struct i915_request * rq)1081 already_busywaiting(struct i915_request *rq)
1082 {
1083 /*
1084 * Polling a semaphore causes bus traffic, delaying other users of
1085 * both the GPU and CPU. We want to limit the impact on others,
1086 * while taking advantage of early submission to reduce GPU
1087 * latency. Therefore we restrict ourselves to not using more
1088 * than one semaphore from each source, and not using a semaphore
1089 * if we have detected the engine is saturated (i.e. would not be
1090 * submitted early and cause bus traffic reading an already passed
1091 * semaphore).
1092 *
1093 * See the are-we-too-late? check in __i915_request_submit().
1094 */
1095 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1096 }
1097
1098 static int
__emit_semaphore_wait(struct i915_request * to,struct i915_request * from,u32 seqno)1099 __emit_semaphore_wait(struct i915_request *to,
1100 struct i915_request *from,
1101 u32 seqno)
1102 {
1103 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1104 u32 hwsp_offset;
1105 int len, err;
1106 u32 *cs;
1107
1108 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1109 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1110
1111 /* We need to pin the signaler's HWSP until we are finished reading. */
1112 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1113 if (err)
1114 return err;
1115
1116 len = 4;
1117 if (has_token)
1118 len += 2;
1119
1120 cs = intel_ring_begin(to, len);
1121 if (IS_ERR(cs))
1122 return PTR_ERR(cs);
1123
1124 /*
1125 * Using greater-than-or-equal here means we have to worry
1126 * about seqno wraparound. To side step that issue, we swap
1127 * the timeline HWSP upon wrapping, so that everyone listening
1128 * for the old (pre-wrap) values do not see the much smaller
1129 * (post-wrap) values than they were expecting (and so wait
1130 * forever).
1131 */
1132 *cs++ = (MI_SEMAPHORE_WAIT |
1133 MI_SEMAPHORE_GLOBAL_GTT |
1134 MI_SEMAPHORE_POLL |
1135 MI_SEMAPHORE_SAD_GTE_SDD) +
1136 has_token;
1137 *cs++ = seqno;
1138 *cs++ = hwsp_offset;
1139 *cs++ = 0;
1140 if (has_token) {
1141 *cs++ = 0;
1142 *cs++ = MI_NOOP;
1143 }
1144
1145 intel_ring_advance(to, cs);
1146 return 0;
1147 }
1148
1149 static bool
can_use_semaphore_wait(struct i915_request * to,struct i915_request * from)1150 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1151 {
1152 return to->engine->gt->ggtt == from->engine->gt->ggtt;
1153 }
1154
1155 static int
emit_semaphore_wait(struct i915_request * to,struct i915_request * from,gfp_t gfp)1156 emit_semaphore_wait(struct i915_request *to,
1157 struct i915_request *from,
1158 gfp_t gfp)
1159 {
1160 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1161 struct i915_sw_fence *wait = &to->submit;
1162
1163 if (!can_use_semaphore_wait(to, from))
1164 goto await_fence;
1165
1166 if (!intel_context_use_semaphores(to->context))
1167 goto await_fence;
1168
1169 if (i915_request_has_initial_breadcrumb(to))
1170 goto await_fence;
1171
1172 /*
1173 * If this or its dependents are waiting on an external fence
1174 * that may fail catastrophically, then we want to avoid using
1175 * sempahores as they bypass the fence signaling metadata, and we
1176 * lose the fence->error propagation.
1177 */
1178 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1179 goto await_fence;
1180
1181 /* Just emit the first semaphore we see as request space is limited. */
1182 if (already_busywaiting(to) & mask)
1183 goto await_fence;
1184
1185 if (i915_request_await_start(to, from) < 0)
1186 goto await_fence;
1187
1188 /* Only submit our spinner after the signaler is running! */
1189 if (__await_execution(to, from, gfp))
1190 goto await_fence;
1191
1192 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1193 goto await_fence;
1194
1195 to->sched.semaphores |= mask;
1196 wait = &to->semaphore;
1197
1198 await_fence:
1199 return i915_sw_fence_await_dma_fence(wait,
1200 &from->fence, 0,
1201 I915_FENCE_GFP);
1202 }
1203
intel_timeline_sync_has_start(struct intel_timeline * tl,struct dma_fence * fence)1204 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1205 struct dma_fence *fence)
1206 {
1207 return __intel_timeline_sync_is_later(tl,
1208 fence->context,
1209 fence->seqno - 1);
1210 }
1211
intel_timeline_sync_set_start(struct intel_timeline * tl,const struct dma_fence * fence)1212 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1213 const struct dma_fence *fence)
1214 {
1215 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1216 }
1217
1218 static int
__i915_request_await_execution(struct i915_request * to,struct i915_request * from)1219 __i915_request_await_execution(struct i915_request *to,
1220 struct i915_request *from)
1221 {
1222 int err;
1223
1224 GEM_BUG_ON(intel_context_is_barrier(from->context));
1225
1226 /* Submit both requests at the same time */
1227 err = __await_execution(to, from, I915_FENCE_GFP);
1228 if (err)
1229 return err;
1230
1231 /* Squash repeated depenendices to the same timelines */
1232 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1233 &from->fence))
1234 return 0;
1235
1236 /*
1237 * Wait until the start of this request.
