1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #include <linux/if_ether.h>
5 #include <linux/delay.h>
6
7 #include "e1000_mac.h"
8 #include "e1000_phy.h"
9
10 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
11 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
12 u16 *phy_ctrl);
13 static s32 igb_wait_autoneg(struct e1000_hw *hw);
14 static s32 igb_set_master_slave_mode(struct e1000_hw *hw);
15
16 /* Cable length tables */
17 static const u16 e1000_m88_cable_length_table[] = {
18 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
19
20 static const u16 e1000_igp_2_cable_length_table[] = {
21 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
22 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
23 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
24 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
25 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
26 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
27 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
28 104, 109, 114, 118, 121, 124};
29
30 /**
31 * igb_check_reset_block - Check if PHY reset is blocked
32 * @hw: pointer to the HW structure
33 *
34 * Read the PHY management control register and check whether a PHY reset
35 * is blocked. If a reset is not blocked return 0, otherwise
36 * return E1000_BLK_PHY_RESET (12).
37 **/
igb_check_reset_block(struct e1000_hw * hw)38 s32 igb_check_reset_block(struct e1000_hw *hw)
39 {
40 u32 manc;
41
42 manc = rd32(E1000_MANC);
43
44 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
45 }
46
47 /**
48 * igb_get_phy_id - Retrieve the PHY ID and revision
49 * @hw: pointer to the HW structure
50 *
51 * Reads the PHY registers and stores the PHY ID and possibly the PHY
52 * revision in the hardware structure.
53 **/
igb_get_phy_id(struct e1000_hw * hw)54 s32 igb_get_phy_id(struct e1000_hw *hw)
55 {
56 struct e1000_phy_info *phy = &hw->phy;
57 s32 ret_val = 0;
58 u16 phy_id;
59
60 /* ensure PHY page selection to fix misconfigured i210 */
61 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
62 phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0);
63
64 ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
65 if (ret_val)
66 goto out;
67
68 phy->id = (u32)(phy_id << 16);
69 udelay(20);
70 ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
71 if (ret_val)
72 goto out;
73
74 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
75 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
76
77 out:
78 return ret_val;
79 }
80
81 /**
82 * igb_phy_reset_dsp - Reset PHY DSP
83 * @hw: pointer to the HW structure
84 *
85 * Reset the digital signal processor.
86 **/
igb_phy_reset_dsp(struct e1000_hw * hw)87 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
88 {
89 s32 ret_val = 0;
90
91 if (!(hw->phy.ops.write_reg))
92 goto out;
93
94 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
95 if (ret_val)
96 goto out;
97
98 ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
99
100 out:
101 return ret_val;
102 }
103
104 /**
105 * igb_read_phy_reg_mdic - Read MDI control register
106 * @hw: pointer to the HW structure
107 * @offset: register offset to be read
108 * @data: pointer to the read data
109 *
110 * Reads the MDI control register in the PHY at offset and stores the
111 * information read to data.
112 **/
igb_read_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 * data)113 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
114 {
115 struct e1000_phy_info *phy = &hw->phy;
116 u32 i, mdic = 0;
117 s32 ret_val = 0;
118
119 if (offset > MAX_PHY_REG_ADDRESS) {
120 hw_dbg("PHY Address %d is out of range\n", offset);
121 ret_val = -E1000_ERR_PARAM;
122 goto out;
123 }
124
125 /* Set up Op-code, Phy Address, and register offset in the MDI
126 * Control register. The MAC will take care of interfacing with the
127 * PHY to retrieve the desired data.
128 */
129 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
130 (phy->addr << E1000_MDIC_PHY_SHIFT) |
131 (E1000_MDIC_OP_READ));
132
133 wr32(E1000_MDIC, mdic);
134
135 /* Poll the ready bit to see if the MDI read completed
136 * Increasing the time out as testing showed failures with
137 * the lower time out
138 */
139 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
140 udelay(50);
141 mdic = rd32(E1000_MDIC);
142 if (mdic & E1000_MDIC_READY)
143 break;
144 }
145 if (!(mdic & E1000_MDIC_READY)) {
146 hw_dbg("MDI Read did not complete\n");
147 ret_val = -E1000_ERR_PHY;
148 goto out;
149 }
150 if (mdic & E1000_MDIC_ERROR) {
151 hw_dbg("MDI Error\n");
152 ret_val = -E1000_ERR_PHY;
153 goto out;
154 }
155 *data = (u16) mdic;
156
157 out:
158 return ret_val;
159 }
160
161 /**
162 * igb_write_phy_reg_mdic - Write MDI control register
163 * @hw: pointer to the HW structure
164 * @offset: register offset to write to
165 * @data: data to write to register at offset
166 *
167 * Writes data to MDI control register in the PHY at offset.
168 **/
igb_write_phy_reg_mdic(struct e1000_hw * hw,u32 offset,u16 data)169 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
170 {
171 struct e1000_phy_info *phy = &hw->phy;
172 u32 i, mdic = 0;
173 s32 ret_val = 0;
174
175 if (offset > MAX_PHY_REG_ADDRESS) {
176 hw_dbg("PHY Address %d is out of range\n", offset);
177 ret_val = -E1000_ERR_PARAM;
178 goto out;
179 }
180
181 /* Set up Op-code, Phy Address, and register offset in the MDI
182 * Control register. The MAC will take care of interfacing with the
183 * PHY to retrieve the desired data.
184 */
185 mdic = (((u32)data) |
186 (offset << E1000_MDIC_REG_SHIFT) |
187 (phy->addr << E1000_MDIC_PHY_SHIFT) |
188 (E1000_MDIC_OP_WRITE));
189
190 wr32(E1000_MDIC, mdic);
191
192 /* Poll the ready bit to see if the MDI read completed
193 * Increasing the time out as testing showed failures with
194 * the lower time out
195 */
196 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
197 udelay(50);
198 mdic = rd32(E1000_MDIC);
199 if (mdic & E1000_MDIC_READY)
200 break;
201 }
202 if (!(mdic & E1000_MDIC_READY)) {
203 hw_dbg("MDI Write did not complete\n");
204 ret_val = -E1000_ERR_PHY;
205 goto out;
206 }
207 if (mdic & E1000_MDIC_ERROR) {
208 hw_dbg("MDI Error\n");
209 ret_val = -E1000_ERR_PHY;
210 goto out;
211 }
212
213 out:
214 return ret_val;
215 }
216
217 /**
218 * igb_read_phy_reg_i2c - Read PHY register using i2c
219 * @hw: pointer to the HW structure
220 * @offset: register offset to be read
221 * @data: pointer to the read data
222 *
223 * Reads the PHY register at offset using the i2c interface and stores the
224 * retrieved information in data.
225 **/
igb_read_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 * data)226 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
227 {
228 struct e1000_phy_info *phy = &hw->phy;
229 u32 i, i2ccmd = 0;
230
231 /* Set up Op-code, Phy Address, and register address in the I2CCMD
232 * register. The MAC will take care of interfacing with the
233 * PHY to retrieve the desired data.
234 */
235 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
236 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
237 (E1000_I2CCMD_OPCODE_READ));
238
239 wr32(E1000_I2CCMD, i2ccmd);
240
241 /* Poll the ready bit to see if the I2C read completed */
242 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
243 udelay(50);
244 i2ccmd = rd32(E1000_I2CCMD);
245 if (i2ccmd & E1000_I2CCMD_READY)
246 break;
247 }
248 if (!(i2ccmd & E1000_I2CCMD_READY)) {
249 hw_dbg("I2CCMD Read did not complete\n");
250 return -E1000_ERR_PHY;
251 }
252 if (i2ccmd & E1000_I2CCMD_ERROR) {
253 hw_dbg("I2CCMD Error bit set\n");
254 return -E1000_ERR_PHY;
255 }
256
257 /* Need to byte-swap the 16-bit value. */
258 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
259
260 return 0;
261 }
262
263 /**
264 * igb_write_phy_reg_i2c - Write PHY register using i2c
265 * @hw: pointer to the HW structure
266 * @offset: register offset to write to
267 * @data: data to write at register offset
268 *
269 * Writes the data to PHY register at the offset using the i2c interface.
270 **/
igb_write_phy_reg_i2c(struct e1000_hw * hw,u32 offset,u16 data)271 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
272 {
273 struct e1000_phy_info *phy = &hw->phy;
274 u32 i, i2ccmd = 0;
275 u16 phy_data_swapped;
276
277 /* Prevent overwriting SFP I2C EEPROM which is at A0 address.*/
278 if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
279 hw_dbg("PHY I2C Address %d is out of range.\n",
280 hw->phy.addr);
281 return -E1000_ERR_CONFIG;
282 }
283
284 /* Swap the data bytes for the I2C interface */
285 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
286
287 /* Set up Op-code, Phy Address, and register address in the I2CCMD
288 * register. The MAC will take care of interfacing with the
289 * PHY to retrieve the desired data.
290 */
291 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
292 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
293 E1000_I2CCMD_OPCODE_WRITE |
294 phy_data_swapped);
295
296 wr32(E1000_I2CCMD, i2ccmd);
297
298 /* Poll the ready bit to see if the I2C read completed */
299 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
300 udelay(50);
301 i2ccmd = rd32(E1000_I2CCMD);
302 if (i2ccmd & E1000_I2CCMD_READY)
303 break;
304 }
305 if (!(i2ccmd & E1000_I2CCMD_READY)) {
306 hw_dbg("I2CCMD Write did not complete\n");
307 return -E1000_ERR_PHY;
308 }
309 if (i2ccmd & E1000_I2CCMD_ERROR) {
310 hw_dbg("I2CCMD Error bit set\n");
311 return -E1000_ERR_PHY;
312 }
313
314 return 0;
315 }
316
317 /**
318 * igb_read_sfp_data_byte - Reads SFP module data.
