1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright 2008 Semihalf
4 *
5 * (C) Copyright 2000-2006
6 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
7 */
8
9 #ifndef USE_HOSTCC
10 #include <common.h>
11 #include <bootstage.h>
12 #include <cpu_func.h>
13 #include <env.h>
14 #include <lmb.h>
15 #include <log.h>
16 #include <malloc.h>
17 #include <asm/cache.h>
18 #include <u-boot/crc.h>
19 #include <watchdog.h>
20
21 #ifdef CONFIG_SHOW_BOOT_PROGRESS
22 #include <status_led.h>
23 #endif
24
25 #include <rtc.h>
26
27 #include <gzip.h>
28 #include <image.h>
29 #include <lz4.h>
30 #include <mapmem.h>
31
32 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT
33 #include <linux/libfdt.h>
34 #include <fdt_support.h>
35 #include <fpga.h>
36 #include <xilinx.h>
37 #endif
38
39 #include <asm/global_data.h>
40 #include <u-boot/md5.h>
41 #include <u-boot/sha1.h>
42 #include <linux/errno.h>
43 #include <asm/io.h>
44
45 #include <bzlib.h>
46 #include <linux/lzo.h>
47 #include <lzma/LzmaTypes.h>
48 #include <lzma/LzmaDec.h>
49 #include <lzma/LzmaTools.h>
50 #include <linux/zstd.h>
51
52 #ifdef CONFIG_CMD_BDI
53 extern int do_bdinfo(struct cmd_tbl *cmdtp, int flag, int argc,
54 char *const argv[]);
55 #endif
56
57 DECLARE_GLOBAL_DATA_PTR;
58
59 #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
60 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
61 int verify);
62 #endif
63 #else
64 #include "mkimage.h"
65 #include <u-boot/md5.h>
66 #include <time.h>
67 #include <image.h>
68
69 #ifndef __maybe_unused
70 # define __maybe_unused /* unimplemented */
71 #endif
72 #endif /* !USE_HOSTCC*/
73
74 #include <u-boot/crc.h>
75 #include <imximage.h>
76
77 #ifndef CONFIG_SYS_BARGSIZE
78 #define CONFIG_SYS_BARGSIZE 512
79 #endif
80
81 static const table_entry_t uimage_arch[] = {
82 { IH_ARCH_INVALID, "invalid", "Invalid ARCH", },
83 { IH_ARCH_ALPHA, "alpha", "Alpha", },
84 { IH_ARCH_ARM, "arm", "ARM", },
85 { IH_ARCH_I386, "x86", "Intel x86", },
86 { IH_ARCH_IA64, "ia64", "IA64", },
87 { IH_ARCH_M68K, "m68k", "M68K", },
88 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", },
89 { IH_ARCH_MIPS, "mips", "MIPS", },
90 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", },
91 { IH_ARCH_NIOS2, "nios2", "NIOS II", },
92 { IH_ARCH_PPC, "powerpc", "PowerPC", },
93 { IH_ARCH_PPC, "ppc", "PowerPC", },
94 { IH_ARCH_S390, "s390", "IBM S390", },
95 { IH_ARCH_SH, "sh", "SuperH", },
96 { IH_ARCH_SPARC, "sparc", "SPARC", },
97 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", },
98 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", },
99 { IH_ARCH_AVR32, "avr32", "AVR32", },
100 { IH_ARCH_NDS32, "nds32", "NDS32", },
101 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",},
102 { IH_ARCH_SANDBOX, "sandbox", "Sandbox", },
103 { IH_ARCH_ARM64, "arm64", "AArch64", },
104 { IH_ARCH_ARC, "arc", "ARC", },
105 { IH_ARCH_X86_64, "x86_64", "AMD x86_64", },
106 { IH_ARCH_XTENSA, "xtensa", "Xtensa", },
107 { IH_ARCH_RISCV, "riscv", "RISC-V", },
108 { -1, "", "", },
109 };
110
111 static const table_entry_t uimage_os[] = {
112 { IH_OS_INVALID, "invalid", "Invalid OS", },
113 { IH_OS_ARM_TRUSTED_FIRMWARE, "arm-trusted-firmware", "ARM Trusted Firmware" },
114 { IH_OS_LINUX, "linux", "Linux", },
115 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC)
116 { IH_OS_LYNXOS, "lynxos", "LynxOS", },
117 #endif
118 { IH_OS_NETBSD, "netbsd", "NetBSD", },
119 { IH_OS_OSE, "ose", "Enea OSE", },
120 { IH_OS_PLAN9, "plan9", "Plan 9", },
121 { IH_OS_RTEMS, "rtems", "RTEMS", },
122 { IH_OS_TEE, "tee", "Trusted Execution Environment" },