1238 *
1239 * The execution cb fires when we submit the request to HW. But in
1240 * many cases this may be long before the request itself is ready to
1241 * run (consider that we submit 2 requests for the same context, where
1242 * the request of interest is behind an indefinite spinner). So we hook
1243 * up to both to reduce our queues and keep the execution lag minimised
1244 * in the worst case, though we hope that the await_start is elided.
1245 */
1246 err = i915_request_await_start(to, from);
1247 if (err < 0)
1248 return err;
1249
1250 /*
1251 * Ensure both start together [after all semaphores in signal]
1252 *
1253 * Now that we are queued to the HW at roughly the same time (thanks
1254 * to the execute cb) and are ready to run at roughly the same time
1255 * (thanks to the await start), our signaler may still be indefinitely
1256 * delayed by waiting on a semaphore from a remote engine. If our
1257 * signaler depends on a semaphore, so indirectly do we, and we do not
1258 * want to start our payload until our signaler also starts theirs.
1259 * So we wait.
1260 *
1261 * However, there is also a second condition for which we need to wait
1262 * for the precise start of the signaler. Consider that the signaler
1263 * was submitted in a chain of requests following another context
1264 * (with just an ordinary intra-engine fence dependency between the
1265 * two). In this case the signaler is queued to HW, but not for
1266 * immediate execution, and so we must wait until it reaches the
1267 * active slot.
1268 */
1269 if (can_use_semaphore_wait(to, from) &&
1270 intel_engine_has_semaphores(to->engine) &&
1271 !i915_request_has_initial_breadcrumb(to)) {
1272 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1273 if (err < 0)
1274 return err;
1275 }
1276
1277 /* Couple the dependency tree for PI on this exposed to->fence */
1278 if (to->engine->sched_engine->schedule) {
1279 err = i915_sched_node_add_dependency(&to->sched,
1280 &from->sched,
1281 I915_DEPENDENCY_WEAK);
1282 if (err < 0)
1283 return err;
1284 }
1285
1286 return intel_timeline_sync_set_start(i915_request_timeline(to),
1287 &from->fence);
1288 }
1289
mark_external(struct i915_request * rq)1290 static void mark_external(struct i915_request *rq)
1291 {
1292 /*
1293 * The downside of using semaphores is that we lose metadata passing
1294 * along the signaling chain. This is particularly nasty when we
1295 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1296 * fatal errors we want to scrub the request before it is executed,
1297 * which means that we cannot preload the request onto HW and have
1298 * it wait upon a semaphore.
1299 */
1300 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1301 }
1302
1303 static int
__i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1304 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1305 {
1306 mark_external(rq);
1307 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1308 i915_fence_context_timeout(rq->engine->i915,
1309 fence->context),
1310 I915_FENCE_GFP);
1311 }
1312
1313 static int
i915_request_await_external(struct i915_request * rq,struct dma_fence * fence)1314 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1315 {
1316 struct dma_fence *iter;
1317 int err = 0;
1318
1319 if (!to_dma_fence_chain(fence))
1320 return __i915_request_await_external(rq, fence);
1321
1322 dma_fence_chain_for_each(iter, fence) {
1323 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1324
1325 if (!dma_fence_is_i915(chain->fence)) {
1326 err = __i915_request_await_external(rq, iter);
1327 break;
1328 }
1329
1330 err = i915_request_await_dma_fence(rq, chain->fence);
1331 if (err < 0)
1332 break;
1333 }
1334
1335 dma_fence_put(iter);
1336 return err;
1337 }
1338
is_parallel_rq(struct i915_request * rq)1339 static inline bool is_parallel_rq(struct i915_request *rq)
1340 {
1341 return intel_context_is_parallel(rq->context);
1342 }
1343
request_to_parent(struct i915_request * rq)1344 static inline struct intel_context *request_to_parent(struct i915_request *rq)
1345 {
1346 return intel_context_to_parent(rq->context);
1347 }
1348
is_same_parallel_context(struct i915_request * to,struct i915_request * from)1349 static bool is_same_parallel_context(struct i915_request *to,
1350 struct i915_request *from)
1351 {
1352 if (is_parallel_rq(to))
1353 return request_to_parent(to) == request_to_parent(from);
1354
1355 return false;
1356 }
1357
1358 int
i915_request_await_execution(struct i915_request * rq,struct dma_fence * fence)1359 i915_request_await_execution(struct i915_request *rq,
1360 struct dma_fence *fence)
1361 {
1362 struct dma_fence **child = &fence;
1363 unsigned int nchild = 1;
1364 int ret;
1365
1366 if (dma_fence_is_array(fence)) {
1367 struct dma_fence_array *array = to_dma_fence_array(fence);
1368
1369 /* XXX Error for signal-on-any fence arrays */
1370
1371 child = array->fences;
1372 nchild = array->num_fences;
1373 GEM_BUG_ON(!nchild);
1374 }
1375
1376 do {
1377 fence = *child++;
1378 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1379 continue;
1380
1381 if (fence->context == rq->fence.context)
1382 continue;
1383
1384 /*
1385 * We don't squash repeated fence dependencies here as we
1386 * want to run our callback in all cases.