319 * @hw: pointer to the HW structure
320 * @offset: byte location offset to be read
321 * @data: read data buffer pointer
322 *
323 * Reads one byte from SFP module data stored
324 * in SFP resided EEPROM memory or SFP diagnostic area.
325 * Function should be called with
326 * E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
327 * E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
328 * access
329 **/
igb_read_sfp_data_byte(struct e1000_hw * hw,u16 offset,u8 * data)330 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
331 {
332 u32 i = 0;
333 u32 i2ccmd = 0;
334 u32 data_local = 0;
335
336 if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
337 hw_dbg("I2CCMD command address exceeds upper limit\n");
338 return -E1000_ERR_PHY;
339 }
340
341 /* Set up Op-code, EEPROM Address,in the I2CCMD
342 * register. The MAC will take care of interfacing with the
343 * EEPROM to retrieve the desired data.
344 */
345 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
346 E1000_I2CCMD_OPCODE_READ);
347
348 wr32(E1000_I2CCMD, i2ccmd);
349
350 /* Poll the ready bit to see if the I2C read completed */
351 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
352 udelay(50);
353 data_local = rd32(E1000_I2CCMD);
354 if (data_local & E1000_I2CCMD_READY)
355 break;
356 }
357 if (!(data_local & E1000_I2CCMD_READY)) {
358 hw_dbg("I2CCMD Read did not complete\n");
359 return -E1000_ERR_PHY;
360 }
361 if (data_local & E1000_I2CCMD_ERROR) {
362 hw_dbg("I2CCMD Error bit set\n");
363 return -E1000_ERR_PHY;
364 }
365 *data = (u8) data_local & 0xFF;
366
367 return 0;
368 }
369
370 /**
371 * igb_read_phy_reg_igp - Read igp PHY register
372 * @hw: pointer to the HW structure
373 * @offset: register offset to be read
374 * @data: pointer to the read data
375 *
376 * Acquires semaphore, if necessary, then reads the PHY register at offset
377 * and storing the retrieved information in data. Release any acquired
378 * semaphores before exiting.
379 **/
igb_read_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 * data)380 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
381 {
382 s32 ret_val = 0;
383
384 if (!(hw->phy.ops.acquire))
385 goto out;
386
387 ret_val = hw->phy.ops.acquire(hw);
388 if (ret_val)
389 goto out;
390
391 if (offset > MAX_PHY_MULTI_PAGE_REG) {
392 ret_val = igb_write_phy_reg_mdic(hw,
393 IGP01E1000_PHY_PAGE_SELECT,
394 (u16)offset);
395 if (ret_val) {
396 hw->phy.ops.release(hw);
397 goto out;
398 }
399 }
400
401 ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
402 data);
403
404 hw->phy.ops.release(hw);
405
406 out:
407 return ret_val;
408 }
409
410 /**
411 * igb_write_phy_reg_igp - Write igp PHY register
412 * @hw: pointer to the HW structure
413 * @offset: register offset to write to
414 * @data: data to write at register offset
415 *
416 * Acquires semaphore, if necessary, then writes the data to PHY register
417 * at the offset. Release any acquired semaphores before exiting.
418 **/
igb_write_phy_reg_igp(struct e1000_hw * hw,u32 offset,u16 data)419 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
420 {
421 s32 ret_val = 0;
422
423 if (!(hw->phy.ops.acquire))
424 goto out;
425
426 ret_val = hw->phy.ops.acquire(hw);
427 if (ret_val)
428 goto out;
429
430 if (offset > MAX_PHY_MULTI_PAGE_REG) {
431 ret_val = igb_write_phy_reg_mdic(hw,
432 IGP01E1000_PHY_PAGE_SELECT,
433 (u16)offset);
434 if (ret_val) {
435 hw->phy.ops.release(hw);
436 goto out;
437 }
438 }
439
440 ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
441 data);
442
443 hw->phy.ops.release(hw);
444
445 out:
446 return ret_val;
447 }
448
449 /**
450 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
451 * @hw: pointer to the HW structure
452 *
453 * Sets up Carrier-sense on Transmit and downshift values.
454 **/
igb_copper_link_setup_82580(struct e1000_hw * hw)455 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
456 {
457 struct e1000_phy_info *phy = &hw->phy;
458 s32 ret_val;
459 u16 phy_data;
460
461 if (phy->reset_disable) {
462 ret_val = 0;
463 goto out;
464 }
465
466 if (phy->type == e1000_phy_82580) {
467 ret_val = hw->phy.ops.reset(hw);
468 if (ret_val) {
469 hw_dbg("Error resetting the PHY.\n");
470 goto out;
471 }
472 }
473
474 /* Enable CRS on TX. This must be set for half-duplex operation. */
475 ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
476 if (ret_val)
477 goto out;
478
479 phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
480
481 /* Enable downshift */
482 phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
483
484 ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
485 if (ret_val)
486 goto out;
487
488 /* Set MDI/MDIX mode */
489 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
490 if (ret_val)
491 goto out;
492 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
493 /* Options:
494 * 0 - Auto (default)
495 * 1 - MDI mode
496 * 2 - MDI-X mode
497 */
498 switch (hw->phy.mdix) {
499 case 1:
500 break;
501 case 2:
502 phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
503 break;
504 case 0:
505 default:
506 phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
507 break;
508 }
509 ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
510
511 out:
512 return ret_val;
513 }
514
515 /**
516 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
517 * @hw: pointer to the HW structure
518 *
519 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
520 * and downshift values are set also.
521 **/
igb_copper_link_setup_m88(struct e1000_hw * hw)522 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
523 {
524 struct e1000_phy_info *phy = &hw->phy;
525 s32 ret_val;
526 u16 phy_data;
527
528 if (phy->reset_disable) {
529 ret_val = 0;
530 goto out;
531 }
532
533 /* Enable CRS on TX. This must be set for half-duplex operation. */
534 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
535 if (ret_val)
536 goto out;
537
538 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
539
540 /* Options:
541 * MDI/MDI-X = 0 (default)
542 * 0 - Auto for all speeds
543 * 1 - MDI mode
544 * 2 - MDI-X mode
545 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
546 */
547 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
548
549 switch (phy->mdix) {
550 case 1:
551 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
552 break;
553 case 2:
554 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
555 break;
556 case 3:
557 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
558 break;
559 case 0:
560 default:
561 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
562 break;
563 }
564
565 /* Options:
566 * disable_polarity_correction = 0 (default)
567 * Automatic Correction for Reversed Cable Polarity
568 * 0 - Disabled
569 * 1 - Enabled
570 */
571 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
572 if (phy->disable_polarity_correction == 1)
573 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
574
575 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
576 if (ret_val)
577 goto out;
578
579 if (phy->revision < E1000_REVISION_4) {
580 /* Force TX_CLK in the Extended PHY Specific Control Register
581 * to 25MHz clock.
582 */
583 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
584 &phy_data);
585 if (ret_val)
586 goto out;
587
588 phy_data |= M88E1000_EPSCR_TX_CLK_25;
589
590 if ((phy->revision == E1000_REVISION_2) &&
591 (phy->id == M88E1111_I_PHY_ID)) {
592 /* 82573L PHY - set the downshift counter to 5x. */
593 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
594 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
595 } else {
596 /* Configure Master and Slave downshift values */
597 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
598 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
599 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
600 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
601 }
602 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
603 phy_data);
604 if (ret_val)
605 goto out;
606 }
607
608 /* Commit the changes. */
609 ret_val = igb_phy_sw_reset(hw);
610 if (ret_val) {
611 hw_dbg("Error committing the PHY changes\n");
612 goto out;
613 }
614
615 out:
616 return ret_val;
617 }
618
619 /**
620 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
621 * @hw: pointer to the HW structure
622 *
623 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
624 * Also enables and sets the downshift parameters.
625 **/
igb_copper_link_setup_m88_gen2(struct e1000_hw * hw)626 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
627 {
628 struct e1000_phy_info *phy = &hw->phy;
629 s32 ret_val;
630 u16 phy_data;
631
632 if (phy->reset_disable)
633 return 0;
634
635 /* Enable CRS on Tx. This must be set for half-duplex operation. */
636 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
637 if (ret_val)
638 return ret_val;
639
640 /* Options:
641 * MDI/MDI-X = 0 (default)
642 * 0 - Auto for all speeds
643 * 1 - MDI mode
644 * 2 - MDI-X mode
645 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
646 */
647 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
648
649 switch (phy->mdix) {
650 case 1:
651 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
652 break;
653 case 2:
654 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
655 break;
656 case 3:
657 /* M88E1112 does not support this mode) */
658 if (phy->id != M88E1112_E_PHY_ID) {
659 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
660 break;
661 }
662 fallthrough;
663 case 0:
664 default:
665 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
666 break;
667 }
668
669 /* Options:
670 * disable_polarity_correction = 0 (default)
671 * Automatic Correction for Reversed Cable Polarity
672 * 0 - Disabled
673 * 1 - Enabled
674 */
675 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
676 if (phy->disable_polarity_correction == 1)
677 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
678
679 /* Enable downshift and setting it to X6 */
680 if (phy->id == M88E1543_E_PHY_ID) {
681 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
682 ret_val =
683 phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
684 if (ret_val)
685 return ret_val;
686
687 ret_val = igb_phy_sw_reset(hw);
688 if (ret_val) {
689 hw_dbg("Error committing the PHY changes\n");
690 return ret_val;
691 }
692 }
693
694 phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
695 phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
696 phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
697
698 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
699 if (ret_val)
700 return ret_val;
701
702 /* Commit the changes. */
703 ret_val = igb_phy_sw_reset(hw);
704 if (ret_val) {
705 hw_dbg("Error committing the PHY changes\n");
706 return ret_val;
707 }
708 ret_val = igb_set_master_slave_mode(hw);
709 if (ret_val)
710 return ret_val;
711
712 return 0;
713 }
714
715 /**
716 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
717 * @hw: pointer to the HW structure
718 *
719 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
720 * igp PHY's.
