1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/api.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61 #include <asm/sigframe.h>
62
63 #include "cpu.h"
64
65 u32 elf_hwcap2 __read_mostly;
66
67 /* all of these masks are initialized in setup_cpu_local_masks() */
68 cpumask_var_t cpu_initialized_mask;
69 cpumask_var_t cpu_callout_mask;
70 cpumask_var_t cpu_callin_mask;
71
72 /* representing cpus for which sibling maps can be computed */
73 cpumask_var_t cpu_sibling_setup_mask;
74
75 /* Number of siblings per CPU package */
76 int smp_num_siblings = 1;
77 EXPORT_SYMBOL(smp_num_siblings);
78
79 /* Last level cache ID of each logical CPU */
80 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
81
get_llc_id(unsigned int cpu)82 u16 get_llc_id(unsigned int cpu)
83 {
84 return per_cpu(cpu_llc_id, cpu);
85 }
86 EXPORT_SYMBOL_GPL(get_llc_id);
87
88 /* L2 cache ID of each logical CPU */
89 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
90
91 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)92 void __init setup_cpu_local_masks(void)
93 {
94 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
95 alloc_bootmem_cpumask_var(&cpu_callin_mask);
96 alloc_bootmem_cpumask_var(&cpu_callout_mask);
97 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
98 }
99
default_init(struct cpuinfo_x86 * c)100 static void default_init(struct cpuinfo_x86 *c)
101 {
102 #ifdef CONFIG_X86_64
103 cpu_detect_cache_sizes(c);
104 #else
105 /* Not much we can do here... */
106 /* Check if at least it has cpuid */
107 if (c->cpuid_level == -1) {
108 /* No cpuid. It must be an ancient CPU */
109 if (c->x86 == 4)
110 strcpy(c->x86_model_id, "486");
111 else if (c->x86 == 3)
112 strcpy(c->x86_model_id, "386");
113 }
114 #endif
115 }
116
117 static const struct cpu_dev default_cpu = {
118 .c_init = default_init,
119 .c_vendor = "Unknown",
120 .c_x86_vendor = X86_VENDOR_UNKNOWN,
121 };
122
123 static const struct cpu_dev *this_cpu = &default_cpu;
124
125 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
126 #ifdef CONFIG_X86_64
127 /*
128 * We need valid kernel segments for data and code in long mode too
129 * IRET will check the segment types kkeil 2000/10/28
130 * Also sysret mandates a special GDT layout
131 *
132 * TLS descriptors are currently at a different place compared to i386.
133 * Hopefully nobody expects them at a fixed place (Wine?)
134 */
135 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
136 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
137 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
138 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
139 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
140 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
141 #else
142 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
143 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
144 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
145 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
146 /*
147 * Segments used for calling PnP BIOS have byte granularity.
148 * They code segments and data segments have fixed 64k limits,
149 * the transfer segment sizes are set at run time.
150 */
151 /* 32-bit code */
152 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
153 /* 16-bit code */
154 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
155 /* 16-bit data */
156 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
157 /* 16-bit data */
158 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
159 /* 16-bit data */
160 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
161 /*
162 * The APM segments have byte granularity and their bases
163 * are set at run time. All have 64k limits.
164 */
165 /* 32-bit code */
166 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
167 /* 16-bit code */
168 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
169 /* data */
170 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
171
172 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
173 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
174 #endif
175 } };
176 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
177
178 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)179 static int __init x86_nopcid_setup(char *s)
180 {
181 /* nopcid doesn't accept parameters */
182 if (s)
183 return -EINVAL;
184
185 /* do not emit a message if the feature is not present */
186 if (!boot_cpu_has(X86_FEATURE_PCID))
187 return 0;
188
189 setup_clear_cpu_cap(X86_FEATURE_PCID);
190 pr_info("nopcid: PCID feature disabled\n");
191 return 0;
192 }
193 early_param("nopcid", x86_nopcid_setup);
194 #endif
195
x86_noinvpcid_setup(char * s)196 static int __init x86_noinvpcid_setup(char *s)
197 {
198 /* noinvpcid doesn't accept parameters */
199 if (s)
200 return -EINVAL;
201
202 /* do not emit a message if the feature is not present */
203 if (!boot_cpu_has(X86_FEATURE_INVPCID))
204 return 0;
205
206 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
207 pr_info("noinvpcid: INVPCID feature disabled\n");
208 return 0;
209 }
210 early_param("noinvpcid", x86_noinvpcid_setup);
211
212 #ifdef CONFIG_X86_32
213 static int cachesize_override = -1;
214 static int disable_x86_serial_nr = 1;
215
cachesize_setup(char * str)216 static int __init cachesize_setup(char *str)
217 {
218 get_option(&str, &cachesize_override);
219 return 1;
220 }
221 __setup("cachesize=", cachesize_setup);
222
x86_sep_setup(char * s)223 static int __init x86_sep_setup(char *s)
224 {
225 setup_clear_cpu_cap(X86_FEATURE_SEP);
226 return 1;
227 }
228 __setup("nosep", x86_sep_setup);
229
230 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)231 static inline int flag_is_changeable_p(u32 flag)
232 {
233 u32 f1, f2;
234
235 /*
236 * Cyrix and IDT cpus allow disabling of CPUID
237 * so the code below may return different results
238 * when it is executed before and after enabling
239 * the CPUID. Add "volatile" to not allow gcc to
240 * optimize the subsequent calls to this function.
241 */
242 asm volatile ("pushfl \n\t"
243 "pushfl \n\t"
244 "popl %0 \n\t"
245 "movl %0, %1 \n\t"
246 "xorl %2, %0 \n\t"
247 "pushl %0 \n\t"
248 "popfl \n\t"
249 "pushfl \n\t"
250 "popl %0 \n\t"
251 "popfl \n\t"
252
253 : "=&r" (f1), "=&r" (f2)
254 : "ir" (flag));
255
256 return ((f1^f2) & flag) != 0;
257 }
258
259 /* Probe for the CPUID instruction */
have_cpuid_p(void)260 int have_cpuid_p(void)
261 {
262 return flag_is_changeable_p(X86_EFLAGS_ID);
263 }
264
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)265 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
266 {
267 unsigned long lo, hi;
268
269 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
270 return;
271
272 /* Disable processor serial number: */
273
274 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
275 lo |= 0x200000;
276 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
277
278 pr_notice("CPU serial number disabled.\n");
279 clear_cpu_cap(c, X86_FEATURE_PN);
280
281 /* Disabling the serial number may affect the cpuid level */
282 c->cpuid_level = cpuid_eax(0);
283 }
284
x86_serial_nr_setup(char * s)285 static int __init x86_serial_nr_setup(char *s)
286 {
287 disable_x86_serial_nr = 0;
288 return 1;
289 }
290 __setup("serialnumber", x86_serial_nr_setup);
291 #else
flag_is_changeable_p(u32 flag)292 static inline int flag_is_changeable_p(u32 flag)
293 {
294 return 1;
295 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)296 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
297 {
298 }
299 #endif
300
setup_disable_smep(char * arg)301 static __init int setup_disable_smep(char *arg)
302 {
303 setup_clear_cpu_cap(X86_FEATURE_SMEP);
304 return 1;
305 }
306 __setup("nosmep", setup_disable_smep);
307
setup_smep(struct cpuinfo_x86 * c)308 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
309 {
310 if (cpu_has(c, X86_FEATURE_SMEP))
311 cr4_set_bits(X86_CR4_SMEP);
312 }
313
setup_disable_smap(char * arg)314 static __init int setup_disable_smap(char *arg)
315 {
316 setup_clear_cpu_cap(X86_FEATURE_SMAP);
317 return 1;
318 }
319 __setup("nosmap", setup_disable_smap);
320
setup_smap(struct cpuinfo_x86 * c)321 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
322 {
323 unsigned long eflags = native_save_fl();
324
325 /* This should have been cleared long ago */
326 BUG_ON(eflags & X86_EFLAGS_AC);
327
328 if (cpu_has(c, X86_FEATURE_SMAP)) {
329 #ifdef CONFIG_X86_SMAP
330 cr4_set_bits(X86_CR4_SMAP);
331 #else
332 clear_cpu_cap(c, X86_FEATURE_SMAP);
333 cr4_clear_bits(X86_CR4_SMAP);
334 #endif
335 }
336 }
337
setup_umip(struct cpuinfo_x86 * c)338 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
339 {
340 /* Check the boot processor, plus build option for UMIP. */
341 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
342 goto out;
343
344 /* Check the current processor's cpuid bits. */
345 if (!cpu_has(c, X86_FEATURE_UMIP))
346 goto out;
347
348 cr4_set_bits(X86_CR4_UMIP);
349
350 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
351
352 return;
353
354 out:
355 /*
356 * Make sure UMIP is disabled in case it was enabled in a
357 * previous boot (e.g., via kexec).