1387 */
1388
1389 if (dma_fence_is_i915(fence)) {
1390 if (is_same_parallel_context(rq, to_request(fence)))
1391 continue;
1392 ret = __i915_request_await_execution(rq,
1393 to_request(fence));
1394 } else {
1395 ret = i915_request_await_external(rq, fence);
1396 }
1397 if (ret < 0)
1398 return ret;
1399 } while (--nchild);
1400
1401 return 0;
1402 }
1403
1404 static int
await_request_submit(struct i915_request * to,struct i915_request * from)1405 await_request_submit(struct i915_request *to, struct i915_request *from)
1406 {
1407 /*
1408 * If we are waiting on a virtual engine, then it may be
1409 * constrained to execute on a single engine *prior* to submission.
1410 * When it is submitted, it will be first submitted to the virtual
1411 * engine and then passed to the physical engine. We cannot allow
1412 * the waiter to be submitted immediately to the physical engine
1413 * as it may then bypass the virtual request.
1414 */
1415 if (to->engine == READ_ONCE(from->engine))
1416 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1417 &from->submit,
1418 I915_FENCE_GFP);
1419 else
1420 return __i915_request_await_execution(to, from);
1421 }
1422
1423 static int
i915_request_await_request(struct i915_request * to,struct i915_request * from)1424 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1425 {
1426 int ret;
1427
1428 GEM_BUG_ON(to == from);
1429 GEM_BUG_ON(to->timeline == from->timeline);
1430
1431 if (i915_request_completed(from)) {
1432 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1433 return 0;
1434 }
1435
1436 if (to->engine->sched_engine->schedule) {
1437 ret = i915_sched_node_add_dependency(&to->sched,
1438 &from->sched,
1439 I915_DEPENDENCY_EXTERNAL);
1440 if (ret < 0)
1441 return ret;
1442 }
1443
1444 if (!intel_engine_uses_guc(to->engine) &&
1445 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1446 ret = await_request_submit(to, from);
1447 else
1448 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1449 if (ret < 0)
1450 return ret;
1451
1452 return 0;
1453 }
1454
1455 int
i915_request_await_dma_fence(struct i915_request * rq,struct dma_fence * fence)1456 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1457 {
1458 struct dma_fence **child = &fence;
1459 unsigned int nchild = 1;
1460 int ret;
1461
1462 /*
1463 * Note that if the fence-array was created in signal-on-any mode,
1464 * we should *not* decompose it into its individual fences. However,
1465 * we don't currently store which mode the fence-array is operating
1466 * in. Fortunately, the only user of signal-on-any is private to
1467 * amdgpu and we should not see any incoming fence-array from
1468 * sync-file being in signal-on-any mode.
1469 */
1470 if (dma_fence_is_array(fence)) {
1471 struct dma_fence_array *array = to_dma_fence_array(fence);
1472
1473 child = array->fences;
1474 nchild = array->num_fences;
1475 GEM_BUG_ON(!nchild);
1476 }
1477
1478 do {
1479 fence = *child++;
1480 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1481 continue;
1482
1483 /*
1484 * Requests on the same timeline are explicitly ordered, along
1485 * with their dependencies, by i915_request_add() which ensures
1486 * that requests are submitted in-order through each ring.