123 { IH_OS_U_BOOT, "u-boot", "U-Boot", },
124 { IH_OS_VXWORKS, "vxworks", "VxWorks", },
125 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC)
126 { IH_OS_QNX, "qnx", "QNX", },
127 #endif
128 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC)
129 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", },
130 #endif
131 #ifdef USE_HOSTCC
132 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", },
133 { IH_OS_DELL, "dell", "Dell", },
134 { IH_OS_ESIX, "esix", "Esix", },
135 { IH_OS_FREEBSD, "freebsd", "FreeBSD", },
136 { IH_OS_IRIX, "irix", "Irix", },
137 { IH_OS_NCR, "ncr", "NCR", },
138 { IH_OS_OPENBSD, "openbsd", "OpenBSD", },
139 { IH_OS_PSOS, "psos", "pSOS", },
140 { IH_OS_SCO, "sco", "SCO", },
141 { IH_OS_SOLARIS, "solaris", "Solaris", },
142 { IH_OS_SVR4, "svr4", "SVR4", },
143 #endif
144 #if defined(CONFIG_BOOTM_OPENRTOS) || defined(USE_HOSTCC)
145 { IH_OS_OPENRTOS, "openrtos", "OpenRTOS", },
146 #endif
147 { IH_OS_OPENSBI, "opensbi", "RISC-V OpenSBI", },
148 { IH_OS_EFI, "efi", "EFI Firmware" },
149
150 { -1, "", "", },
151 };
152
153 static const table_entry_t uimage_type[] = {
154 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",},
155 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", },
156 { IH_TYPE_FIRMWARE, "firmware", "Firmware", },
157 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", },
158 { IH_TYPE_GPIMAGE, "gpimage", "TI Keystone SPL Image",},
159 { IH_TYPE_KERNEL, "kernel", "Kernel Image", },
160 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", },
161 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",},
162 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",},
163 { IH_TYPE_IMX8IMAGE, "imx8image", "NXP i.MX8 Boot Image",},
164 { IH_TYPE_IMX8MIMAGE, "imx8mimage", "NXP i.MX8M Boot Image",},
165 { IH_TYPE_INVALID, "invalid", "Invalid Image", },
166 { IH_TYPE_MULTI, "multi", "Multi-File Image", },
167 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",},
168 { IH_TYPE_PBLIMAGE, "pblimage", "Freescale PBL Boot Image",},
169 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", },
170 { IH_TYPE_SCRIPT, "script", "Script", },
171 { IH_TYPE_SOCFPGAIMAGE, "socfpgaimage", "Altera SoCFPGA CV/AV preloader",},
172 { IH_TYPE_SOCFPGAIMAGE_V1, "socfpgaimage_v1", "Altera SoCFPGA A10 preloader",},
173 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", },
174 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",},
175 { IH_TYPE_MXSIMAGE, "mxsimage", "Freescale MXS Boot Image",},
176 { IH_TYPE_ATMELIMAGE, "atmelimage", "ATMEL ROM-Boot Image",},
177 { IH_TYPE_X86_SETUP, "x86_setup", "x86 setup.bin", },
178 { IH_TYPE_LPC32XXIMAGE, "lpc32xximage", "LPC32XX Boot Image", },
179 { IH_TYPE_RKIMAGE, "rkimage", "Rockchip Boot Image" },
180 { IH_TYPE_RKSD, "rksd", "Rockchip SD Boot Image" },
181 { IH_TYPE_RKSPI, "rkspi", "Rockchip SPI Boot Image" },
182 { IH_TYPE_VYBRIDIMAGE, "vybridimage", "Vybrid Boot Image", },
183 { IH_TYPE_ZYNQIMAGE, "zynqimage", "Xilinx Zynq Boot Image" },
184 { IH_TYPE_ZYNQMPIMAGE, "zynqmpimage", "Xilinx ZynqMP Boot Image" },
185 { IH_TYPE_ZYNQMPBIF, "zynqmpbif", "Xilinx ZynqMP Boot Image (bif)" },
186 { IH_TYPE_FPGA, "fpga", "FPGA Image" },
187 { IH_TYPE_TEE, "tee", "Trusted Execution Environment Image",},
188 { IH_TYPE_FIRMWARE_IVT, "firmware_ivt", "Firmware with HABv4 IVT" },
189 { IH_TYPE_PMMC, "pmmc", "TI Power Management Micro-Controller Firmware",},
190 { IH_TYPE_STM32IMAGE, "stm32image", "STMicroelectronics STM32 Image" },
191 { IH_TYPE_MTKIMAGE, "mtk_image", "MediaTek BootROM loadable Image" },