721 **/
igb_copper_link_setup_igp(struct e1000_hw * hw)722 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
723 {
724 struct e1000_phy_info *phy = &hw->phy;
725 s32 ret_val;
726 u16 data;
727
728 if (phy->reset_disable) {
729 ret_val = 0;
730 goto out;
731 }
732
733 ret_val = phy->ops.reset(hw);
734 if (ret_val) {
735 hw_dbg("Error resetting the PHY.\n");
736 goto out;
737 }
738
739 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
740 * timeout issues when LFS is enabled.
741 */
742 msleep(100);
743
744 /* The NVM settings will configure LPLU in D3 for
745 * non-IGP1 PHYs.
746 */
747 if (phy->type == e1000_phy_igp) {
748 /* disable lplu d3 during driver init */
749 if (phy->ops.set_d3_lplu_state)
750 ret_val = phy->ops.set_d3_lplu_state(hw, false);
751 if (ret_val) {
752 hw_dbg("Error Disabling LPLU D3\n");
753 goto out;
754 }
755 }
756
757 /* disable lplu d0 during driver init */
758 ret_val = phy->ops.set_d0_lplu_state(hw, false);
759 if (ret_val) {
760 hw_dbg("Error Disabling LPLU D0\n");
761 goto out;
762 }
763 /* Configure mdi-mdix settings */
764 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
765 if (ret_val)
766 goto out;
767
768 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
769
770 switch (phy->mdix) {
771 case 1:
772 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
773 break;
774 case 2:
775 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
776 break;
777 case 0:
778 default:
779 data |= IGP01E1000_PSCR_AUTO_MDIX;
780 break;
781 }
782 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
783 if (ret_val)
784 goto out;
785
786 /* set auto-master slave resolution settings */
787 if (hw->mac.autoneg) {
788 /* when autonegotiation advertisement is only 1000Mbps then we
789 * should disable SmartSpeed and enable Auto MasterSlave
790 * resolution as hardware default.
791 */
792 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
793 /* Disable SmartSpeed */
794 ret_val = phy->ops.read_reg(hw,
795 IGP01E1000_PHY_PORT_CONFIG,
796 &data);
797 if (ret_val)
798 goto out;
799
800 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
801 ret_val = phy->ops.write_reg(hw,
802 IGP01E1000_PHY_PORT_CONFIG,
803 data);
804 if (ret_val)
805 goto out;
806
807 /* Set auto Master/Slave resolution process */
808 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
809 if (ret_val)
810 goto out;
811
812 data &= ~CR_1000T_MS_ENABLE;
813 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
814 if (ret_val)
815 goto out;
816 }
817
818 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
819 if (ret_val)
820 goto out;
821
822 /* load defaults for future use */
823 phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
824 ((data & CR_1000T_MS_VALUE) ?
825 e1000_ms_force_master :
826 e1000_ms_force_slave) :
827 e1000_ms_auto;
828
829 switch (phy->ms_type) {
830 case e1000_ms_force_master:
831 data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
832 break;
833 case e1000_ms_force_slave:
834 data |= CR_1000T_MS_ENABLE;
835 data &= ~(CR_1000T_MS_VALUE);
836 break;
837 case e1000_ms_auto:
838 data &= ~CR_1000T_MS_ENABLE;
839 break;
840 default:
841 break;
842 }
843 ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
844 if (ret_val)
845 goto out;
846 }
847
848 out:
849 return ret_val;
850 }
851
852 /**
853 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
854 * @hw: pointer to the HW structure
855 *
856 * Performs initial bounds checking on autoneg advertisement parameter, then
857 * configure to advertise the full capability. Setup the PHY to autoneg
858 * and restart the negotiation process between the link partner. If
859 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
860 **/
igb_copper_link_autoneg(struct e1000_hw * hw)861 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
862 {
863 struct e1000_phy_info *phy = &hw->phy;
864 s32 ret_val;
865 u16 phy_ctrl;
866
867 /* Perform some bounds checking on the autoneg advertisement
868 * parameter.
869 */
870 phy->autoneg_advertised &= phy->autoneg_mask;
871
872 /* If autoneg_advertised is zero, we assume it was not defaulted
873 * by the calling code so we set to advertise full capability.
874 */
875 if (phy->autoneg_advertised == 0)
876 phy->autoneg_advertised = phy->autoneg_mask;
877
878 hw_dbg("Reconfiguring auto-neg advertisement params\n");
879 ret_val = igb_phy_setup_autoneg(hw);
880 if (ret_val) {
881 hw_dbg("Error Setting up Auto-Negotiation\n");
882 goto out;
883 }
884 hw_dbg("Restarting Auto-Neg\n");
885
886 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
887 * the Auto Neg Restart bit in the PHY control register.
888 */
889 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
890 if (ret_val)
891 goto out;
892
893 phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
894 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
895 if (ret_val)
896 goto out;
897
898 /* Does the user want to wait for Auto-Neg to complete here, or
899 * check at a later time (for example, callback routine).
900 */
901 if (phy->autoneg_wait_to_complete) {
902 ret_val = igb_wait_autoneg(hw);
903 if (ret_val) {
904 hw_dbg("Error while waiting for autoneg to complete\n");
905 goto out;
906 }
907 }
908
909 hw->mac.get_link_status = true;
910
911 out:
912 return ret_val;
913 }
914
915 /**
916 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
917 * @hw: pointer to the HW structure
918 *
919 * Reads the MII auto-neg advertisement register and/or the 1000T control
920 * register and if the PHY is already setup for auto-negotiation, then
921 * return successful. Otherwise, setup advertisement and flow control to
922 * the appropriate values for the wanted auto-negotiation.
923 **/
igb_phy_setup_autoneg(struct e1000_hw * hw)924 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
925 {
926 struct e1000_phy_info *phy = &hw->phy;
927 s32 ret_val;
928 u16 mii_autoneg_adv_reg;
929 u16 mii_1000t_ctrl_reg = 0;
930
931 phy->autoneg_advertised &= phy->autoneg_mask;
932
933 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
934 ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
935 if (ret_val)
936 goto out;
937
938 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
939 /* Read the MII 1000Base-T Control Register (Address 9). */
940 ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
941 &mii_1000t_ctrl_reg);
942 if (ret_val)
943 goto out;
944 }
945
946 /* Need to parse both autoneg_advertised and fc and set up
947 * the appropriate PHY registers. First we will parse for
948 * autoneg_advertised software override. Since we can advertise
949 * a plethora of combinations, we need to check each bit
950 * individually.
951 */
952
953 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
954 * Advertisement Register (Address 4) and the 1000 mb speed bits in
955 * the 1000Base-T Control Register (Address 9).
956 */
957 mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
958 NWAY_AR_100TX_HD_CAPS |
959 NWAY_AR_10T_FD_CAPS |
960 NWAY_AR_10T_HD_CAPS);
961 mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
962
963 hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
964
965 /* Do we want to advertise 10 Mb Half Duplex? */
966 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
967 hw_dbg("Advertise 10mb Half duplex\n");
968 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
969 }
970
971 /* Do we want to advertise 10 Mb Full Duplex? */
972 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
973 hw_dbg("Advertise 10mb Full duplex\n");
974 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
975 }
976
977 /* Do we want to advertise 100 Mb Half Duplex? */
978 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
979 hw_dbg("Advertise 100mb Half duplex\n");
980 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
981 }
982
983 /* Do we want to advertise 100 Mb Full Duplex? */
984 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
985 hw_dbg("Advertise 100mb Full duplex\n");
986 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
987 }
988
989 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
990 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
991 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
992
993 /* Do we want to advertise 1000 Mb Full Duplex? */
994 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
995 hw_dbg("Advertise 1000mb Full duplex\n");
996 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
997 }
998
999 /* Check for a software override of the flow control settings, and
1000 * setup the PHY advertisement registers accordingly. If
1001 * auto-negotiation is enabled, then software will have to set the
1002 * "PAUSE" bits to the correct value in the Auto-Negotiation
1003 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1004 * negotiation.
1005 *
1006 * The possible values of the "fc" parameter are:
1007 * 0: Flow control is completely disabled
1008 * 1: Rx flow control is enabled (we can receive pause frames
1009 * but not send pause frames).
1010 * 2: Tx flow control is enabled (we can send pause frames
1011 * but we do not support receiving pause frames).
1012 * 3: Both Rx and TX flow control (symmetric) are enabled.