1487 */
1488 if (fence->context == rq->fence.context)
1489 continue;
1490
1491 /* Squash repeated waits to the same timelines */
1492 if (fence->context &&
1493 intel_timeline_sync_is_later(i915_request_timeline(rq),
1494 fence))
1495 continue;
1496
1497 if (dma_fence_is_i915(fence)) {
1498 if (is_same_parallel_context(rq, to_request(fence)))
1499 continue;
1500 ret = i915_request_await_request(rq, to_request(fence));
1501 } else {
1502 ret = i915_request_await_external(rq, fence);
1503 }
1504 if (ret < 0)
1505 return ret;
1506
1507 /* Record the latest fence used against each timeline */
1508 if (fence->context)
1509 intel_timeline_sync_set(i915_request_timeline(rq),
1510 fence);
1511 } while (--nchild);
1512
1513 return 0;
1514 }
1515
1516 /**
1517 * i915_request_await_object - set this request to (async) wait upon a bo
1518 * @to: request we are wishing to use
1519 * @obj: object which may be in use on another ring.
1520 * @write: whether the wait is on behalf of a writer
1521 *
1522 * This code is meant to abstract object synchronization with the GPU.
1523 * Conceptually we serialise writes between engines inside the GPU.
1524 * We only allow one engine to write into a buffer at any time, but
1525 * multiple readers. To ensure each has a coherent view of memory, we must:
1526 *
1527 * - If there is an outstanding write request to the object, the new
1528 * request must wait for it to complete (either CPU or in hw, requests
1529 * on the same ring will be naturally ordered).
1530 *
1531 * - If we are a write request (pending_write_domain is set), the new
1532 * request must wait for outstanding read requests to complete.
1533 *
1534 * Returns 0 if successful, else propagates up the lower layer error.
1535 */
1536 int
i915_request_await_object(struct i915_request * to,struct drm_i915_gem_object * obj,bool write)1537 i915_request_await_object(struct i915_request *to,
1538 struct drm_i915_gem_object *obj,
1539 bool write)
1540 {
1541 struct dma_resv_iter cursor;
1542 struct dma_fence *fence;
1543 int ret = 0;
1544
1545 dma_resv_for_each_fence(&cursor, obj->base.resv, write, fence) {
1546 ret = i915_request_await_dma_fence(to, fence);
1547 if (ret)
1548 break;
1549 }
1550
1551 return ret;
1552 }
1553
1554 static struct i915_request *
__i915_request_ensure_parallel_ordering(struct i915_request * rq,struct intel_timeline * timeline)1555 __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1556 struct intel_timeline *timeline)
1557 {
1558 struct i915_request *prev;
1559
1560 GEM_BUG_ON(!is_parallel_rq(rq));
1561
1562 prev = request_to_parent(rq)->parallel.last_rq;
1563 if (prev) {
1564 if (!__i915_request_is_complete(prev)) {
1565 i915_sw_fence_await_sw_fence(&rq->submit,
1566 &prev->submit,
1567 &rq->submitq);
1568
1569 if (rq->engine->sched_engine->schedule)
1570 __i915_sched_node_add_dependency(&rq->sched,
1571 &prev->sched,
1572 &rq->dep,
1573 0);
1574 }
1575 i915_request_put(prev);
1576 }
1577
1578 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1579
1580 return to_request(__i915_active_fence_set(&timeline->last_request,
1581 &rq->fence));
1582 }
1583
1584 static struct i915_request *
__i915_request_ensure_ordering(struct i915_request * rq,struct intel_timeline * timeline)1585 __i915_request_ensure_ordering(struct i915_request *rq,
1586 struct intel_timeline *timeline)
1587 {
1588 struct i915_request *prev;
1589
1590 GEM_BUG_ON(is_parallel_rq(rq));
1591
1592 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1593 &rq->fence));
1594
1595 if (prev && !__i915_request_is_complete(prev)) {
1596 bool uses_guc = intel_engine_uses_guc(rq->engine);
1597 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1598 rq->engine->mask);
1599 bool same_context = prev->context == rq->context;
1600
1601 /*
1602 * The requests are supposed to be kept in order. However,
1603 * we need to be wary in case the timeline->last_request
1604 * is used as a barrier for external modification to this
1605 * context.
1606 */
1607 GEM_BUG_ON(same_context &&
1608 i915_seqno_passed(prev->fence.seqno,
1609 rq->fence.seqno));
1610
1611 if ((same_context && uses_guc) || (!uses_guc && pow2))
1612 i915_sw_fence_await_sw_fence(&rq->submit,
1613 &prev->submit,
1614 &rq->submitq);
1615 else
1616 __i915_sw_fence_await_dma_fence(&rq->submit,
1617 &prev->fence,
1618 &rq->dmaq);
1619 if (rq->engine->sched_engine->schedule)
1620 __i915_sched_node_add_dependency(&rq->sched,
1621 &prev->sched,
1622 &rq->dep,
1623 0);
1624 }
1625
1626 return prev;
1627 }
1628
1629 static struct i915_request *
__i915_request_add_to_timeline(struct i915_request * rq)1630 __i915_request_add_to_timeline(struct i915_request *rq)
1631 {
1632 struct intel_timeline *timeline = i915_request_timeline(rq);
1633 struct i915_request *prev;
1634
1635 /*
1636 * Dependency tracking and request ordering along the timeline
1637 * is special cased so that we can eliminate redundant ordering
1638 * operations while building the request (we know that the timeline
1639 * itself is ordered, and here we guarantee it).