358 */
359 cr4_clear_bits(X86_CR4_UMIP);
360 }
361
362 /* These bits should not change their value after CPU init is finished. */
363 static const unsigned long cr4_pinned_mask =
364 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
365 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
366 static unsigned long cr4_pinned_bits __ro_after_init;
367
native_write_cr0(unsigned long val)368 void native_write_cr0(unsigned long val)
369 {
370 unsigned long bits_missing = 0;
371
372 set_register:
373 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
374
375 if (static_branch_likely(&cr_pinning)) {
376 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
377 bits_missing = X86_CR0_WP;
378 val |= bits_missing;
379 goto set_register;
380 }
381 /* Warn after we've set the missing bits. */
382 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
383 }
384 }
385 EXPORT_SYMBOL(native_write_cr0);
386
native_write_cr4(unsigned long val)387 void native_write_cr4(unsigned long val)
388 {
389 unsigned long bits_changed = 0;
390
391 set_register:
392 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
393
394 if (static_branch_likely(&cr_pinning)) {
395 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
396 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
397 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
398 goto set_register;
399 }
400 /* Warn after we've corrected the changed bits. */
401 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
402 bits_changed);
403 }
404 }
405 #if IS_MODULE(CONFIG_LKDTM)
406 EXPORT_SYMBOL_GPL(native_write_cr4);
407 #endif
408
cr4_update_irqsoff(unsigned long set,unsigned long clear)409 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
410 {
411 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
412
413 lockdep_assert_irqs_disabled();
414
415 newval = (cr4 & ~clear) | set;
416 if (newval != cr4) {
417 this_cpu_write(cpu_tlbstate.cr4, newval);
418 __write_cr4(newval);
419 }
420 }
421 EXPORT_SYMBOL(cr4_update_irqsoff);
422
423 /* Read the CR4 shadow. */
cr4_read_shadow(void)424 unsigned long cr4_read_shadow(void)
425 {
426 return this_cpu_read(cpu_tlbstate.cr4);
427 }
428 EXPORT_SYMBOL_GPL(cr4_read_shadow);
429
cr4_init(void)430 void cr4_init(void)
431 {
432 unsigned long cr4 = __read_cr4();
433
434 if (boot_cpu_has(X86_FEATURE_PCID))
435 cr4 |= X86_CR4_PCIDE;
436 if (static_branch_likely(&cr_pinning))
437 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
438
439 __write_cr4(cr4);
440
441 /* Initialize cr4 shadow for this CPU. */
442 this_cpu_write(cpu_tlbstate.cr4, cr4);
443 }
444
445 /*
446 * Once CPU feature detection is finished (and boot params have been
447 * parsed), record any of the sensitive CR bits that are set, and
448 * enable CR pinning.
449 */
setup_cr_pinning(void)450 static void __init setup_cr_pinning(void)
451 {
452 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
453 static_key_enable(&cr_pinning.key);
454 }
455
x86_nofsgsbase_setup(char * arg)456 static __init int x86_nofsgsbase_setup(char *arg)
457 {
458 /* Require an exact match without trailing characters. */
459 if (strlen(arg))
460 return 0;
461
462 /* Do not emit a message if the feature is not present. */
463 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
464 return 1;
465
466 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
467 pr_info("FSGSBASE disabled via kernel command line\n");
468 return 1;
469 }
470 __setup("nofsgsbase", x86_nofsgsbase_setup);
471
472 /*
473 * Protection Keys are not available in 32-bit mode.
474 */
475 static bool pku_disabled;
476
setup_pku(struct cpuinfo_x86 * c)477 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
478 {
479 if (c == &boot_cpu_data) {
480 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
481 return;
482 /*
483 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
484 * bit to be set. Enforce it.
485 */
486 setup_force_cpu_cap(X86_FEATURE_OSPKE);
487
488 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
489 return;
490 }
491
492 cr4_set_bits(X86_CR4_PKE);
493 /* Load the default PKRU value */
494 pkru_write_default();
495 }
496
497 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)498 static __init int setup_disable_pku(char *arg)
499 {
500 /*
501 * Do not clear the X86_FEATURE_PKU bit. All of the
502 * runtime checks are against OSPKE so clearing the
503 * bit does nothing.
504 *
505 * This way, we will see "pku" in cpuinfo, but not
506 * "ospke", which is exactly what we want. It shows
507 * that the CPU has PKU, but the OS has not enabled it.
508 * This happens to be exactly how a system would look
509 * if we disabled the config option.
510 */
511 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
512 pku_disabled = true;
513 return 1;
514 }
515 __setup("nopku", setup_disable_pku);
516 #endif /* CONFIG_X86_64 */
517
518 /*
519 * Some CPU features depend on higher CPUID levels, which may not always
520 * be available due to CPUID level capping or broken virtualization
521 * software. Add those features to this table to auto-disable them.
522 */
523 struct cpuid_dependent_feature {
524 u32 feature;
525 u32 level;
526 };
527
528 static const struct cpuid_dependent_feature
529 cpuid_dependent_features[] = {
530 { X86_FEATURE_MWAIT, 0x00000005 },
531 { X86_FEATURE_DCA, 0x00000009 },
532 { X86_FEATURE_XSAVE, 0x0000000d },
533 { 0, 0 }
534 };
535
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)536 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
537 {
538 const struct cpuid_dependent_feature *df;
539
540 for (df = cpuid_dependent_features; df->feature; df++) {
541
542 if (!cpu_has(c, df->feature))
543 continue;
544 /*
545 * Note: cpuid_level is set to -1 if unavailable, but
546 * extended_extended_level is set to 0 if unavailable
547 * and the legitimate extended levels are all negative
548 * when signed; hence the weird messing around with
549 * signs here...
550 */
551 if (!((s32)df->level < 0 ?