1013 * other: No software override. The flow control configuration
1014 * in the EEPROM is used.
1015 */
1016 switch (hw->fc.current_mode) {
1017 case e1000_fc_none:
1018 /* Flow control (RX & TX) is completely disabled by a
1019 * software over-ride.
1020 */
1021 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1022 break;
1023 case e1000_fc_rx_pause:
1024 /* RX Flow control is enabled, and TX Flow control is
1025 * disabled, by a software over-ride.
1026 *
1027 * Since there really isn't a way to advertise that we are
1028 * capable of RX Pause ONLY, we will advertise that we
1029 * support both symmetric and asymmetric RX PAUSE. Later
1030 * (in e1000_config_fc_after_link_up) we will disable the
1031 * hw's ability to send PAUSE frames.
1032 */
1033 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1034 break;
1035 case e1000_fc_tx_pause:
1036 /* TX Flow control is enabled, and RX Flow control is
1037 * disabled, by a software over-ride.
1038 */
1039 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1040 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1041 break;
1042 case e1000_fc_full:
1043 /* Flow control (both RX and TX) is enabled by a software
1044 * over-ride.
1045 */
1046 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1047 break;
1048 default:
1049 hw_dbg("Flow control param set incorrectly\n");
1050 ret_val = -E1000_ERR_CONFIG;
1051 goto out;
1052 }
1053
1054 ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1055 if (ret_val)
1056 goto out;
1057
1058 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1059
1060 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1061 ret_val = phy->ops.write_reg(hw,
1062 PHY_1000T_CTRL,
1063 mii_1000t_ctrl_reg);
1064 if (ret_val)
1065 goto out;
1066 }
1067
1068 out:
1069 return ret_val;
1070 }
1071
1072 /**
1073 * igb_setup_copper_link - Configure copper link settings
1074 * @hw: pointer to the HW structure
1075 *
1076 * Calls the appropriate function to configure the link for auto-neg or forced
1077 * speed and duplex. Then we check for link, once link is established calls
1078 * to configure collision distance and flow control are called. If link is
1079 * not established, we return -E1000_ERR_PHY (-2).
1080 **/
igb_setup_copper_link(struct e1000_hw * hw)1081 s32 igb_setup_copper_link(struct e1000_hw *hw)
1082 {
1083 s32 ret_val;
1084 bool link;
1085
1086 if (hw->mac.autoneg) {
1087 /* Setup autoneg and flow control advertisement and perform
1088 * autonegotiation.
1089 */
1090 ret_val = igb_copper_link_autoneg(hw);
1091 if (ret_val)
1092 goto out;
1093 } else {
1094 /* PHY will be set to 10H, 10F, 100H or 100F
1095 * depending on user settings.
1096 */
1097 hw_dbg("Forcing Speed and Duplex\n");
1098 ret_val = hw->phy.ops.force_speed_duplex(hw);
1099 if (ret_val) {
1100 hw_dbg("Error Forcing Speed and Duplex\n");
1101 goto out;
1102 }
1103 }
1104
1105 /* Check link status. Wait up to 100 microseconds for link to become
1106 * valid.
1107 */
1108 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1109 if (ret_val)
1110 goto out;
1111
1112 if (link) {
1113 hw_dbg("Valid link established!!!\n");
1114 igb_config_collision_dist(hw);
1115 ret_val = igb_config_fc_after_link_up(hw);
1116 } else {
1117 hw_dbg("Unable to establish link!!!\n");
1118 }
1119
1120 out:
1121 return ret_val;
1122 }
1123
1124 /**
1125 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1126 * @hw: pointer to the HW structure
1127 *
1128 * Calls the PHY setup function to force speed and duplex. Clears the
1129 * auto-crossover to force MDI manually. Waits for link and returns
1130 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1131 **/
igb_phy_force_speed_duplex_igp(struct e1000_hw * hw)1132 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1133 {
1134 struct e1000_phy_info *phy = &hw->phy;
1135 s32 ret_val;
1136 u16 phy_data;
1137 bool link;
1138
1139 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1140 if (ret_val)
1141 goto out;
1142
1143 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1144
1145 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1146 if (ret_val)
1147 goto out;
1148
1149 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1150 * forced whenever speed and duplex are forced.
1151 */
1152 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1153 if (ret_val)
1154 goto out;
1155
1156 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1157 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1158
1159 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1160 if (ret_val)
1161 goto out;
1162
1163 hw_dbg("IGP PSCR: %X\n", phy_data);
1164
1165 udelay(1);
1166
1167 if (phy->autoneg_wait_to_complete) {
1168 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1169
1170 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1171 if (ret_val)
1172 goto out;
1173
1174 if (!link)
1175 hw_dbg("Link taking longer than expected.\n");
1176
1177 /* Try once more */
1178 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1179 if (ret_val)
1180 goto out;
1181 }
1182
1183 out:
1184 return ret_val;
1185 }
1186
1187 /**
1188 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1189 * @hw: pointer to the HW structure
1190 *
1191 * Calls the PHY setup function to force speed and duplex. Clears the
1192 * auto-crossover to force MDI manually. Resets the PHY to commit the
1193 * changes. If time expires while waiting for link up, we reset the DSP.
1194 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
1195 * successful completion, else return corresponding error code.
1196 **/
igb_phy_force_speed_duplex_m88(struct e1000_hw * hw)1197 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1198 {
1199 struct e1000_phy_info *phy = &hw->phy;
1200 s32 ret_val;
1201 u16 phy_data;
1202 bool link;
1203
1204 /* I210 and I211 devices support Auto-Crossover in forced operation. */
1205 if (phy->type != e1000_phy_i210) {
1206 /* Clear Auto-Crossover to force MDI manually. M88E1000
1207 * requires MDI forced whenever speed and duplex are forced.
1208 */
1209 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1210 &phy_data);
1211 if (ret_val)
1212 goto out;
1213
1214 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1215 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1216 phy_data);
1217 if (ret_val)
1218 goto out;
1219
1220 hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1221 }
1222
1223 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1224 if (ret_val)
1225 goto out;
1226
1227 igb_phy_force_speed_duplex_setup(hw, &phy_data);
1228
1229 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1230 if (ret_val)
1231 goto out;
1232
1233 /* Reset the phy to commit changes. */
1234 ret_val = igb_phy_sw_reset(hw);
1235 if (ret_val)
1236 goto out;
1237
1238 if (phy->autoneg_wait_to_complete) {
1239 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1240
1241 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1242 if (ret_val)
1243 goto out;
1244
1245 if (!link) {
1246 bool reset_dsp = true;
1247
1248 switch (hw->phy.id) {
1249 case I347AT4_E_PHY_ID:
1250 case M88E1112_E_PHY_ID:
1251 case M88E1543_E_PHY_ID:
1252 case M88E1512_E_PHY_ID:
1253 case I210_I_PHY_ID:
1254 reset_dsp = false;
1255 break;
1256 default:
1257 if (hw->phy.type != e1000_phy_m88)
1258 reset_dsp = false;
1259 break;
1260 }
1261 if (!reset_dsp) {
1262 hw_dbg("Link taking longer than expected.\n");
1263 } else {
1264 /* We didn't get link.
1265 * Reset the DSP and cross our fingers.
1266 */
1267 ret_val = phy->ops.write_reg(hw,
1268 M88E1000_PHY_PAGE_SELECT,
1269 0x001d);
1270 if (ret_val)
1271 goto out;
1272 ret_val = igb_phy_reset_dsp(hw);
1273 if (ret_val)
1274 goto out;
1275 }
1276 }
1277
1278 /* Try once more */
1279 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1280 100000, &link);
1281 if (ret_val)
1282 goto out;
1283 }
1284
1285 if (hw->phy.type != e1000_phy_m88 ||
1286 hw->phy.id == I347AT4_E_PHY_ID ||
1287 hw->phy.id == M88E1112_E_PHY_ID ||
1288 hw->phy.id == M88E1543_E_PHY_ID ||
1289 hw->phy.id == M88E1512_E_PHY_ID ||
1290 hw->phy.id == I210_I_PHY_ID)
1291 goto out;
1292
1293 ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1294 if (ret_val)
1295 goto out;
1296
1297 /* Resetting the phy means we need to re-force TX_CLK in the
1298 * Extended PHY Specific Control Register to 25MHz clock from
1299 * the reset value of 2.5MHz.
1300 */
1301 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1302 ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1303 if (ret_val)
1304 goto out;
1305
1306 /* In addition, we must re-enable CRS on Tx for both half and full
1307 * duplex.
1308 */
1309 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1310 if (ret_val)
1311 goto out;
1312
1313 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1314 ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1315
1316 out:
1317 return ret_val;
1318 }
1319
1320 /**
1321 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1322 * @hw: pointer to the HW structure
1323 * @phy_ctrl: pointer to current value of PHY_CONTROL
1324 *
1325 * Forces speed and duplex on the PHY by doing the following: disable flow
1326 * control, force speed/duplex on the MAC, disable auto speed detection,
1327 * disable auto-negotiation, configure duplex, configure speed, configure
1328 * the collision distance, write configuration to CTRL register. The
1329 * caller must write to the PHY_CONTROL register for these settings to
1330 * take affect.