1640 *
1641 * As we know we will need to emit tracking along the timeline,
1642 * we embed the hooks into our request struct -- at the cost of
1643 * having to have specialised no-allocation interfaces (which will
1644 * be beneficial elsewhere).
1645 *
1646 * A second benefit to open-coding i915_request_await_request is
1647 * that we can apply a slight variant of the rules specialised
1648 * for timelines that jump between engines (such as virtual engines).
1649 * If we consider the case of virtual engine, we must emit a dma-fence
1650 * to prevent scheduling of the second request until the first is
1651 * complete (to maximise our greedy late load balancing) and this
1652 * precludes optimising to use semaphores serialisation of a single
1653 * timeline across engines.
1654 *
1655 * We do not order parallel submission requests on the timeline as each
1656 * parallel submission context has its own timeline and the ordering
1657 * rules for parallel requests are that they must be submitted in the
1658 * order received from the execbuf IOCTL. So rather than using the
1659 * timeline we store a pointer to last request submitted in the
1660 * relationship in the gem context and insert a submission fence
1661 * between that request and request passed into this function or
1662 * alternatively we use completion fence if gem context has a single
1663 * timeline and this is the first submission of an execbuf IOCTL.
1664 */
1665 if (likely(!is_parallel_rq(rq)))
1666 prev = __i915_request_ensure_ordering(rq, timeline);
1667 else
1668 prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1669
1670 /*
1671 * Make sure that no request gazumped us - if it was allocated after
1672 * our i915_request_alloc() and called __i915_request_add() before
1673 * us, the timeline will hold its seqno which is later than ours.
1674 */
1675 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1676
1677 return prev;
1678 }
1679
1680 /*
1681 * NB: This function is not allowed to fail. Doing so would mean the the
1682 * request is not being tracked for completion but the work itself is
1683 * going to happen on the hardware. This would be a Bad Thing(tm).
1684 */
__i915_request_commit(struct i915_request * rq)1685 struct i915_request *__i915_request_commit(struct i915_request *rq)
1686 {
1687 struct intel_engine_cs *engine = rq->engine;
1688 struct intel_ring *ring = rq->ring;
1689 u32 *cs;
1690
1691 RQ_TRACE(rq, "\n");
1692
1693 /*
1694 * To ensure that this call will not fail, space for its emissions
1695 * should already have been reserved in the ring buffer. Let the ring
1696 * know that it is time to use that space up.
1697 */
1698 GEM_BUG_ON(rq->reserved_space > ring->space);
1699 rq->reserved_space = 0;
1700 rq->emitted_jiffies = jiffies;
1701
1702 /*
1703 * Record the position of the start of the breadcrumb so that
1704 * should we detect the updated seqno part-way through the
1705 * GPU processing the request, we never over-estimate the
1706 * position of the ring's HEAD.
1707 */
1708 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1709 GEM_BUG_ON(IS_ERR(cs));
1710 rq->postfix = intel_ring_offset(rq, cs);
1711
1712 return __i915_request_add_to_timeline(rq);
1713 }
1714
__i915_request_queue_bh(struct i915_request * rq)1715 void __i915_request_queue_bh(struct i915_request *rq)
1716 {
1717 i915_sw_fence_commit(&rq->semaphore);
1718 i915_sw_fence_commit(&rq->submit);
1719 }
1720
__i915_request_queue(struct i915_request * rq,const struct i915_sched_attr * attr)1721 void __i915_request_queue(struct i915_request *rq,
1722 const struct i915_sched_attr *attr)
1723 {
1724 /*
1725 * Let the backend know a new request has arrived that may need
1726 * to adjust the existing execution schedule due to a high priority
1727 * request - i.e. we may want to preempt the current request in order
1728 * to run a high priority dependency chain *before* we can execute this
1729 * request.
1730 *
1731 * This is called before the request is ready to run so that we can
1732 * decide whether to preempt the entire chain so that it is ready to
1733 * run at the earliest possible convenience.