552 (u32)df->level > (u32)c->extended_cpuid_level :
553 (s32)df->level > (s32)c->cpuid_level))
554 continue;
555
556 clear_cpu_cap(c, df->feature);
557 if (!warn)
558 continue;
559
560 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
561 x86_cap_flag(df->feature), df->level);
562 }
563 }
564
565 /*
566 * Naming convention should be: <Name> [(<Codename>)]
567 * This table only is used unless init_<vendor>() below doesn't set it;
568 * in particular, if CPUID levels 0x80000002..4 are supported, this
569 * isn't used
570 */
571
572 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)573 static const char *table_lookup_model(struct cpuinfo_x86 *c)
574 {
575 #ifdef CONFIG_X86_32
576 const struct legacy_cpu_model_info *info;
577
578 if (c->x86_model >= 16)
579 return NULL; /* Range check */
580
581 if (!this_cpu)
582 return NULL;
583
584 info = this_cpu->legacy_models;
585
586 while (info->family) {
587 if (info->family == c->x86)
588 return info->model_names[c->x86_model];
589 info++;
590 }
591 #endif
592 return NULL; /* Not found */
593 }
594
595 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
596 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
597 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
598
load_percpu_segment(int cpu)599 void load_percpu_segment(int cpu)
600 {
601 #ifdef CONFIG_X86_32
602 loadsegment(fs, __KERNEL_PERCPU);
603 #else
604 __loadsegment_simple(gs, 0);
605 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
606 #endif
607 }
608
609 #ifdef CONFIG_X86_32
610 /* The 32-bit entry code needs to find cpu_entry_area. */
611 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
612 #endif
613
614 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)615 void load_direct_gdt(int cpu)
616 {
617 struct desc_ptr gdt_descr;
618
619 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
620 gdt_descr.size = GDT_SIZE - 1;
621 load_gdt(&gdt_descr);
622 }
623 EXPORT_SYMBOL_GPL(load_direct_gdt);
624
625 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)626 void load_fixmap_gdt(int cpu)
627 {
628 struct desc_ptr gdt_descr;
629
630 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
631 gdt_descr.size = GDT_SIZE - 1;
632 load_gdt(&gdt_descr);
633 }
634 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
635
636 /*
637 * Current gdt points %fs at the "master" per-cpu area: after this,
638 * it's on the real one.
639 */
switch_to_new_gdt(int cpu)640 void switch_to_new_gdt(int cpu)
641 {
642 /* Load the original GDT */
643 load_direct_gdt(cpu);
644 /* Reload the per-cpu base */
645 load_percpu_segment(cpu);
646 }
647
648 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
649
get_model_name(struct cpuinfo_x86 * c)650 static void get_model_name(struct cpuinfo_x86 *c)
651 {
652 unsigned int *v;
653 char *p, *q, *s;
654
655 if (c->extended_cpuid_level < 0x80000004)
656 return;
657
658 v = (unsigned int *)c->x86_model_id;
659 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
660 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
661 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
662 c->x86_model_id[48] = 0;
663
664 /* Trim whitespace */
665 p = q = s = &c->x86_model_id[0];
666
667 while (*p == ' ')
668 p++;
669
670 while (*p) {
671 /* Note the last non-whitespace index */
672 if (!isspace(*p))
673 s = q;
674
675 *q++ = *p++;
676 }
677
678 *(s + 1) = '\0';
679 }
680
detect_num_cpu_cores(struct cpuinfo_x86 * c)681 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
682 {
683 unsigned int eax, ebx, ecx, edx;
684
685 c->x86_max_cores = 1;
686 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
687 return;
688
689 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
690 if (eax & 0x1f)
691 c->x86_max_cores = (eax >> 26) + 1;
692 }
693
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)694 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
695 {
696 unsigned int n, dummy, ebx, ecx, edx, l2size;
697
698 n = c->extended_cpuid_level;
699
700 if (n >= 0x80000005) {
701 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
702 c->x86_cache_size = (ecx>>24) + (edx>>24);
703 #ifdef CONFIG_X86_64
704 /* On K8 L1 TLB is inclusive, so don't count it */
705 c->x86_tlbsize = 0;
706 #endif
707 }
708
709 if (n < 0x80000006) /* Some chips just has a large L1. */
710 return;
711
712 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
713 l2size = ecx >> 16;
714
715 #ifdef CONFIG_X86_64
716 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
717 #else
718 /* do processor-specific cache resizing */
719 if (this_cpu->legacy_cache_size)
720 l2size = this_cpu->legacy_cache_size(c, l2size);
721
722 /* Allow user to override all this if necessary. */
723 if (cachesize_override != -1)
724 l2size = cachesize_override;
725
726 if (l2size == 0)
727 return; /* Again, no L2 cache is possible */
728 #endif
729
730 c->x86_cache_size = l2size;
731 }
732
733 u16 __read_mostly tlb_lli_4k[NR_INFO];
734 u16 __read_mostly tlb_lli_2m[NR_INFO];
735 u16 __read_mostly tlb_lli_4m[NR_INFO];
736 u16 __read_mostly tlb_lld_4k[NR_INFO];
737 u16 __read_mostly tlb_lld_2m[NR_INFO];
738 u16 __read_mostly tlb_lld_4m[NR_INFO];
739 u16 __read_mostly tlb_lld_1g[NR_INFO];
740
cpu_detect_tlb(struct cpuinfo_x86 * c)741 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
742 {
743 if (this_cpu->c_detect_tlb)
744 this_cpu->c_detect_tlb(c);
745
746 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
747 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
748 tlb_lli_4m[ENTRIES]);
749
750 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
751 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
752 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
753 }
754
detect_ht_early(struct cpuinfo_x86 * c)755 int detect_ht_early(struct cpuinfo_x86 *c)
756 {
757 #ifdef CONFIG_SMP
758 u32 eax, ebx, ecx, edx;
759
760 if (!cpu_has(c, X86_FEATURE_HT))
761 return -1;
762
763 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
764 return -1;
765
766 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
767 return -1;
768
769 cpuid(1, &eax, &ebx, &ecx, &edx);
770
771 smp_num_siblings = (ebx & 0xff0000) >> 16;
772 if (smp_num_siblings == 1)
773 pr_info_once("CPU0: Hyper-Threading is disabled\n");
774 #endif
775 return 0;
776 }
777
detect_ht(struct cpuinfo_x86 * c)778 void detect_ht(struct cpuinfo_x86 *c)
779 {
780 #ifdef CONFIG_SMP
781 int index_msb, core_bits;
782
783 if (detect_ht_early(c) < 0)
784 return;
785
786 index_msb = get_count_order(smp_num_siblings);
787 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
788
789 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
790
791 index_msb = get_count_order(smp_num_siblings);
792
793 core_bits = get_count_order(c->x86_max_cores);
794
795 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
796 ((1 << core_bits) - 1);
797 #endif
798 }
799
get_cpu_vendor(struct cpuinfo_x86 * c)800 static void get_cpu_vendor(struct cpuinfo_x86 *c)
801 {
802 char *v = c->x86_vendor_id;
803 int i;
804
805 for (i = 0; i < X86_VENDOR_NUM; i++) {
806 if (!cpu_devs[i])
807 break;
808
809 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
810 (cpu_devs[i]->c_ident[1] &&
811 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
812
813 this_cpu = cpu_devs[i];
814 c->x86_vendor = this_cpu->c_x86_vendor;
815 return;
816 }
817 }
818
819 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
820 "CPU: Your system may be unstable.\n", v);
821
822 c->x86_vendor = X86_VENDOR_UNKNOWN;
823 this_cpu = &default_cpu;
824 }
825
cpu_detect(struct cpuinfo_x86 * c)826 void cpu_detect(struct cpuinfo_x86 *c)
827 {
828 /* Get vendor name */
829 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
830 (unsigned int *)&c->x86_vendor_id[0],
831 (unsigned int *)&c->x86_vendor_id[8],
832 (unsigned int *)&c->x86_vendor_id[4]);
833
834 c->x86 = 4;
835 /* Intel-defined flags: level 0x00000001 */
836 if (c->cpuid_level >= 0x00000001) {
837 u32 junk, tfms, cap0, misc;
838
839 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
840 c->x86 = x86_family(tfms);
841 c->x86_model = x86_model(tfms);
842 c->x86_stepping = x86_stepping(tfms);
843
844 if (cap0 & (1<<19)) {
845 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
846 c->x86_cache_alignment = c->x86_clflush_size;
847 }
848 }
849 }
850
apply_forced_caps(struct cpuinfo_x86 * c)851 static void apply_forced_caps(struct cpuinfo_x86 *c)
852 {
853 int i;
854
855 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
856 c->x86_capability[i] &= ~cpu_caps_cleared[i];
857 c->x86_capability[i] |= cpu_caps_set[i];
858 }
859 }
860
init_speculation_control(struct cpuinfo_x86 * c)861 static void init_speculation_control(struct cpuinfo_x86 *c)
862 {
863 /*
864 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
865 * and they also have a different bit for STIBP support. Also,
866 * a hypervisor might have set the individual AMD bits even on
867 * Intel CPUs, for finer-grained selection of what's available.