1331 **/
igb_phy_force_speed_duplex_setup(struct e1000_hw * hw,u16 * phy_ctrl)1332 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1333 u16 *phy_ctrl)
1334 {
1335 struct e1000_mac_info *mac = &hw->mac;
1336 u32 ctrl;
1337
1338 /* Turn off flow control when forcing speed/duplex */
1339 hw->fc.current_mode = e1000_fc_none;
1340
1341 /* Force speed/duplex on the mac */
1342 ctrl = rd32(E1000_CTRL);
1343 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1344 ctrl &= ~E1000_CTRL_SPD_SEL;
1345
1346 /* Disable Auto Speed Detection */
1347 ctrl &= ~E1000_CTRL_ASDE;
1348
1349 /* Disable autoneg on the phy */
1350 *phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1351
1352 /* Forcing Full or Half Duplex? */
1353 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1354 ctrl &= ~E1000_CTRL_FD;
1355 *phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1356 hw_dbg("Half Duplex\n");
1357 } else {
1358 ctrl |= E1000_CTRL_FD;
1359 *phy_ctrl |= MII_CR_FULL_DUPLEX;
1360 hw_dbg("Full Duplex\n");
1361 }
1362
1363 /* Forcing 10mb or 100mb? */
1364 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1365 ctrl |= E1000_CTRL_SPD_100;
1366 *phy_ctrl |= MII_CR_SPEED_100;
1367 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1368 hw_dbg("Forcing 100mb\n");
1369 } else {
1370 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1371 *phy_ctrl |= MII_CR_SPEED_10;
1372 *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1373 hw_dbg("Forcing 10mb\n");
1374 }
1375
1376 igb_config_collision_dist(hw);
1377
1378 wr32(E1000_CTRL, ctrl);
1379 }
1380
1381 /**
1382 * igb_set_d3_lplu_state - Sets low power link up state for D3
1383 * @hw: pointer to the HW structure
1384 * @active: boolean used to enable/disable lplu
1385 *
1386 * Success returns 0, Failure returns 1
1387 *
1388 * The low power link up (lplu) state is set to the power management level D3
1389 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1390 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1391 * is used during Dx states where the power conservation is most important.
1392 * During driver activity, SmartSpeed should be enabled so performance is
1393 * maintained.
1394 **/
igb_set_d3_lplu_state(struct e1000_hw * hw,bool active)1395 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1396 {
1397 struct e1000_phy_info *phy = &hw->phy;
1398 s32 ret_val = 0;
1399 u16 data;
1400
1401 if (!(hw->phy.ops.read_reg))
1402 goto out;
1403
1404 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1405 if (ret_val)
1406 goto out;
1407
1408 if (!active) {
1409 data &= ~IGP02E1000_PM_D3_LPLU;
1410 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1411 data);
1412 if (ret_val)
1413 goto out;
1414 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1415 * during Dx states where the power conservation is most
1416 * important. During driver activity we should enable
1417 * SmartSpeed, so performance is maintained.
1418 */
1419 if (phy->smart_speed == e1000_smart_speed_on) {
1420 ret_val = phy->ops.read_reg(hw,
1421 IGP01E1000_PHY_PORT_CONFIG,
1422 &data);
1423 if (ret_val)
1424 goto out;
1425
1426 data |= IGP01E1000_PSCFR_SMART_SPEED;
1427 ret_val = phy->ops.write_reg(hw,
1428 IGP01E1000_PHY_PORT_CONFIG,
1429 data);
1430 if (ret_val)
1431 goto out;
1432 } else if (phy->smart_speed == e1000_smart_speed_off) {
1433 ret_val = phy->ops.read_reg(hw,
1434 IGP01E1000_PHY_PORT_CONFIG,
1435 &data);
1436 if (ret_val)
1437 goto out;
1438
1439 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1440 ret_val = phy->ops.write_reg(hw,
1441 IGP01E1000_PHY_PORT_CONFIG,
1442 data);
1443 if (ret_val)
1444 goto out;
1445 }
1446 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1447 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1448 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1449 data |= IGP02E1000_PM_D3_LPLU;
1450 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1451 data);
1452 if (ret_val)
1453 goto out;
1454
1455 /* When LPLU is enabled, we should disable SmartSpeed */
1456 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1457 &data);
1458 if (ret_val)
1459 goto out;
1460
1461 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1462 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1463 data);
1464 }
1465
1466 out:
1467 return ret_val;
1468 }
1469
1470 /**
1471 * igb_check_downshift - Checks whether a downshift in speed occurred
1472 * @hw: pointer to the HW structure
1473 *
1474 * Success returns 0, Failure returns 1
1475 *
1476 * A downshift is detected by querying the PHY link health.
1477 **/
igb_check_downshift(struct e1000_hw * hw)1478 s32 igb_check_downshift(struct e1000_hw *hw)
1479 {
1480 struct e1000_phy_info *phy = &hw->phy;
1481 s32 ret_val;
1482 u16 phy_data, offset, mask;
1483
1484 switch (phy->type) {
1485 case e1000_phy_i210:
1486 case e1000_phy_m88:
1487 case e1000_phy_gg82563:
1488 offset = M88E1000_PHY_SPEC_STATUS;
1489 mask = M88E1000_PSSR_DOWNSHIFT;
1490 break;
1491 case e1000_phy_igp_2:
1492 case e1000_phy_igp:
1493 case e1000_phy_igp_3:
1494 offset = IGP01E1000_PHY_LINK_HEALTH;
1495 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1496 break;
1497 default:
1498 /* speed downshift not supported */
1499 phy->speed_downgraded = false;
1500 ret_val = 0;
1501 goto out;
1502 }
1503
1504 ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1505
1506 if (!ret_val)
1507 phy->speed_downgraded = (phy_data & mask) ? true : false;
1508
1509 out:
1510 return ret_val;
1511 }
1512
1513 /**
1514 * igb_check_polarity_m88 - Checks the polarity.
1515 * @hw: pointer to the HW structure
1516 *
1517 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1518 *
1519 * Polarity is determined based on the PHY specific status register.
1520 **/
igb_check_polarity_m88(struct e1000_hw * hw)1521 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1522 {
1523 struct e1000_phy_info *phy = &hw->phy;
1524 s32 ret_val;
1525 u16 data;
1526
1527 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1528
1529 if (!ret_val)
1530 phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1531 ? e1000_rev_polarity_reversed
1532 : e1000_rev_polarity_normal;
1533
1534 return ret_val;
1535 }
1536
1537 /**
1538 * igb_check_polarity_igp - Checks the polarity.
1539 * @hw: pointer to the HW structure
1540 *
1541 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1542 *
1543 * Polarity is determined based on the PHY port status register, and the
1544 * current speed (since there is no polarity at 100Mbps).
1545 **/
igb_check_polarity_igp(struct e1000_hw * hw)1546 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1547 {
1548 struct e1000_phy_info *phy = &hw->phy;
1549 s32 ret_val;
1550 u16 data, offset, mask;
1551
1552 /* Polarity is determined based on the speed of
1553 * our connection.
1554 */
1555 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1556 if (ret_val)
1557 goto out;
1558
1559 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1560 IGP01E1000_PSSR_SPEED_1000MBPS) {
1561 offset = IGP01E1000_PHY_PCS_INIT_REG;
1562 mask = IGP01E1000_PHY_POLARITY_MASK;
1563 } else {
1564 /* This really only applies to 10Mbps since
1565 * there is no polarity for 100Mbps (always 0).
1566 */
1567 offset = IGP01E1000_PHY_PORT_STATUS;
1568 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1569 }
1570
1571 ret_val = phy->ops.read_reg(hw, offset, &data);
1572
1573 if (!ret_val)
1574 phy->cable_polarity = (data & mask)
1575 ? e1000_rev_polarity_reversed
1576 : e1000_rev_polarity_normal;
1577
1578 out:
1579 return ret_val;
1580 }
1581
1582 /**
1583 * igb_wait_autoneg - Wait for auto-neg completion
1584 * @hw: pointer to the HW structure
1585 *
1586 * Waits for auto-negotiation to complete or for the auto-negotiation time
1587 * limit to expire, which ever happens first.
1588 **/
igb_wait_autoneg(struct e1000_hw * hw)1589 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1590 {
1591 s32 ret_val = 0;
1592 u16 i, phy_status;
1593
1594 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1595 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1596 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1597 if (ret_val)
1598 break;
1599 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1600 if (ret_val)
1601 break;
1602 if (phy_status & MII_SR_AUTONEG_COMPLETE)
1603 break;
1604 msleep(100);
1605 }
1606
1607 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1608 * has completed.
1609 */
1610 return ret_val;
1611 }
1612
1613 /**
1614 * igb_phy_has_link - Polls PHY for link
1615 * @hw: pointer to the HW structure
1616 * @iterations: number of times to poll for link
1617 * @usec_interval: delay between polling attempts
1618 * @success: pointer to whether polling was successful or not
1619 *
1620 * Polls the PHY status register for link, 'iterations' number of times.
1621 **/
igb_phy_has_link(struct e1000_hw * hw,u32 iterations,u32 usec_interval,bool * success)1622 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1623 u32 usec_interval, bool *success)
1624 {
1625 s32 ret_val = 0;
1626 u16 i, phy_status;
1627
1628 for (i = 0; i < iterations; i++) {
1629 /* Some PHYs require the PHY_STATUS register to be read
1630 * twice due to the link bit being sticky. No harm doing
1631 * it across the board.
1632 */
1633 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1634 if (ret_val && usec_interval > 0) {
1635 /* If the first read fails, another entity may have
1636 * ownership of the resources, wait and try again to
1637 * see if they have relinquished the resources yet.