192 { IH_TYPE_COPRO, "copro", "Coprocessor Image"},
193 { IH_TYPE_SUNXI_EGON, "sunxi_egon", "Allwinner eGON Boot Image" },
194 { -1, "", "", },
195 };
196
197 static const table_entry_t uimage_comp[] = {
198 { IH_COMP_NONE, "none", "uncompressed", },
199 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", },
200 { IH_COMP_GZIP, "gzip", "gzip compressed", },
201 { IH_COMP_LZMA, "lzma", "lzma compressed", },
202 { IH_COMP_LZO, "lzo", "lzo compressed", },
203 { IH_COMP_LZ4, "lz4", "lz4 compressed", },
204 { IH_COMP_ZSTD, "zstd", "zstd compressed", },
205 { -1, "", "", },
206 };
207
208 struct table_info {
209 const char *desc;
210 int count;
211 const table_entry_t *table;
212 };
213
214 static const struct comp_magic_map image_comp[] = {
215 { IH_COMP_BZIP2, "bzip2", {0x42, 0x5a},},
216 { IH_COMP_GZIP, "gzip", {0x1f, 0x8b},},
217 { IH_COMP_LZMA, "lzma", {0x5d, 0x00},},
218 { IH_COMP_LZO, "lzo", {0x89, 0x4c},},
219 { IH_COMP_NONE, "none", {}, },
220 };
221
222 static const struct table_info table_info[IH_COUNT] = {
223 { "architecture", IH_ARCH_COUNT, uimage_arch },
224 { "compression", IH_COMP_COUNT, uimage_comp },
225 { "operating system", IH_OS_COUNT, uimage_os },
226 { "image type", IH_TYPE_COUNT, uimage_type },
227 };
228
229 /*****************************************************************************/
230 /* Legacy format routines */
231 /*****************************************************************************/
image_check_hcrc(const image_header_t * hdr)232 int image_check_hcrc(const image_header_t *hdr)
233 {
234 ulong hcrc;
235 ulong len = image_get_header_size();
236 image_header_t header;
237
238 /* Copy header so we can blank CRC field for re-calculation */
239 memmove(&header, (char *)hdr, image_get_header_size());
240 image_set_hcrc(&header, 0);
241
242 hcrc = crc32(0, (unsigned char *)&header, len);
243
244 return (hcrc == image_get_hcrc(hdr));
245 }
246
image_check_dcrc(const image_header_t * hdr)247 int image_check_dcrc(const image_header_t *hdr)
248 {
249 ulong data = image_get_data(hdr);
250 ulong len = image_get_data_size(hdr);
251 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32);
252
253 return (dcrc == image_get_dcrc(hdr));
254 }
255
256 /**
257 * image_multi_count - get component (sub-image) count
258 * @hdr: pointer to the header of the multi component image
259 *
260 * image_multi_count() returns number of components in a multi
261 * component image.
262 *
263 * Note: no checking of the image type is done, caller must pass
264 * a valid multi component image.
265 *
266 * returns:
267 * number of components
268 */
image_multi_count(const image_header_t * hdr)269 ulong image_multi_count(const image_header_t *hdr)
270 {
271 ulong i, count = 0;
272 uint32_t *size;
273
274 /* get start of the image payload, which in case of multi
275 * component images that points to a table of component sizes */
276 size = (uint32_t *)image_get_data(hdr);
277
278 /* count non empty slots */
279 for (i = 0; size[i]; ++i)
280 count++;
281
282 return count;
283 }
284
285 /**
286 * image_multi_getimg - get component data address and size
287 * @hdr: pointer to the header of the multi component image
288 * @idx: index of the requested component
289 * @data: pointer to a ulong variable, will hold component data address
290 * @len: pointer to a ulong variable, will hold component size
291 *
292 * image_multi_getimg() returns size and data address for the requested
293 * component in a multi component image.
294 *
295 * Note: no checking of the image type is done, caller must pass
296 * a valid multi component image.