868 */
869 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
870 set_cpu_cap(c, X86_FEATURE_IBRS);
871 set_cpu_cap(c, X86_FEATURE_IBPB);
872 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
873 }
874
875 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
876 set_cpu_cap(c, X86_FEATURE_STIBP);
877
878 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
879 cpu_has(c, X86_FEATURE_VIRT_SSBD))
880 set_cpu_cap(c, X86_FEATURE_SSBD);
881
882 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
883 set_cpu_cap(c, X86_FEATURE_IBRS);
884 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
885 }
886
887 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
888 set_cpu_cap(c, X86_FEATURE_IBPB);
889
890 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
891 set_cpu_cap(c, X86_FEATURE_STIBP);
892 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
893 }
894
895 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
896 set_cpu_cap(c, X86_FEATURE_SSBD);
897 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
898 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
899 }
900 }
901
get_cpu_cap(struct cpuinfo_x86 * c)902 void get_cpu_cap(struct cpuinfo_x86 *c)
903 {
904 u32 eax, ebx, ecx, edx;
905
906 /* Intel-defined flags: level 0x00000001 */
907 if (c->cpuid_level >= 0x00000001) {
908 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
909
910 c->x86_capability[CPUID_1_ECX] = ecx;
911 c->x86_capability[CPUID_1_EDX] = edx;
912 }
913
914 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
915 if (c->cpuid_level >= 0x00000006)
916 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
917
918 /* Additional Intel-defined flags: level 0x00000007 */
919 if (c->cpuid_level >= 0x00000007) {
920 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
921 c->x86_capability[CPUID_7_0_EBX] = ebx;
922 c->x86_capability[CPUID_7_ECX] = ecx;
923 c->x86_capability[CPUID_7_EDX] = edx;
924
925 /* Check valid sub-leaf index before accessing it */
926 if (eax >= 1) {
927 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
928 c->x86_capability[CPUID_7_1_EAX] = eax;
929 }
930 }
931
932 /* Extended state features: level 0x0000000d */
933 if (c->cpuid_level >= 0x0000000d) {
934 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
935
936 c->x86_capability[CPUID_D_1_EAX] = eax;
937 }
938
939 /* AMD-defined flags: level 0x80000001 */
940 eax = cpuid_eax(0x80000000);
941 c->extended_cpuid_level = eax;
942
943 if ((eax & 0xffff0000) == 0x80000000) {
944 if (eax >= 0x80000001) {
945 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
946
947 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
948 c->x86_capability[CPUID_8000_0001_EDX] = edx;
949 }
950 }
951
952 if (c->extended_cpuid_level >= 0x80000007) {
953 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
954
955 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
956 c->x86_power = edx;
957 }
958
959 if (c->extended_cpuid_level >= 0x80000008) {
960 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
961 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
962 }
963
964 if (c->extended_cpuid_level >= 0x8000000a)
965 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
966
967 if (c->extended_cpuid_level >= 0x8000001f)
968 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
969
970 init_scattered_cpuid_features(c);
971 init_speculation_control(c);
972
973 /*
974 * Clear/Set all flags overridden by options, after probe.
975 * This needs to happen each time we re-probe, which may happen
976 * several times during CPU initialization.
977 */
978 apply_forced_caps(c);
979 }
980
get_cpu_address_sizes(struct cpuinfo_x86 * c)981 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
982 {
983 u32 eax, ebx, ecx, edx;
984
985 if (c->extended_cpuid_level >= 0x80000008) {
986 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
987
988 c->x86_virt_bits = (eax >> 8) & 0xff;
989 c->x86_phys_bits = eax & 0xff;
990 }
991 #ifdef CONFIG_X86_32
992 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
993 c->x86_phys_bits = 36;
994 #endif
995 c->x86_cache_bits = c->x86_phys_bits;
996 }
997
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)998 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
999 {
1000 #ifdef CONFIG_X86_32
1001 int i;
1002
1003 /*
1004 * First of all, decide if this is a 486 or higher
1005 * It's a 486 if we can modify the AC flag
1006 */
1007 if (flag_is_changeable_p(X86_EFLAGS_AC))
1008 c->x86 = 4;
1009 else
1010 c->x86 = 3;
1011
1012 for (i = 0; i < X86_VENDOR_NUM; i++)
1013 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1014 c->x86_vendor_id[0] = 0;
1015 cpu_devs[i]->c_identify(c);
1016 if (c->x86_vendor_id[0]) {
1017 get_cpu_vendor(c);
1018 break;
1019 }
1020 }
1021 #endif
1022 }
1023
1024 #define NO_SPECULATION BIT(0)
1025 #define NO_MELTDOWN BIT(1)
1026 #define NO_SSB BIT(2)
1027 #define NO_L1TF BIT(3)
1028 #define NO_MDS BIT(4)
1029 #define MSBDS_ONLY BIT(5)
1030 #define NO_SWAPGS BIT(6)
1031 #define NO_ITLB_MULTIHIT BIT(7)
1032 #define NO_SPECTRE_V2 BIT(8)
1033
1034 #define VULNWL(vendor, family, model, whitelist) \
1035 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1036
1037 #define VULNWL_INTEL(model, whitelist) \
1038 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1039
1040 #define VULNWL_AMD(family, whitelist) \
1041 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1042
1043 #define VULNWL_HYGON(family, whitelist) \
1044 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1045
1046 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1047 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1048 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1049 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1050 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1051 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1052 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1053
1054 /* Intel Family 6 */
1055 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1056 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1057 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1058 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1059 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1060
1061 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067
1068 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1069
1070 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1071 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1072
1073 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1074 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1075 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1076
1077 /*
1078 * Technically, swapgs isn't serializing on AMD (despite it previously
1079 * being documented as such in the APM). But according to AMD, %gs is
1080 * updated non-speculatively, and the issuing of %gs-relative memory
1081 * operands will be blocked until the %gs update completes, which is
1082 * good enough for our purposes.