1638 */
1639 if (usec_interval >= 1000)
1640 mdelay(usec_interval/1000);
1641 else
1642 udelay(usec_interval);
1643 }
1644 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1645 if (ret_val)
1646 break;
1647 if (phy_status & MII_SR_LINK_STATUS)
1648 break;
1649 if (usec_interval >= 1000)
1650 mdelay(usec_interval/1000);
1651 else
1652 udelay(usec_interval);
1653 }
1654
1655 *success = (i < iterations) ? true : false;
1656
1657 return ret_val;
1658 }
1659
1660 /**
1661 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
1662 * @hw: pointer to the HW structure
1663 *
1664 * Reads the PHY specific status register to retrieve the cable length
1665 * information. The cable length is determined by averaging the minimum and
1666 * maximum values to get the "average" cable length. The m88 PHY has four
1667 * possible cable length values, which are:
1668 * Register Value Cable Length
1669 * 0 < 50 meters
1670 * 1 50 - 80 meters
1671 * 2 80 - 110 meters
1672 * 3 110 - 140 meters
1673 * 4 > 140 meters
1674 **/
igb_get_cable_length_m88(struct e1000_hw * hw)1675 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1676 {
1677 struct e1000_phy_info *phy = &hw->phy;
1678 s32 ret_val;
1679 u16 phy_data, index;
1680
1681 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1682 if (ret_val)
1683 goto out;
1684
1685 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1686 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1687 if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1688 ret_val = -E1000_ERR_PHY;
1689 goto out;
1690 }
1691
1692 phy->min_cable_length = e1000_m88_cable_length_table[index];
1693 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1694
1695 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1696
1697 out:
1698 return ret_val;
1699 }
1700
igb_get_cable_length_m88_gen2(struct e1000_hw * hw)1701 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1702 {
1703 struct e1000_phy_info *phy = &hw->phy;
1704 s32 ret_val;
1705 u16 phy_data, phy_data2, index, default_page, is_cm;
1706 int len_tot = 0;
1707 u16 len_min;
1708 u16 len_max;
1709
1710 switch (hw->phy.id) {
1711 case M88E1543_E_PHY_ID:
1712 case M88E1512_E_PHY_ID:
1713 case I347AT4_E_PHY_ID:
1714 case I210_I_PHY_ID:
1715 /* Remember the original page select and set it to 7 */
1716 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1717 &default_page);
1718 if (ret_val)
1719 goto out;
1720
1721 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1722 if (ret_val)
1723 goto out;
1724
1725 /* Check if the unit of cable length is meters or cm */
1726 ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1727 if (ret_val)
1728 goto out;
1729
1730 is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1731
1732 /* Get cable length from Pair 0 length Regs */
1733 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL0, &phy_data);
1734 if (ret_val)
1735 goto out;
1736
1737 phy->pair_length[0] = phy_data / (is_cm ? 100 : 1);
1738 len_tot = phy->pair_length[0];
1739 len_min = phy->pair_length[0];
1740 len_max = phy->pair_length[0];
1741
1742 /* Get cable length from Pair 1 length Regs */
1743 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL1, &phy_data);
1744 if (ret_val)
1745 goto out;
1746
1747 phy->pair_length[1] = phy_data / (is_cm ? 100 : 1);
1748 len_tot += phy->pair_length[1];
1749 len_min = min(len_min, phy->pair_length[1]);
1750 len_max = max(len_max, phy->pair_length[1]);
1751
1752 /* Get cable length from Pair 2 length Regs */
1753 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL2, &phy_data);
1754 if (ret_val)
1755 goto out;
1756
1757 phy->pair_length[2] = phy_data / (is_cm ? 100 : 1);
1758 len_tot += phy->pair_length[2];
1759 len_min = min(len_min, phy->pair_length[2]);
1760 len_max = max(len_max, phy->pair_length[2]);
1761
1762 /* Get cable length from Pair 3 length Regs */
1763 ret_val = phy->ops.read_reg(hw, I347AT4_PCDL3, &phy_data);
1764 if (ret_val)
1765 goto out;
1766
1767 phy->pair_length[3] = phy_data / (is_cm ? 100 : 1);
1768 len_tot += phy->pair_length[3];
1769 len_min = min(len_min, phy->pair_length[3]);
1770 len_max = max(len_max, phy->pair_length[3]);
1771
1772 /* Populate the phy structure with cable length in meters */
1773 phy->min_cable_length = len_min;
1774 phy->max_cable_length = len_max;
1775 phy->cable_length = len_tot / 4;
1776
1777 /* Reset the page selec to its original value */
1778 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1779 default_page);
1780 if (ret_val)
1781 goto out;
1782 break;
1783 case M88E1112_E_PHY_ID:
1784 /* Remember the original page select and set it to 5 */
1785 ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1786 &default_page);
1787 if (ret_val)
1788 goto out;
1789
1790 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1791 if (ret_val)
1792 goto out;
1793
1794 ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1795 &phy_data);
1796 if (ret_val)
1797 goto out;
1798
1799 index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1800 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1801 if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1802 ret_val = -E1000_ERR_PHY;
1803 goto out;
1804 }
1805
1806 phy->min_cable_length = e1000_m88_cable_length_table[index];
1807 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1808
1809 phy->cable_length = (phy->min_cable_length +
1810 phy->max_cable_length) / 2;
1811
1812 /* Reset the page select to its original value */
1813 ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1814 default_page);
1815 if (ret_val)
1816 goto out;
1817
1818 break;
1819 default:
1820 ret_val = -E1000_ERR_PHY;
1821 goto out;
1822 }
1823
1824 out:
1825 return ret_val;
1826 }
1827
1828 /**
1829 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1830 * @hw: pointer to the HW structure
1831 *
1832 * The automatic gain control (agc) normalizes the amplitude of the
1833 * received signal, adjusting for the attenuation produced by the
1834 * cable. By reading the AGC registers, which represent the
1835 * combination of coarse and fine gain value, the value can be put
1836 * into a lookup table to obtain the approximate cable length
1837 * for each channel.
1838 **/
igb_get_cable_length_igp_2(struct e1000_hw * hw)1839 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1840 {
1841 struct e1000_phy_info *phy = &hw->phy;
1842 s32 ret_val = 0;
1843 u16 phy_data, i, agc_value = 0;
1844 u16 cur_agc_index, max_agc_index = 0;
1845 u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1;
1846 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1847 IGP02E1000_PHY_AGC_A,
1848 IGP02E1000_PHY_AGC_B,
1849 IGP02E1000_PHY_AGC_C,
1850 IGP02E1000_PHY_AGC_D
1851 };
1852
1853 /* Read the AGC registers for all channels */
1854 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1855 ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1856 if (ret_val)
1857 goto out;
1858
1859 /* Getting bits 15:9, which represent the combination of
1860 * coarse and fine gain values. The result is a number
1861 * that can be put into the lookup table to obtain the
1862 * approximate cable length.
1863 */
1864 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1865 IGP02E1000_AGC_LENGTH_MASK;
1866
1867 /* Array index bound check. */
1868 if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) ||
1869 (cur_agc_index == 0)) {
1870 ret_val = -E1000_ERR_PHY;
1871 goto out;
1872 }
1873
1874 /* Remove min & max AGC values from calculation. */
1875 if (e1000_igp_2_cable_length_table[min_agc_index] >
1876 e1000_igp_2_cable_length_table[cur_agc_index])
1877 min_agc_index = cur_agc_index;
1878 if (e1000_igp_2_cable_length_table[max_agc_index] <
1879 e1000_igp_2_cable_length_table[cur_agc_index])
1880 max_agc_index = cur_agc_index;
1881
1882 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1883 }
1884
1885 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1886 e1000_igp_2_cable_length_table[max_agc_index]);
1887 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1888
1889 /* Calculate cable length with the error range of +/- 10 meters. */
1890 phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1891 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1892 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1893
1894 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1895
1896 out:
1897 return ret_val;
1898 }
1899
1900 /**
1901 * igb_get_phy_info_m88 - Retrieve PHY information
1902 * @hw: pointer to the HW structure
1903 *
1904 * Valid for only copper links. Read the PHY status register (sticky read)
1905 * to verify that link is up. Read the PHY special control register to
1906 * determine the polarity and 10base-T extended distance. Read the PHY
1907 * special status register to determine MDI/MDIx and current speed. If
1908 * speed is 1000, then determine cable length, local and remote receiver.