1734 */
1735 if (attr && rq->engine->sched_engine->schedule)
1736 rq->engine->sched_engine->schedule(rq, attr);
1737
1738 local_bh_disable();
1739 __i915_request_queue_bh(rq);
1740 local_bh_enable(); /* kick tasklets */
1741 }
1742
i915_request_add(struct i915_request * rq)1743 void i915_request_add(struct i915_request *rq)
1744 {
1745 struct intel_timeline * const tl = i915_request_timeline(rq);
1746 struct i915_sched_attr attr = {};
1747 struct i915_gem_context *ctx;
1748
1749 lockdep_assert_held(&tl->mutex);
1750 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1751
1752 trace_i915_request_add(rq);
1753 __i915_request_commit(rq);
1754
1755 /* XXX placeholder for selftests */
1756 rcu_read_lock();
1757 ctx = rcu_dereference(rq->context->gem_context);
1758 if (ctx)
1759 attr = ctx->sched;
1760 rcu_read_unlock();
1761
1762 __i915_request_queue(rq, &attr);
1763
1764 mutex_unlock(&tl->mutex);
1765 }
1766
local_clock_ns(unsigned int * cpu)1767 static unsigned long local_clock_ns(unsigned int *cpu)
1768 {
1769 unsigned long t;
1770
1771 /*
1772 * Cheaply and approximately convert from nanoseconds to microseconds.
1773 * The result and subsequent calculations are also defined in the same
1774 * approximate microseconds units. The principal source of timing
1775 * error here is from the simple truncation.
1776 *
1777 * Note that local_clock() is only defined wrt to the current CPU;
1778 * the comparisons are no longer valid if we switch CPUs. Instead of
1779 * blocking preemption for the entire busywait, we can detect the CPU
1780 * switch and use that as indicator of system load and a reason to
1781 * stop busywaiting, see busywait_stop().
1782 */
1783 *cpu = get_cpu();
1784 t = local_clock();
1785 put_cpu();
1786
1787 return t;
1788 }
1789
busywait_stop(unsigned long timeout,unsigned int cpu)1790 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1791 {
1792 unsigned int this_cpu;
1793
1794 if (time_after(local_clock_ns(&this_cpu), timeout))
1795 return true;
1796
1797 return this_cpu != cpu;
1798 }
1799
__i915_spin_request(struct i915_request * const rq,int state)1800 static bool __i915_spin_request(struct i915_request * const rq, int state)
1801 {
1802 unsigned long timeout_ns;
1803 unsigned int cpu;
1804
1805 /*
1806 * Only wait for the request if we know it is likely to complete.
1807 *
1808 * We don't track the timestamps around requests, nor the average
1809 * request length, so we do not have a good indicator that this
1810 * request will complete within the timeout. What we do know is the
1811 * order in which requests are executed by the context and so we can
1812 * tell if the request has been started. If the request is not even
1813 * running yet, it is a fair assumption that it will not complete
1814 * within our relatively short timeout.
1815 */
1816 if (!i915_request_is_running(rq))
1817 return false;
1818
1819 /*
1820 * When waiting for high frequency requests, e.g. during synchronous
1821 * rendering split between the CPU and GPU, the finite amount of time
1822 * required to set up the irq and wait upon it limits the response
1823 * rate. By busywaiting on the request completion for a short while we
1824 * can service the high frequency waits as quick as possible. However,
1825 * if it is a slow request, we want to sleep as quickly as possible.
1826 * The tradeoff between waiting and sleeping is roughly the time it
1827 * takes to sleep on a request, on the order of a microsecond.
1828 */
1829
1830 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1831 timeout_ns += local_clock_ns(&cpu);
1832 do {
1833 if (dma_fence_is_signaled(&rq->fence))
1834 return true;
1835
1836 if (signal_pending_state(state, current))
1837 break;
1838
1839 if (busywait_stop(timeout_ns, cpu))
1840 break;
1841
1842 cpu_relax();
1843 } while (!need_resched());
1844
1845 return false;
1846 }
1847
1848 struct request_wait {
1849 struct dma_fence_cb cb;
1850 struct task_struct *tsk;
1851 };
1852
request_wait_wake(struct dma_fence * fence,struct dma_fence_cb * cb)1853 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1854 {
1855 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1856
1857 wake_up_process(fetch_and_zero(&wait->tsk));
1858 }
1859
1860 /**
1861 * i915_request_wait - wait until execution of request has finished
1862 * @rq: the request to wait upon
1863 * @flags: how to wait
1864 * @timeout: how long to wait in jiffies
1865 *
1866 * i915_request_wait() waits for the request to be completed, for a
1867 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1868 * unbounded wait).
1869 *
1870 * Returns the remaining time (in jiffies) if the request completed, which may
1871 * be zero or -ETIME if the request is unfinished after the timeout expires.
1872 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1873 * pending before the request completes.