1083 */
1084
1085 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
1086
1087 /* AMD Family 0xf - 0x12 */
1088 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1089 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1090 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1091 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1092
1093 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1094 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1095 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1096
1097 /* Zhaoxin Family 7 */
1098 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1099 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1100 {}
1101 };
1102
1103 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1104 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1105 INTEL_FAM6_##model, steppings, \
1106 X86_FEATURE_ANY, issues)
1107
1108 #define SRBDS BIT(0)
1109
1110 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1111 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1112 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1113 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1114 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1115 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1116 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1117 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS),
1118 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS),
1119 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPINGS(0x0, 0xC), SRBDS),
1120 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPINGS(0x0, 0xD), SRBDS),
1121 {}
1122 };
1123
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1124 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1125 {
1126 const struct x86_cpu_id *m = x86_match_cpu(table);
1127
1128 return m && !!(m->driver_data & which);
1129 }
1130
x86_read_arch_cap_msr(void)1131 u64 x86_read_arch_cap_msr(void)
1132 {
1133 u64 ia32_cap = 0;
1134
1135 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1136 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1137
1138 return ia32_cap;
1139 }
1140
cpu_set_bug_bits(struct cpuinfo_x86 * c)1141 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1142 {
1143 u64 ia32_cap = x86_read_arch_cap_msr();
1144
1145 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1146 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1147 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1148 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1149
1150 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1151 return;
1152
1153 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1154
1155 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1156 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1157
1158 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1159 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1160 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1161 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1162
1163 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1164 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1165
1166 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1167 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1168 setup_force_cpu_bug(X86_BUG_MDS);
1169 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1170 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1171 }
1172
1173 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1174 setup_force_cpu_bug(X86_BUG_SWAPGS);
1175
1176 /*
1177 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1178 * - TSX is supported or
1179 * - TSX_CTRL is present
1180 *
1181 * TSX_CTRL check is needed for cases when TSX could be disabled before
1182 * the kernel boot e.g. kexec.
1183 * TSX_CTRL check alone is not sufficient for cases when the microcode
1184 * update is not present or running as guest that don't get TSX_CTRL.
1185 */
1186 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1187 (cpu_has(c, X86_FEATURE_RTM) ||
1188 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1189 setup_force_cpu_bug(X86_BUG_TAA);
1190
1191 /*
1192 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1193 * in the vulnerability blacklist.
1194 */
1195 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1196 cpu_has(c, X86_FEATURE_RDSEED)) &&
1197 cpu_matches(cpu_vuln_blacklist, SRBDS))
1198 setup_force_cpu_bug(X86_BUG_SRBDS);
1199
1200 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1201 return;
1202
1203 /* Rogue Data Cache Load? No! */
1204 if (ia32_cap & ARCH_CAP_RDCL_NO)
1205 return;
1206
1207 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1208
1209 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1210 return;
1211
1212 setup_force_cpu_bug(X86_BUG_L1TF);
1213 }
1214
1215 /*
1216 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1217 * unfortunately, that's not true in practice because of early VIA
1218 * chips and (more importantly) broken virtualizers that are not easy
1219 * to detect. In the latter case it doesn't even *fail* reliably, so
1220 * probing for it doesn't even work. Disable it completely on 32-bit
1221 * unless we can find a reliable way to detect all the broken cases.
1222 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1223 */
detect_nopl(void)1224 static void detect_nopl(void)
1225 {
1226 #ifdef CONFIG_X86_32
1227 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1228 #else
1229 setup_force_cpu_cap(X86_FEATURE_NOPL);
1230 #endif
1231 }
1232
1233 /*
1234 * We parse cpu parameters early because fpu__init_system() is executed
1235 * before parse_early_param().
1236 */
cpu_parse_early_param(void)1237 static void __init cpu_parse_early_param(void)
1238 {
1239 char arg[128];
1240 char *argptr = arg;
1241 int arglen, res, bit;
1242
1243 #ifdef CONFIG_X86_32
1244 if (cmdline_find_option_bool(boot_command_line, "no387"))
1245 #ifdef CONFIG_MATH_EMULATION
1246 setup_clear_cpu_cap(X86_FEATURE_FPU);
1247 #else
1248 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1249 #endif
1250
1251 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1252 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1253 #endif
1254
1255 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1256 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1257
1258 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1259 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1260
1261 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1262 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1263
1264 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1265 if (arglen <= 0)
1266 return;
1267
1268 pr_info("Clearing CPUID bits:");
1269 do {
1270 res = get_option(&argptr, &bit);
1271 if (res == 0 || res == 3)
1272 break;
1273
1274 /* If the argument was too long, the last bit may be cut off */
1275 if (res == 1 && arglen >= sizeof(arg))
1276 break;
1277
1278 if (bit >= 0 && bit < NCAPINTS * 32) {
1279 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1280 setup_clear_cpu_cap(bit);
1281 }
1282 } while (res == 2);
1283 pr_cont("\n");
1284 }
1285
1286 /*
1287 * Do minimum CPU detection early.
1288 * Fields really needed: vendor, cpuid_level, family, model, mask,
1289 * cache alignment.
1290 * The others are not touched to avoid unwanted side effects.
1291 *
1292 * WARNING: this function is only called on the boot CPU. Don't add code
1293 * here that is supposed to run on all CPUs.
1294 */
early_identify_cpu(struct cpuinfo_x86 * c)1295 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1296 {
1297 #ifdef CONFIG_X86_64
1298 c->x86_clflush_size = 64;
1299 c->x86_phys_bits = 36;
1300 c->x86_virt_bits = 48;
1301 #else
1302 c->x86_clflush_size = 32;
1303 c->x86_phys_bits = 32;
1304 c->x86_virt_bits = 32;
1305 #endif
1306 c->x86_cache_alignment = c->x86_clflush_size;
1307
1308 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1309 c->extended_cpuid_level = 0;
1310
1311 if (!have_cpuid_p())
1312 identify_cpu_without_cpuid(c);
1313
1314 /* cyrix could have cpuid enabled via c_identify()*/
1315 if (have_cpuid_p()) {
1316 cpu_detect(c);
1317 get_cpu_vendor(c);
1318 get_cpu_cap(c);
1319 get_cpu_address_sizes(c);
1320 setup_force_cpu_cap(X86_FEATURE_CPUID);
1321 cpu_parse_early_param();
1322
1323 if (this_cpu->c_early_init)
1324 this_cpu->c_early_init(c);
1325
1326 c->cpu_index = 0;
1327 filter_cpuid_features(c, false);
1328
1329 if (this_cpu->c_bsp_init)
1330 this_cpu->c_bsp_init(c);
1331 } else {
1332 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1333 }
1334
1335 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1336
1337 cpu_set_bug_bits(c);
1338
1339 sld_setup(c);
1340
1341 fpu__init_system(c);
1342
1343 init_sigframe_size();
1344
1345 #ifdef CONFIG_X86_32
1346 /*
1347 * Regardless of whether PCID is enumerated, the SDM says
1348 * that it can't be enabled in 32-bit mode.
1349 */
1350 setup_clear_cpu_cap(X86_FEATURE_PCID);
1351 #endif
1352
1353 /*
1354 * Later in the boot process pgtable_l5_enabled() relies on
1355 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1356 * enabled by this point we need to clear the feature bit to avoid
1357 * false-positives at the later stage.
1358 *
1359 * pgtable_l5_enabled() can be false here for several reasons:
1360 * - 5-level paging is disabled compile-time;
1361 * - it's 32-bit kernel;
1362 * - machine doesn't support 5-level paging;
1363 * - user specified 'no5lvl' in kernel command line.