297 *
298 * returns:
299 * data address and size of the component, if idx is valid
300 * 0 in data and len, if idx is out of range
301 */
image_multi_getimg(const image_header_t * hdr,ulong idx,ulong * data,ulong * len)302 void image_multi_getimg(const image_header_t *hdr, ulong idx,
303 ulong *data, ulong *len)
304 {
305 int i;
306 uint32_t *size;
307 ulong offset, count, img_data;
308
309 /* get number of component */
310 count = image_multi_count(hdr);
311
312 /* get start of the image payload, which in case of multi
313 * component images that points to a table of component sizes */
314 size = (uint32_t *)image_get_data(hdr);
315
316 /* get address of the proper component data start, which means
317 * skipping sizes table (add 1 for last, null entry) */
318 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t);
319
320 if (idx < count) {
321 *len = uimage_to_cpu(size[idx]);
322 offset = 0;
323
324 /* go over all indices preceding requested component idx */
325 for (i = 0; i < idx; i++) {
326 /* add up i-th component size, rounding up to 4 bytes */
327 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ;
328 }
329
330 /* calculate idx-th component data address */
331 *data = img_data + offset;
332 } else {
333 *len = 0;
334 *data = 0;
335 }
336 }
337
image_print_type(const image_header_t * hdr)338 static void image_print_type(const image_header_t *hdr)
339 {
340 const char __maybe_unused *os, *arch, *type, *comp;
341
342 os = genimg_get_os_name(image_get_os(hdr));
343 arch = genimg_get_arch_name(image_get_arch(hdr));
344 type = genimg_get_type_name(image_get_type(hdr));
345 comp = genimg_get_comp_name(image_get_comp(hdr));
346
347 printf("%s %s %s (%s)\n", arch, os, type, comp);
348 }
349
350 /**
351 * image_print_contents - prints out the contents of the legacy format image
352 * @ptr: pointer to the legacy format image header
353 * @p: pointer to prefix string
354 *
355 * image_print_contents() formats a multi line legacy image contents description.
356 * The routine prints out all header fields followed by the size/offset data
357 * for MULTI/SCRIPT images.
358 *
359 * returns:
360 * no returned results
361 */
image_print_contents(const void * ptr)362 void image_print_contents(const void *ptr)
363 {
364 const image_header_t *hdr = (const image_header_t *)ptr;
365 const char __maybe_unused *p;
366
367 p = IMAGE_INDENT_STRING;
368 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr));
369 if (IMAGE_ENABLE_TIMESTAMP) {
370 printf("%sCreated: ", p);
371 genimg_print_time((time_t)image_get_time(hdr));
372 }
373 printf("%sImage Type: ", p);
374 image_print_type(hdr);
375 printf("%sData Size: ", p);
376 genimg_print_size(image_get_data_size(hdr));
377 printf("%sLoad Address: %08x\n", p, image_get_load(hdr));
378 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr));
379
380 if (image_check_type(hdr, IH_TYPE_MULTI) ||
381 image_check_type(hdr, IH_TYPE_SCRIPT)) {
382 int i;
383 ulong data, len;
384 ulong count = image_multi_count(hdr);
385
386 printf("%sContents:\n", p);
387 for (i = 0; i < count; i++) {
388 image_multi_getimg(hdr, i, &data, &len);
389
390 printf("%s Image %d: ", p, i);
391 genimg_print_size(len);
392
393 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) {
394 /*
395 * the user may need to know offsets
396 * if planning to do something with
397 * multiple files
398 */
399 printf("%s Offset = 0x%08lx\n", p, data);
400 }
401 }
402 } else if (image_check_type(hdr, IH_TYPE_FIRMWARE_IVT)) {
403 printf("HAB Blocks: 0x%08x 0x0000 0x%08x\n",
404 image_get_load(hdr) - image_get_header_size(),
405 (int)(image_get_size(hdr) + image_get_header_size()
406 + sizeof(flash_header_v2_t) - 0x2060));
407 }
408 }
409
410 /**
411 * print_decomp_msg() - Print a suitable decompression/loading message
412 *
413 * @type: OS type (IH_OS_...)
414 * @comp_type: Compression type being used (IH_COMP_...)