1874 */
i915_request_wait(struct i915_request * rq,unsigned int flags,long timeout)1875 long i915_request_wait(struct i915_request *rq,
1876 unsigned int flags,
1877 long timeout)
1878 {
1879 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1880 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1881 struct request_wait wait;
1882
1883 might_sleep();
1884 GEM_BUG_ON(timeout < 0);
1885
1886 if (dma_fence_is_signaled(&rq->fence))
1887 return timeout;
1888
1889 if (!timeout)
1890 return -ETIME;
1891
1892 trace_i915_request_wait_begin(rq, flags);
1893
1894 /*
1895 * We must never wait on the GPU while holding a lock as we
1896 * may need to perform a GPU reset. So while we don't need to
1897 * serialise wait/reset with an explicit lock, we do want
1898 * lockdep to detect potential dependency cycles.
1899 */
1900 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1901
1902 /*
1903 * Optimistic spin before touching IRQs.
1904 *
1905 * We may use a rather large value here to offset the penalty of
1906 * switching away from the active task. Frequently, the client will
1907 * wait upon an old swapbuffer to throttle itself to remain within a
1908 * frame of the gpu. If the client is running in lockstep with the gpu,
1909 * then it should not be waiting long at all, and a sleep now will incur
1910 * extra scheduler latency in producing the next frame. To try to
1911 * avoid adding the cost of enabling/disabling the interrupt to the
1912 * short wait, we first spin to see if the request would have completed
1913 * in the time taken to setup the interrupt.
1914 *
1915 * We need upto 5us to enable the irq, and upto 20us to hide the
1916 * scheduler latency of a context switch, ignoring the secondary
1917 * impacts from a context switch such as cache eviction.
1918 *
1919 * The scheme used for low-latency IO is called "hybrid interrupt
1920 * polling". The suggestion there is to sleep until just before you
1921 * expect to be woken by the device interrupt and then poll for its
1922 * completion. That requires having a good predictor for the request
1923 * duration, which we currently lack.
1924 */
1925 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
1926 __i915_spin_request(rq, state))
1927 goto out;
1928
1929 /*
1930 * This client is about to stall waiting for the GPU. In many cases
1931 * this is undesirable and limits the throughput of the system, as
1932 * many clients cannot continue processing user input/output whilst
1933 * blocked. RPS autotuning may take tens of milliseconds to respond
1934 * to the GPU load and thus incurs additional latency for the client.
1935 * We can circumvent that by promoting the GPU frequency to maximum
1936 * before we sleep. This makes the GPU throttle up much more quickly
1937 * (good for benchmarks and user experience, e.g. window animations),
1938 * but at a cost of spending more power processing the workload
1939 * (bad for battery).
1940 */
1941 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1942 intel_rps_boost(rq);
1943
1944 wait.tsk = current;
1945 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1946 goto out;
1947
1948 /*
1949 * Flush the submission tasklet, but only if it may help this request.
1950 *
1951 * We sometimes experience some latency between the HW interrupts and
1952 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1953 * be due to lazy CS events), so lets run the tasklet manually if there
1954 * is a chance it may submit this request. If the request is not ready
1955 * to run, as it is waiting for other fences to be signaled, flushing
1956 * the tasklet is busy work without any advantage for this client.
1957 *
1958 * If the HW is being lazy, this is the last chance before we go to
1959 * sleep to catch any pending events. We will check periodically in
1960 * the heartbeat to flush the submission tasklets as a last resort
1961 * for unhappy HW.
1962 */
1963 if (i915_request_is_ready(rq))
1964 __intel_engine_flush_submission(rq->engine, false);
1965
1966 for (;;) {
1967 set_current_state(state);
1968
1969 if (dma_fence_is_signaled(&rq->fence))
1970 break;
1971
1972 if (signal_pending_state(state, current)) {
1973 timeout = -ERESTARTSYS;
1974 break;
1975 }
1976
1977 if (!timeout) {
1978 timeout = -ETIME;
1979 break;
1980 }
1981
1982 timeout = io_schedule_timeout(timeout);
1983 }
1984 __set_current_state(TASK_RUNNING);
1985
1986 if (READ_ONCE(wait.tsk))
1987 dma_fence_remove_callback(&rq->fence, &wait.cb);
1988 GEM_BUG_ON(!list_empty(&wait.cb.node));
1989
1990 out:
1991 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1992 trace_i915_request_wait_end(rq);
1993 return timeout;
1994 }
1995
print_sched_attr(const struct i915_sched_attr * attr,char * buf,int x,int len)1996 static int print_sched_attr(const struct i915_sched_attr *attr,
1997 char *buf, int x, int len)
1998 {