1364 */
1365 if (!pgtable_l5_enabled())
1366 setup_clear_cpu_cap(X86_FEATURE_LA57);
1367
1368 detect_nopl();
1369 }
1370
early_cpu_init(void)1371 void __init early_cpu_init(void)
1372 {
1373 const struct cpu_dev *const *cdev;
1374 int count = 0;
1375
1376 #ifdef CONFIG_PROCESSOR_SELECT
1377 pr_info("KERNEL supported cpus:\n");
1378 #endif
1379
1380 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1381 const struct cpu_dev *cpudev = *cdev;
1382
1383 if (count >= X86_VENDOR_NUM)
1384 break;
1385 cpu_devs[count] = cpudev;
1386 count++;
1387
1388 #ifdef CONFIG_PROCESSOR_SELECT
1389 {
1390 unsigned int j;
1391
1392 for (j = 0; j < 2; j++) {
1393 if (!cpudev->c_ident[j])
1394 continue;
1395 pr_info(" %s %s\n", cpudev->c_vendor,
1396 cpudev->c_ident[j]);
1397 }
1398 }
1399 #endif
1400 }
1401 early_identify_cpu(&boot_cpu_data);
1402 }
1403
detect_null_seg_behavior(void)1404 static bool detect_null_seg_behavior(void)
1405 {
1406 /*
1407 * Empirically, writing zero to a segment selector on AMD does
1408 * not clear the base, whereas writing zero to a segment
1409 * selector on Intel does clear the base. Intel's behavior
1410 * allows slightly faster context switches in the common case
1411 * where GS is unused by the prev and next threads.
1412 *
1413 * Since neither vendor documents this anywhere that I can see,
1414 * detect it directly instead of hard-coding the choice by
1415 * vendor.
1416 *
1417 * I've designated AMD's behavior as the "bug" because it's
1418 * counterintuitive and less friendly.
1419 */
1420
1421 unsigned long old_base, tmp;
1422 rdmsrl(MSR_FS_BASE, old_base);
1423 wrmsrl(MSR_FS_BASE, 1);
1424 loadsegment(fs, 0);
1425 rdmsrl(MSR_FS_BASE, tmp);
1426 wrmsrl(MSR_FS_BASE, old_base);
1427 return tmp == 0;
1428 }
1429
check_null_seg_clears_base(struct cpuinfo_x86 * c)1430 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1431 {
1432 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1433 if (!IS_ENABLED(CONFIG_X86_64))
1434 return;
1435
1436 /* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1437 if (c->extended_cpuid_level >= 0x80000021 &&
1438 cpuid_eax(0x80000021) & BIT(6))
1439 return;
1440
1441 /*
1442 * CPUID bit above wasn't set. If this kernel is still running
1443 * as a HV guest, then the HV has decided not to advertize
1444 * that CPUID bit for whatever reason. For example, one
1445 * member of the migration pool might be vulnerable. Which
1446 * means, the bug is present: set the BUG flag and return.
1447 */
1448 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1449 set_cpu_bug(c, X86_BUG_NULL_SEG);
1450 return;
1451 }
1452
1453 /*
1454 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1455 * 0x18 is the respective family for Hygon.
1456 */
1457 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1458 detect_null_seg_behavior())
1459 return;
1460
1461 /* All the remaining ones are affected */
1462 set_cpu_bug(c, X86_BUG_NULL_SEG);
1463 }
1464
generic_identify(struct cpuinfo_x86 * c)1465 static void generic_identify(struct cpuinfo_x86 *c)
1466 {
1467 c->extended_cpuid_level = 0;
1468
1469 if (!have_cpuid_p())
1470 identify_cpu_without_cpuid(c);
1471
1472 /* cyrix could have cpuid enabled via c_identify()*/
1473 if (!have_cpuid_p())
1474 return;
1475
1476 cpu_detect(c);
1477
1478 get_cpu_vendor(c);
1479
1480 get_cpu_cap(c);
1481
1482 get_cpu_address_sizes(c);
1483
1484 if (c->cpuid_level >= 0x00000001) {
1485 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1486 #ifdef CONFIG_X86_32
1487 # ifdef CONFIG_SMP
1488 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1489 # else
1490 c->apicid = c->initial_apicid;
1491 # endif
1492 #endif
1493 c->phys_proc_id = c->initial_apicid;
1494 }
1495
1496 get_model_name(c); /* Default name */
1497
1498 /*
1499 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1500 * systems that run Linux at CPL > 0 may or may not have the
1501 * issue, but, even if they have the issue, there's absolutely
1502 * nothing we can do about it because we can't use the real IRET
1503 * instruction.
1504 *
1505 * NB: For the time being, only 32-bit kernels support
1506 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1507 * whether to apply espfix using paravirt hooks. If any
1508 * non-paravirt system ever shows up that does *not* have the
1509 * ESPFIX issue, we can change this.
1510 */
1511 #ifdef CONFIG_X86_32
1512 set_cpu_bug(c, X86_BUG_ESPFIX);
1513 #endif
1514 }
1515
1516 /*
1517 * Validate that ACPI/mptables have the same information about the
1518 * effective APIC id and update the package map.
1519 */
validate_apic_and_package_id(struct cpuinfo_x86 * c)1520 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1521 {
1522 #ifdef CONFIG_SMP
1523 unsigned int apicid, cpu = smp_processor_id();
1524
1525 apicid = apic->cpu_present_to_apicid(cpu);
1526
1527 if (apicid != c->apicid) {
1528 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1529 cpu, apicid, c->initial_apicid);
1530 }
1531 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1532 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1533 #else
1534 c->logical_proc_id = 0;
1535 #endif
1536 }
1537
1538 /*
1539 * This does the hard work of actually picking apart the CPU stuff...
1540 */
identify_cpu(struct cpuinfo_x86 * c)1541 static void identify_cpu(struct cpuinfo_x86 *c)
1542 {
1543 int i;
1544
1545 c->loops_per_jiffy = loops_per_jiffy;
1546 c->x86_cache_size = 0;
1547 c->x86_vendor = X86_VENDOR_UNKNOWN;
1548 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1549 c->x86_vendor_id[0] = '\0'; /* Unset */
1550 c->x86_model_id[0] = '\0'; /* Unset */
1551 c->x86_max_cores = 1;
1552 c->x86_coreid_bits = 0;
1553 c->cu_id = 0xff;
1554 #ifdef CONFIG_X86_64
1555 c->x86_clflush_size = 64;
1556 c->x86_phys_bits = 36;
1557 c->x86_virt_bits = 48;
1558 #else
1559 c->cpuid_level = -1; /* CPUID not detected */
1560 c->x86_clflush_size = 32;
1561 c->x86_phys_bits = 32;
1562 c->x86_virt_bits = 32;
1563 #endif
1564 c->x86_cache_alignment = c->x86_clflush_size;
1565 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1566 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1567 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1568 #endif
1569
1570 generic_identify(c);
1571
1572 if (this_cpu->c_identify)
1573 this_cpu->c_identify(c);
1574
1575 /* Clear/Set all flags overridden by options, after probe */
1576 apply_forced_caps(c);
1577
1578 #ifdef CONFIG_X86_64
1579 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1580 #endif
1581
1582 /*
1583 * Vendor-specific initialization. In this section we
1584 * canonicalize the feature flags, meaning if there are
1585 * features a certain CPU supports which CPUID doesn't
1586 * tell us, CPUID claiming incorrect flags, or other bugs,
1587 * we handle them here.
1588 *
1589 * At the end of this section, c->x86_capability better
1590 * indicate the features this CPU genuinely supports!