1909 **/
igb_get_phy_info_m88(struct e1000_hw * hw)1910 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1911 {
1912 struct e1000_phy_info *phy = &hw->phy;
1913 s32 ret_val;
1914 u16 phy_data;
1915 bool link;
1916
1917 if (phy->media_type != e1000_media_type_copper) {
1918 hw_dbg("Phy info is only valid for copper media\n");
1919 ret_val = -E1000_ERR_CONFIG;
1920 goto out;
1921 }
1922
1923 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1924 if (ret_val)
1925 goto out;
1926
1927 if (!link) {
1928 hw_dbg("Phy info is only valid if link is up\n");
1929 ret_val = -E1000_ERR_CONFIG;
1930 goto out;
1931 }
1932
1933 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1934 if (ret_val)
1935 goto out;
1936
1937 phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1938 ? true : false;
1939
1940 ret_val = igb_check_polarity_m88(hw);
1941 if (ret_val)
1942 goto out;
1943
1944 ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1945 if (ret_val)
1946 goto out;
1947
1948 phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1949
1950 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1951 ret_val = phy->ops.get_cable_length(hw);
1952 if (ret_val)
1953 goto out;
1954
1955 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1956 if (ret_val)
1957 goto out;
1958
1959 phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1960 ? e1000_1000t_rx_status_ok
1961 : e1000_1000t_rx_status_not_ok;
1962
1963 phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1964 ? e1000_1000t_rx_status_ok
1965 : e1000_1000t_rx_status_not_ok;
1966 } else {
1967 /* Set values to "undefined" */
1968 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1969 phy->local_rx = e1000_1000t_rx_status_undefined;
1970 phy->remote_rx = e1000_1000t_rx_status_undefined;
1971 }
1972
1973 out:
1974 return ret_val;
1975 }
1976
1977 /**
1978 * igb_get_phy_info_igp - Retrieve igp PHY information
1979 * @hw: pointer to the HW structure
1980 *
1981 * Read PHY status to determine if link is up. If link is up, then
1982 * set/determine 10base-T extended distance and polarity correction. Read
1983 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1984 * determine on the cable length, local and remote receiver.
1985 **/
igb_get_phy_info_igp(struct e1000_hw * hw)1986 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1987 {
1988 struct e1000_phy_info *phy = &hw->phy;
1989 s32 ret_val;
1990 u16 data;
1991 bool link;
1992
1993 ret_val = igb_phy_has_link(hw, 1, 0, &link);
1994 if (ret_val)
1995 goto out;
1996
1997 if (!link) {
1998 hw_dbg("Phy info is only valid if link is up\n");
1999 ret_val = -E1000_ERR_CONFIG;
2000 goto out;
2001 }
2002
2003 phy->polarity_correction = true;
2004
2005 ret_val = igb_check_polarity_igp(hw);
2006 if (ret_val)
2007 goto out;
2008
2009 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2010 if (ret_val)
2011 goto out;
2012
2013 phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2014
2015 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2016 IGP01E1000_PSSR_SPEED_1000MBPS) {
2017 ret_val = phy->ops.get_cable_length(hw);
2018 if (ret_val)
2019 goto out;
2020
2021 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2022 if (ret_val)
2023 goto out;
2024
2025 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2026 ? e1000_1000t_rx_status_ok
2027 : e1000_1000t_rx_status_not_ok;
2028
2029 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2030 ? e1000_1000t_rx_status_ok
2031 : e1000_1000t_rx_status_not_ok;
2032 } else {
2033 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2034 phy->local_rx = e1000_1000t_rx_status_undefined;
2035 phy->remote_rx = e1000_1000t_rx_status_undefined;
2036 }
2037
2038 out:
2039 return ret_val;
2040 }
2041
2042 /**
2043 * igb_phy_sw_reset - PHY software reset
2044 * @hw: pointer to the HW structure
2045 *
2046 * Does a software reset of the PHY by reading the PHY control register and
2047 * setting/write the control register reset bit to the PHY.
2048 **/
igb_phy_sw_reset(struct e1000_hw * hw)2049 s32 igb_phy_sw_reset(struct e1000_hw *hw)
2050 {
2051 s32 ret_val = 0;
2052 u16 phy_ctrl;
2053
2054 if (!(hw->phy.ops.read_reg))
2055 goto out;
2056
2057 ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2058 if (ret_val)
2059 goto out;
2060
2061 phy_ctrl |= MII_CR_RESET;
2062 ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2063 if (ret_val)
2064 goto out;
2065
2066 udelay(1);
2067
2068 out:
2069 return ret_val;
2070 }
2071
2072 /**
2073 * igb_phy_hw_reset - PHY hardware reset
2074 * @hw: pointer to the HW structure
2075 *
2076 * Verify the reset block is not blocking us from resetting. Acquire
2077 * semaphore (if necessary) and read/set/write the device control reset
2078 * bit in the PHY. Wait the appropriate delay time for the device to
2079 * reset and release the semaphore (if necessary).
2080 **/
igb_phy_hw_reset(struct e1000_hw * hw)2081 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2082 {
2083 struct e1000_phy_info *phy = &hw->phy;
2084 s32 ret_val;
2085 u32 ctrl;
2086
2087 ret_val = igb_check_reset_block(hw);
2088 if (ret_val) {
2089 ret_val = 0;
2090 goto out;
2091 }
2092
2093 ret_val = phy->ops.acquire(hw);
2094 if (ret_val)
2095 goto out;
2096
2097 ctrl = rd32(E1000_CTRL);
2098 wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2099 wrfl();
2100
2101 udelay(phy->reset_delay_us);
2102
2103 wr32(E1000_CTRL, ctrl);
2104 wrfl();
2105
2106 udelay(150);
2107
2108 phy->ops.release(hw);
2109
2110 ret_val = phy->ops.get_cfg_done(hw);
2111
2112 out:
2113 return ret_val;
2114 }
2115
2116 /**
2117 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
2118 * @hw: pointer to the HW structure
2119 *
2120 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2121 **/
igb_phy_init_script_igp3(struct e1000_hw * hw)2122 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2123 {
2124 hw_dbg("Running IGP 3 PHY init script\n");
2125
2126 /* PHY init IGP 3 */
2127 /* Enable rise/fall, 10-mode work in class-A */
2128 hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2129 /* Remove all caps from Replica path filter */
2130 hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2131 /* Bias trimming for ADC, AFE and Driver (Default) */
2132 hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2133 /* Increase Hybrid poly bias */
2134 hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2135 /* Add 4% to TX amplitude in Giga mode */
2136 hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2137 /* Disable trimming (TTT) */
2138 hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2139 /* Poly DC correction to 94.6% + 2% for all channels */
2140 hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2141 /* ABS DC correction to 95.9% */
2142 hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2143 /* BG temp curve trim */
2144 hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2145 /* Increasing ADC OPAMP stage 1 currents to max */
2146 hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2147 /* Force 1000 ( required for enabling PHY regs configuration) */
2148 hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2149 /* Set upd_freq to 6 */
2150 hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2151 /* Disable NPDFE */
2152 hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2153 /* Disable adaptive fixed FFE (Default) */
2154 hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2155 /* Enable FFE hysteresis */
2156 hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2157 /* Fixed FFE for short cable lengths */
2158 hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2159 /* Fixed FFE for medium cable lengths */
2160 hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2161 /* Fixed FFE for long cable lengths */
2162 hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2163 /* Enable Adaptive Clip Threshold */
2164 hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2165 /* AHT reset limit to 1 */
2166 hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2167 /* Set AHT master delay to 127 msec */
2168 hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2169 /* Set scan bits for AHT */
2170 hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2171 /* Set AHT Preset bits */
2172 hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2173 /* Change integ_factor of channel A to 3 */
2174 hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2175 /* Change prop_factor of channels BCD to 8 */
2176 hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2177 /* Change cg_icount + enable integbp for channels BCD */
2178 hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2179 /* Change cg_icount + enable integbp + change prop_factor_master
2180 * to 8 for channel A
2181 */
2182 hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2183 /* Disable AHT in Slave mode on channel A */
2184 hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2185 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2186 * Enable SPD+B2B
2187 */
2188 hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2189 /* Enable restart AN on an1000_dis change */
2190 hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2191 /* Enable wh_fifo read clock in 10/100 modes */
2192 hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2193 /* Restart AN, Speed selection is 1000 */
2194 hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2195
2196 return 0;
2197 }
2198
2199 /**
2200 * igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
2201 * @hw: pointer to the HW structure
2202 *
2203 * Initialize Marvel 1512 to work correctly with Avoton.
2204 **/
igb_initialize_M88E1512_phy(struct e1000_hw * hw)2205 s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw)
2206 {
2207 struct e1000_phy_info *phy = &hw->phy;
2208 s32 ret_val = 0;
2209
2210 /* Switch to PHY page 0xFF. */
2211 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2212 if (ret_val)
2213 goto out;
2214
2215 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2216 if (ret_val)
2217 goto out;
2218
2219 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2220 if (ret_val)
2221 goto out;
2222
2223 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2224 if (ret_val)
2225 goto out;
2226
2227 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2228 if (ret_val)
2229 goto out;
2230
2231 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2232 if (ret_val)
2233 goto out;
2234
2235 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2236 if (ret_val)
2237 goto out;
2238
2239 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2240 if (ret_val)
2241 goto out;
2242
2243 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2244 if (ret_val)
2245 goto out;
2246
2247 /* Switch to PHY page 0xFB. */
2248 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2249 if (ret_val)
2250 goto out;
2251
2252 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2253 if (ret_val)
2254 goto out;
2255
2256 /* Switch to PHY page 0x12. */
2257 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2258 if (ret_val)
2259 goto out;
2260
2261 /* Change mode to SGMII-to-Copper */
2262 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2263 if (ret_val)
2264 goto out;
2265
2266 /* Return the PHY to page 0. */
2267 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2268 if (ret_val)
2269 goto out;
2270
2271 ret_val = igb_phy_sw_reset(hw);
2272 if (ret_val) {
2273 hw_dbg("Error committing the PHY changes\n");
2274 return ret_val;
2275 }
2276
2277 /* msec_delay(1000); */
2278 usleep_range(1000, 2000);
2279 out:
2280 return ret_val;
2281 }
2282
2283 /**
2284 * igb_initialize_M88E1543_phy - Initialize M88E1512 PHY
2285 * @hw: pointer to the HW structure
2286 *
2287 * Initialize Marvell 1543 to work correctly with Avoton.