1999 if (attr->priority == I915_PRIORITY_INVALID)
2000 return x;
2001
2002 x += snprintf(buf + x, len - x,
2003 " prio=%d", attr->priority);
2004
2005 return x;
2006 }
2007
queue_status(const struct i915_request * rq)2008 static char queue_status(const struct i915_request *rq)
2009 {
2010 if (i915_request_is_active(rq))
2011 return 'E';
2012
2013 if (i915_request_is_ready(rq))
2014 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2015
2016 return 'U';
2017 }
2018
run_status(const struct i915_request * rq)2019 static const char *run_status(const struct i915_request *rq)
2020 {
2021 if (__i915_request_is_complete(rq))
2022 return "!";
2023
2024 if (__i915_request_has_started(rq))
2025 return "*";
2026
2027 if (!i915_sw_fence_signaled(&rq->semaphore))
2028 return "&";
2029
2030 return "";
2031 }
2032
fence_status(const struct i915_request * rq)2033 static const char *fence_status(const struct i915_request *rq)
2034 {
2035 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2036 return "+";
2037
2038 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2039 return "-";
2040
2041 return "";
2042 }
2043
i915_request_show(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent)2044 void i915_request_show(struct drm_printer *m,
2045 const struct i915_request *rq,
2046 const char *prefix,
2047 int indent)
2048 {
2049 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2050 char buf[80] = "";
2051 int x = 0;
2052
2053 /*
2054 * The prefix is used to show the queue status, for which we use
2055 * the following flags:
2056 *
2057 * U [Unready]
2058 * - initial status upon being submitted by the user
2059 *
2060 * - the request is not ready for execution as it is waiting
2061 * for external fences
2062 *
2063 * R [Ready]
2064 * - all fences the request was waiting on have been signaled,
2065 * and the request is now ready for execution and will be
2066 * in a backend queue
2067 *
2068 * - a ready request may still need to wait on semaphores
2069 * [internal fences]
2070 *
2071 * V [Ready/virtual]
2072 * - same as ready, but queued over multiple backends
2073 *
2074 * E [Executing]
2075 * - the request has been transferred from the backend queue and
2076 * submitted for execution on HW
2077 *
2078 * - a completed request may still be regarded as executing, its
2079 * status may not be updated until it is retired and removed
2080 * from the lists
2081 */
2082
2083 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2084
2085 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2086 prefix, indent, " ",
2087 queue_status(rq),
2088 rq->fence.context, rq->fence.seqno,
2089 run_status(rq),
2090 fence_status(rq),
2091 buf,
2092 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2093 name);
2094 }
2095
engine_match_ring(struct intel_engine_cs * engine,struct i915_request * rq)2096 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2097 {
2098 u32 ring = ENGINE_READ(engine, RING_START);
2099
2100 return ring == i915_ggtt_offset(rq->ring->vma);
2101 }
2102
match_ring(struct i915_request * rq)2103 static bool match_ring(struct i915_request *rq)
2104 {
2105 struct intel_engine_cs *engine;
2106 bool found;
2107 int i;
2108
2109 if (!intel_engine_is_virtual(rq->engine))
2110 return engine_match_ring(rq->engine, rq);
2111
2112 found = false;
2113 i = 0;
2114 while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2115 found = engine_match_ring(engine, rq);
2116 if (found)
2117 break;
2118 }
2119
2120 return found;
2121 }
2122
i915_test_request_state(struct i915_request * rq)2123 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2124 {
2125 if (i915_request_completed(rq))
2126 return I915_REQUEST_COMPLETE;
2127
2128 if (!i915_request_started(rq))
2129 return I915_REQUEST_PENDING;
2130
2131 if (match_ring(rq))
2132 return I915_REQUEST_ACTIVE;
2133
2134 return I915_REQUEST_QUEUED;
2135 }
2136
2137 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2138 #include "selftests/mock_request.c"
2139 #include "selftests/i915_request.c"
2140 #endif
2141
i915_request_module_exit(void)2142 void i915_request_module_exit(void)
2143 {
2144 kmem_cache_destroy(slab_execute_cbs);
2145 kmem_cache_destroy(slab_requests);
2146 }
2147
i915_request_module_init(void)2148 int __init i915_request_module_init(void)
2149 {
2150 slab_requests =
2151 kmem_cache_create("i915_request",
2152 sizeof(struct i915_request),
2153 __alignof__(struct i915_request),
2154 SLAB_HWCACHE_ALIGN |
2155 SLAB_RECLAIM_ACCOUNT |
2156 SLAB_TYPESAFE_BY_RCU,
2157 __i915_request_ctor);
2158 if (!slab_requests)
2159 return -ENOMEM;
2160
2161 slab_execute_cbs = KMEM_CACHE(execute_cb,
2162 SLAB_HWCACHE_ALIGN |
2163 SLAB_RECLAIM_ACCOUNT |
2164 SLAB_TYPESAFE_BY_RCU);
2165 if (!slab_execute_cbs)
2166 goto err_requests;
2167
2168 return 0;
2169
2170 err_requests:
2171 kmem_cache_destroy(slab_requests);
2172 return -ENOMEM;
2173 }
2174