1591 */
1592 if (this_cpu->c_init)
1593 this_cpu->c_init(c);
1594
1595 /* Disable the PN if appropriate */
1596 squash_the_stupid_serial_number(c);
1597
1598 /* Set up SMEP/SMAP/UMIP */
1599 setup_smep(c);
1600 setup_smap(c);
1601 setup_umip(c);
1602
1603 /* Enable FSGSBASE instructions if available. */
1604 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1605 cr4_set_bits(X86_CR4_FSGSBASE);
1606 elf_hwcap2 |= HWCAP2_FSGSBASE;
1607 }
1608
1609 /*
1610 * The vendor-specific functions might have changed features.
1611 * Now we do "generic changes."
1612 */
1613
1614 /* Filter out anything that depends on CPUID levels we don't have */
1615 filter_cpuid_features(c, true);
1616
1617 /* If the model name is still unset, do table lookup. */
1618 if (!c->x86_model_id[0]) {
1619 const char *p;
1620 p = table_lookup_model(c);
1621 if (p)
1622 strcpy(c->x86_model_id, p);
1623 else
1624 /* Last resort... */
1625 sprintf(c->x86_model_id, "%02x/%02x",
1626 c->x86, c->x86_model);
1627 }
1628
1629 #ifdef CONFIG_X86_64
1630 detect_ht(c);
1631 #endif
1632
1633 x86_init_rdrand(c);
1634 setup_pku(c);
1635
1636 /*
1637 * Clear/Set all flags overridden by options, need do it
1638 * before following smp all cpus cap AND.
1639 */
1640 apply_forced_caps(c);
1641
1642 /*
1643 * On SMP, boot_cpu_data holds the common feature set between
1644 * all CPUs; so make sure that we indicate which features are
1645 * common between the CPUs. The first time this routine gets
1646 * executed, c == &boot_cpu_data.
1647 */
1648 if (c != &boot_cpu_data) {
1649 /* AND the already accumulated flags with these */
1650 for (i = 0; i < NCAPINTS; i++)
1651 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1652
1653 /* OR, i.e. replicate the bug flags */
1654 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1655 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1656 }
1657
1658 /* Init Machine Check Exception if available. */
1659 mcheck_cpu_init(c);
1660
1661 select_idle_routine(c);
1662
1663 #ifdef CONFIG_NUMA
1664 numa_add_cpu(smp_processor_id());
1665 #endif
1666 }
1667
1668 /*
1669 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1670 * on 32-bit kernels:
1671 */
1672 #ifdef CONFIG_X86_32
enable_sep_cpu(void)1673 void enable_sep_cpu(void)
1674 {
1675 struct tss_struct *tss;
1676 int cpu;
1677
1678 if (!boot_cpu_has(X86_FEATURE_SEP))
1679 return;
1680
1681 cpu = get_cpu();
1682 tss = &per_cpu(cpu_tss_rw, cpu);
1683
1684 /*
1685 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1686 * see the big comment in struct x86_hw_tss's definition.
1687 */
1688
1689 tss->x86_tss.ss1 = __KERNEL_CS;
1690 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1691 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1692 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1693
1694 put_cpu();
1695 }
1696 #endif
1697
identify_boot_cpu(void)1698 void __init identify_boot_cpu(void)
1699 {
1700 identify_cpu(&boot_cpu_data);
1701 #ifdef CONFIG_X86_32
1702 sysenter_setup();
1703 enable_sep_cpu();
1704 #endif
1705 cpu_detect_tlb(&boot_cpu_data);
1706 setup_cr_pinning();
1707
1708 tsx_init();
1709 }
1710
identify_secondary_cpu(struct cpuinfo_x86 * c)1711 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1712 {
1713 BUG_ON(c == &boot_cpu_data);
1714 identify_cpu(c);
1715 #ifdef CONFIG_X86_32
1716 enable_sep_cpu();
1717 #endif
1718 mtrr_ap_init();
1719 validate_apic_and_package_id(c);
1720 x86_spec_ctrl_setup_ap();
1721 update_srbds_msr();
1722 }
1723
setup_noclflush(char * arg)1724 static __init int setup_noclflush(char *arg)
1725 {
1726 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1727 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1728 return 1;
1729 }
1730 __setup("noclflush", setup_noclflush);
1731
print_cpu_info(struct cpuinfo_x86 * c)1732 void print_cpu_info(struct cpuinfo_x86 *c)
1733 {
1734 const char *vendor = NULL;
1735
1736 if (c->x86_vendor < X86_VENDOR_NUM) {
1737 vendor = this_cpu->c_vendor;
1738 } else {
1739 if (c->cpuid_level >= 0)
1740 vendor = c->x86_vendor_id;
1741 }
1742
1743 if (vendor && !strstr(c->x86_model_id, vendor))
1744 pr_cont("%s ", vendor);
1745
1746 if (c->x86_model_id[0])
1747 pr_cont("%s", c->x86_model_id);
1748 else
1749 pr_cont("%d86", c->x86);
1750
1751 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1752
1753 if (c->x86_stepping || c->cpuid_level >= 0)
1754 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1755 else
1756 pr_cont(")\n");
1757 }
1758
1759 /*
1760 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
1761 * function prevents it from becoming an environment variable for init.
1762 */
setup_clearcpuid(char * arg)1763 static __init int setup_clearcpuid(char *arg)
1764 {
1765 return 1;
1766 }
1767 __setup("clearcpuid=", setup_clearcpuid);
1768
1769 #ifdef CONFIG_X86_64
1770 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1771 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1772 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1773
1774 /*
1775 * The following percpu variables are hot. Align current_task to
1776 * cacheline size such that they fall in the same cacheline.
1777 */
1778 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1779 &init_task;
1780 EXPORT_PER_CPU_SYMBOL(current_task);
1781
1782 DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1783 DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1784
1785 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1786 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1787
1788 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1789
1790 /* May not be marked __init: used by software suspend */
syscall_init(void)1791 void syscall_init(void)
1792 {
1793 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1794 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1795
1796 #ifdef CONFIG_IA32_EMULATION
1797 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1798 /*
1799 * This only works on Intel CPUs.
1800 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1801 * This does not cause SYSENTER to jump to the wrong location, because
1802 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1803 */
1804 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1805 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1806 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1807 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1808 #else
1809 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1810 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1811 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1812 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1813 #endif
1814
1815 /*
1816 * Flags to clear on syscall; clear as much as possible
1817 * to minimize user space-kernel interference.
1818 */
1819 wrmsrl(MSR_SYSCALL_MASK,
1820 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1821 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1822 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1823 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1824 X86_EFLAGS_AC|X86_EFLAGS_ID);
1825 }
1826
1827 #else /* CONFIG_X86_64 */
1828
1829 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1830 EXPORT_PER_CPU_SYMBOL(current_task);
1831 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1832 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1833
1834 /*
1835 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1836 * the top of the kernel stack. Use an extra percpu variable to track the
1837 * top of the kernel stack directly.
1838 */
1839 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1840 (unsigned long)&init_thread_union + THREAD_SIZE;
1841 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1842
1843 #ifdef CONFIG_STACKPROTECTOR
1844 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1845 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1846 #endif
1847
1848 #endif /* CONFIG_X86_64 */
1849
1850 /*
1851 * Clear all 6 debug registers:
1852 */
clear_all_debug_regs(void)1853 static void clear_all_debug_regs(void)
1854 {
1855 int i;
1856
1857 for (i = 0; i < 8; i++) {
1858 /* Ignore db4, db5 */
1859 if ((i == 4) || (i == 5))
1860 continue;
1861
1862 set_debugreg(0, i);
1863 }
1864 }
1865
1866 #ifdef CONFIG_KGDB
1867 /*
1868 * Restore debug regs if using kgdbwait and you have a kernel debugger
1869 * connection established.