2288 **/
igb_initialize_M88E1543_phy(struct e1000_hw * hw)2289 s32 igb_initialize_M88E1543_phy(struct e1000_hw *hw)
2290 {
2291 struct e1000_phy_info *phy = &hw->phy;
2292 s32 ret_val = 0;
2293
2294 /* Switch to PHY page 0xFF. */
2295 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2296 if (ret_val)
2297 goto out;
2298
2299 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2300 if (ret_val)
2301 goto out;
2302
2303 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2304 if (ret_val)
2305 goto out;
2306
2307 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2308 if (ret_val)
2309 goto out;
2310
2311 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2312 if (ret_val)
2313 goto out;
2314
2315 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2316 if (ret_val)
2317 goto out;
2318
2319 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2320 if (ret_val)
2321 goto out;
2322
2323 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C);
2324 if (ret_val)
2325 goto out;
2326
2327 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2328 if (ret_val)
2329 goto out;
2330
2331 /* Switch to PHY page 0xFB. */
2332 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2333 if (ret_val)
2334 goto out;
2335
2336 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x0C0D);
2337 if (ret_val)
2338 goto out;
2339
2340 /* Switch to PHY page 0x12. */
2341 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2342 if (ret_val)
2343 goto out;
2344
2345 /* Change mode to SGMII-to-Copper */
2346 ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2347 if (ret_val)
2348 goto out;
2349
2350 /* Switch to PHY page 1. */
2351 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1);
2352 if (ret_val)
2353 goto out;
2354
2355 /* Change mode to 1000BASE-X/SGMII and autoneg enable */
2356 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140);
2357 if (ret_val)
2358 goto out;
2359
2360 /* Return the PHY to page 0. */
2361 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2362 if (ret_val)
2363 goto out;
2364
2365 ret_val = igb_phy_sw_reset(hw);
2366 if (ret_val) {
2367 hw_dbg("Error committing the PHY changes\n");
2368 return ret_val;
2369 }
2370
2371 /* msec_delay(1000); */
2372 usleep_range(1000, 2000);
2373 out:
2374 return ret_val;
2375 }
2376
2377 /**
2378 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2379 * @hw: pointer to the HW structure
2380 *
2381 * In the case of a PHY power down to save power, or to turn off link during a
2382 * driver unload, restore the link to previous settings.
2383 **/
igb_power_up_phy_copper(struct e1000_hw * hw)2384 void igb_power_up_phy_copper(struct e1000_hw *hw)
2385 {
2386 u16 mii_reg = 0;
2387
2388 /* The PHY will retain its settings across a power down/up cycle */
2389 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2390 mii_reg &= ~MII_CR_POWER_DOWN;
2391 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2392 }
2393
2394 /**
2395 * igb_power_down_phy_copper - Power down copper PHY
2396 * @hw: pointer to the HW structure
2397 *
2398 * Power down PHY to save power when interface is down and wake on lan
2399 * is not enabled.
2400 **/
igb_power_down_phy_copper(struct e1000_hw * hw)2401 void igb_power_down_phy_copper(struct e1000_hw *hw)
2402 {
2403 u16 mii_reg = 0;
2404
2405 /* The PHY will retain its settings across a power down/up cycle */
2406 hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2407 mii_reg |= MII_CR_POWER_DOWN;
2408 hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2409 usleep_range(1000, 2000);
2410 }
2411
2412 /**
2413 * igb_check_polarity_82580 - Checks the polarity.
2414 * @hw: pointer to the HW structure
2415 *
2416 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2417 *
2418 * Polarity is determined based on the PHY specific status register.
2419 **/
igb_check_polarity_82580(struct e1000_hw * hw)2420 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2421 {
2422 struct e1000_phy_info *phy = &hw->phy;
2423 s32 ret_val;
2424 u16 data;
2425
2426
2427 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2428
2429 if (!ret_val)
2430 phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2431 ? e1000_rev_polarity_reversed
2432 : e1000_rev_polarity_normal;
2433
2434 return ret_val;
2435 }
2436
2437 /**
2438 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2439 * @hw: pointer to the HW structure
2440 *
2441 * Calls the PHY setup function to force speed and duplex. Clears the
2442 * auto-crossover to force MDI manually. Waits for link and returns
2443 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2444 **/
igb_phy_force_speed_duplex_82580(struct e1000_hw * hw)2445 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2446 {
2447 struct e1000_phy_info *phy = &hw->phy;
2448 s32 ret_val;
2449 u16 phy_data;
2450 bool link;
2451
2452 ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2453 if (ret_val)
2454 goto out;
2455
2456 igb_phy_force_speed_duplex_setup(hw, &phy_data);
2457
2458 ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2459 if (ret_val)
2460 goto out;
2461
2462 /* Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2463 * forced whenever speed and duplex are forced.
2464 */
2465 ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2466 if (ret_val)
2467 goto out;
2468
2469 phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2470
2471 ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2472 if (ret_val)
2473 goto out;
2474
2475 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2476
2477 udelay(1);
2478
2479 if (phy->autoneg_wait_to_complete) {
2480 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2481
2482 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2483 if (ret_val)
2484 goto out;
2485
2486 if (!link)
2487 hw_dbg("Link taking longer than expected.\n");
2488
2489 /* Try once more */
2490 ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2491 if (ret_val)
2492 goto out;
2493 }
2494
2495 out:
2496 return ret_val;
2497 }
2498
2499 /**
2500 * igb_get_phy_info_82580 - Retrieve I82580 PHY information
2501 * @hw: pointer to the HW structure
2502 *
2503 * Read PHY status to determine if link is up. If link is up, then
2504 * set/determine 10base-T extended distance and polarity correction. Read
2505 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2506 * determine on the cable length, local and remote receiver.
2507 **/
igb_get_phy_info_82580(struct e1000_hw * hw)2508 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2509 {
2510 struct e1000_phy_info *phy = &hw->phy;
2511 s32 ret_val;
2512 u16 data;
2513 bool link;
2514
2515 ret_val = igb_phy_has_link(hw, 1, 0, &link);
2516 if (ret_val)
2517 goto out;
2518
2519 if (!link) {
2520 hw_dbg("Phy info is only valid if link is up\n");
2521 ret_val = -E1000_ERR_CONFIG;
2522 goto out;
2523 }
2524
2525 phy->polarity_correction = true;
2526
2527 ret_val = igb_check_polarity_82580(hw);
2528 if (ret_val)
2529 goto out;
2530
2531 ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2532 if (ret_val)
2533 goto out;
2534
2535 phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2536
2537 if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2538 I82580_PHY_STATUS2_SPEED_1000MBPS) {
2539 ret_val = hw->phy.ops.get_cable_length(hw);
2540 if (ret_val)
2541 goto out;
2542
2543 ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2544 if (ret_val)
2545 goto out;
2546
2547 phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2548 ? e1000_1000t_rx_status_ok
2549 : e1000_1000t_rx_status_not_ok;
2550
2551 phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2552 ? e1000_1000t_rx_status_ok
2553 : e1000_1000t_rx_status_not_ok;
2554 } else {
2555 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2556 phy->local_rx = e1000_1000t_rx_status_undefined;
2557 phy->remote_rx = e1000_1000t_rx_status_undefined;
2558 }
2559
2560 out:
2561 return ret_val;
2562 }
2563
2564 /**
2565 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2566 * @hw: pointer to the HW structure
2567 *
2568 * Reads the diagnostic status register and verifies result is valid before
2569 * placing it in the phy_cable_length field.
2570 **/
igb_get_cable_length_82580(struct e1000_hw * hw)2571 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2572 {
2573 struct e1000_phy_info *phy = &hw->phy;
2574 s32 ret_val;
2575 u16 phy_data, length;
2576
2577 ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2578 if (ret_val)
2579 goto out;
2580
2581 length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2582 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2583
2584 if (length == E1000_CABLE_LENGTH_UNDEFINED)
2585 ret_val = -E1000_ERR_PHY;
2586
2587 phy->cable_length = length;
2588
2589 out:
2590 return ret_val;
2591 }
2592
2593 /**
2594 * igb_set_master_slave_mode - Setup PHY for Master/slave mode
2595 * @hw: pointer to the HW structure
2596 *
2597 * Sets up Master/slave mode
2598 **/
igb_set_master_slave_mode(struct e1000_hw * hw)2599 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2600 {
2601 s32 ret_val;
2602 u16 phy_data;
2603
2604 /* Resolve Master/Slave mode */
2605 ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2606 if (ret_val)
2607 return ret_val;
2608
2609 /* load defaults for future use */
2610 hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2611 ((phy_data & CR_1000T_MS_VALUE) ?
2612 e1000_ms_force_master :
2613 e1000_ms_force_slave) : e1000_ms_auto;
2614
2615 switch (hw->phy.ms_type) {
2616 case e1000_ms_force_master:
2617 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2618 break;
2619 case e1000_ms_force_slave:
2620 phy_data |= CR_1000T_MS_ENABLE;
2621 phy_data &= ~(CR_1000T_MS_VALUE);
2622 break;
2623 case e1000_ms_auto:
2624 phy_data &= ~CR_1000T_MS_ENABLE;
2625 fallthrough;
2626 default:
2627 break;
2628 }
2629
2630 return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2631 }
2632