1870 */
dbg_restore_debug_regs(void)1871 static void dbg_restore_debug_regs(void)
1872 {
1873 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1874 arch_kgdb_ops.correct_hw_break();
1875 }
1876 #else /* ! CONFIG_KGDB */
1877 #define dbg_restore_debug_regs()
1878 #endif /* ! CONFIG_KGDB */
1879
wait_for_master_cpu(int cpu)1880 static void wait_for_master_cpu(int cpu)
1881 {
1882 #ifdef CONFIG_SMP
1883 /*
1884 * wait for ACK from master CPU before continuing
1885 * with AP initialization
1886 */
1887 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1888 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1889 cpu_relax();
1890 #endif
1891 }
1892
1893 #ifdef CONFIG_X86_64
setup_getcpu(int cpu)1894 static inline void setup_getcpu(int cpu)
1895 {
1896 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1897 struct desc_struct d = { };
1898
1899 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1900 wrmsr(MSR_TSC_AUX, cpudata, 0);
1901
1902 /* Store CPU and node number in limit. */
1903 d.limit0 = cpudata;
1904 d.limit1 = cpudata >> 16;
1905
1906 d.type = 5; /* RO data, expand down, accessed */
1907 d.dpl = 3; /* Visible to user code */
1908 d.s = 1; /* Not a system segment */
1909 d.p = 1; /* Present */
1910 d.d = 1; /* 32-bit */
1911
1912 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1913 }
1914
ucode_cpu_init(int cpu)1915 static inline void ucode_cpu_init(int cpu)
1916 {
1917 if (cpu)
1918 load_ucode_ap();
1919 }
1920
tss_setup_ist(struct tss_struct * tss)1921 static inline void tss_setup_ist(struct tss_struct *tss)
1922 {
1923 /* Set up the per-CPU TSS IST stacks */
1924 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1925 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1926 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1927 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1928 /* Only mapped when SEV-ES is active */
1929 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1930 }
1931
1932 #else /* CONFIG_X86_64 */
1933
setup_getcpu(int cpu)1934 static inline void setup_getcpu(int cpu) { }
1935
ucode_cpu_init(int cpu)1936 static inline void ucode_cpu_init(int cpu)
1937 {
1938 show_ucode_info_early();
1939 }
1940
tss_setup_ist(struct tss_struct * tss)1941 static inline void tss_setup_ist(struct tss_struct *tss) { }
1942
1943 #endif /* !CONFIG_X86_64 */
1944
tss_setup_io_bitmap(struct tss_struct * tss)1945 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1946 {
1947 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1948
1949 #ifdef CONFIG_X86_IOPL_IOPERM
1950 tss->io_bitmap.prev_max = 0;
1951 tss->io_bitmap.prev_sequence = 0;
1952 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1953 /*
1954 * Invalidate the extra array entry past the end of the all
1955 * permission bitmap as required by the hardware.
1956 */
1957 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1958 #endif
1959 }
1960
1961 /*
1962 * Setup everything needed to handle exceptions from the IDT, including the IST
1963 * exceptions which use paranoid_entry().
1964 */
cpu_init_exception_handling(void)1965 void cpu_init_exception_handling(void)
1966 {
1967 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1968 int cpu = raw_smp_processor_id();
1969
1970 /* paranoid_entry() gets the CPU number from the GDT */
1971 setup_getcpu(cpu);
1972
1973 /* IST vectors need TSS to be set up. */
1974 tss_setup_ist(tss);
1975 tss_setup_io_bitmap(tss);
1976 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1977
1978 load_TR_desc();
1979
1980 /* Finally load the IDT */
1981 load_current_idt();
1982 }
1983
1984 /*
1985 * cpu_init() initializes state that is per-CPU. Some data is already
1986 * initialized (naturally) in the bootstrap process, such as the GDT. We
1987 * reload it nevertheless, this function acts as a 'CPU state barrier',
1988 * nothing should get across.
1989 */
cpu_init(void)1990 void cpu_init(void)
1991 {
1992 struct task_struct *cur = current;
1993 int cpu = raw_smp_processor_id();
1994
1995 wait_for_master_cpu(cpu);
1996
1997 ucode_cpu_init(cpu);
1998
1999 #ifdef CONFIG_NUMA
2000 if (this_cpu_read(numa_node) == 0 &&
2001 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2002 set_numa_node(early_cpu_to_node(cpu));
2003 #endif
2004 pr_debug("Initializing CPU#%d\n", cpu);
2005
2006 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2007 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2008 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2009
2010 /*
2011 * Initialize the per-CPU GDT with the boot GDT,
2012 * and set up the GDT descriptor:
2013 */
2014 switch_to_new_gdt(cpu);
2015
2016 if (IS_ENABLED(CONFIG_X86_64)) {
2017 loadsegment(fs, 0);
2018 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2019 syscall_init();
2020
2021 wrmsrl(MSR_FS_BASE, 0);
2022 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2023 barrier();
2024
2025 x2apic_setup();
2026 }
2027
2028 mmgrab(&init_mm);
2029 cur->active_mm = &init_mm;
2030 BUG_ON(cur->mm);
2031 initialize_tlbstate_and_flush();
2032 enter_lazy_tlb(&init_mm, cur);
2033
2034 /*
2035 * sp0 points to the entry trampoline stack regardless of what task
2036 * is running.
2037 */
2038 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2039
2040 load_mm_ldt(&init_mm);
2041
2042 clear_all_debug_regs();
2043 dbg_restore_debug_regs();
2044
2045 doublefault_init_cpu_tss();
2046
2047 fpu__init_cpu();
2048
2049 if (is_uv_system())
2050 uv_cpu_init();
2051
2052 load_fixmap_gdt(cpu);
2053 }
2054
2055 #ifdef CONFIG_SMP
cpu_init_secondary(void)2056 void cpu_init_secondary(void)
2057 {
2058 /*
2059 * Relies on the BP having set-up the IDT tables, which are loaded
2060 * on this CPU in cpu_init_exception_handling().
2061 */
2062 cpu_init_exception_handling();
2063 cpu_init();
2064 }
2065 #endif
2066
2067 /*
2068 * The microcode loader calls this upon late microcode load to recheck features,
2069 * only when microcode has been updated. Caller holds microcode_mutex and CPU
2070 * hotplug lock.
2071 */
microcode_check(void)2072 void microcode_check(void)
2073 {
2074 struct cpuinfo_x86 info;
2075
2076 perf_check_microcode();
2077
2078 /* Reload CPUID max function as it might've changed. */
2079 info.cpuid_level = cpuid_eax(0);
2080
2081 /*
2082 * Copy all capability leafs to pick up the synthetic ones so that
2083 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2084 * get overwritten in get_cpu_cap().
2085 */
2086 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2087
2088 get_cpu_cap(&info);
2089
2090 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2091 return;
2092
2093 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2094 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2095 }
2096
2097 /*
2098 * Invoked from core CPU hotplug code after hotplug operations
2099 */
arch_smt_update(void)2100 void arch_smt_update(void)
2101 {
2102 /* Handle the speculative execution misfeatures */
2103 cpu_bugs_smt_update();
2104 /* Check whether IPI broadcasting can be enabled */
2105 apic_smt_update();
2106 }
2107