415 * @is_xip: true if the load address matches the image start
416 */
print_decomp_msg(int comp_type,int type,bool is_xip)417 static void print_decomp_msg(int comp_type, int type, bool is_xip)
418 {
419 const char *name = genimg_get_type_name(type);
420
421 if (comp_type == IH_COMP_NONE)
422 printf(" %s %s\n", is_xip ? "XIP" : "Loading", name);
423 else
424 printf(" Uncompressing %s\n", name);
425 }
426
image_decomp_type(const unsigned char * buf,ulong len)427 int image_decomp_type(const unsigned char *buf, ulong len)
428 {
429 const struct comp_magic_map *cmagic = image_comp;
430
431 if (len < 2)
432 return -EINVAL;
433
434 for (; cmagic->comp_id > 0; cmagic++) {
435 if (!memcmp(buf, cmagic->magic, 2))
436 break;
437 }
438
439 return cmagic->comp_id;
440 }
441
image_decomp(int comp,ulong load,ulong image_start,int type,void * load_buf,void * image_buf,ulong image_len,uint unc_len,ulong * load_end)442 int image_decomp(int comp, ulong load, ulong image_start, int type,
443 void *load_buf, void *image_buf, ulong image_len,
444 uint unc_len, ulong *load_end)
445 {
446 int ret = 0;
447
448 *load_end = load;
449 print_decomp_msg(comp, type, load == image_start);
450
451 /*
452 * Load the image to the right place, decompressing if needed. After
453 * this, image_len will be set to the number of uncompressed bytes
454 * loaded, ret will be non-zero on error.
455 */
456 switch (comp) {
457 case IH_COMP_NONE:
458 if (load == image_start)
459 break;
460 if (image_len <= unc_len)
461 memmove_wd(load_buf, image_buf, image_len, CHUNKSZ);
462 else
463 ret = -ENOSPC;
464 break;
465 #ifndef USE_HOSTCC
466 #if CONFIG_IS_ENABLED(GZIP)
467 case IH_COMP_GZIP: {
468 ret = gunzip(load_buf, unc_len, image_buf, &image_len);
469 break;
470 }
471 #endif /* CONFIG_GZIP */
472 #endif
473 #ifndef USE_HOSTCC
474 #if CONFIG_IS_ENABLED(BZIP2)
475 case IH_COMP_BZIP2: {
476 uint size = unc_len;
477
478 /*
479 * If we've got less than 4 MB of malloc() space,
480 * use slower decompression algorithm which requires
481 * at most 2300 KB of memory.
482 */
483 ret = BZ2_bzBuffToBuffDecompress(load_buf, &size,
484 image_buf, image_len,
485 CONFIG_SYS_MALLOC_LEN < (4096 * 1024), 0);
486 image_len = size;
487 break;
488 }
489 #endif /* CONFIG_BZIP2 */
490 #endif
491 #ifndef USE_HOSTCC
492 #if CONFIG_IS_ENABLED(LZMA)
493 case IH_COMP_LZMA: {
494 SizeT lzma_len = unc_len;
495
496 ret = lzmaBuffToBuffDecompress(load_buf, &lzma_len,
497 image_buf, image_len);
498 image_len = lzma_len;
499 break;
500 }
501 #endif /* CONFIG_LZMA */
502 #endif
503 #ifndef USE_HOSTCC
504 #if CONFIG_IS_ENABLED(LZO)
505 case IH_COMP_LZO: {
506 size_t size = unc_len;
507
508 ret = lzop_decompress(image_buf, image_len, load_buf, &size);
509 image_len = size;
510 break;
511 }
512 #endif /* CONFIG_LZO */
513 #endif
514 #ifndef USE_HOSTCC
515 #if CONFIG_IS_ENABLED(LZ4)
516 case IH_COMP_LZ4: {
517 size_t size = unc_len;
518
519 ret = ulz4fn(image_buf, image_len, load_buf, &size);
520 image_len = size;
521 break;
522 }
523 #endif /* CONFIG_LZ4 */
524 #endif
525 #ifndef USE_HOSTCC
526 #if CONFIG_IS_ENABLED(ZSTD)
527 case IH_COMP_ZSTD: {
528 size_t size = unc_len;
529 ZSTD_DStream *dstream;
530 ZSTD_inBuffer in_buf;
531 ZSTD_outBuffer out_buf;
532 void *workspace;
533 size_t wsize;
534
535 wsize = ZSTD_DStreamWorkspaceBound(image_len);
536 workspace = malloc(wsize);
537 if (!workspace) {
538 debug("%s: cannot allocate workspace of size %zu\n", __func__,
539 wsize);
540 return -1;
541 }
542
543 dstream = ZSTD_initDStream(image_len, workspace, wsize);
544 if (!dstream) {
545 printf("%s: ZSTD_initDStream failed\n", __func__);
546 return ZSTD_getErrorCode(ret);
547 }
548
549 in_buf.src = image_buf;
550 in_buf.pos = 0;
551 in_buf.size = image_len;
552
553 out_buf.dst = load_buf;
554 out_buf.pos = 0;
555 out_buf.size = size;
556
557 while (1) {
558 size_t ret;
559
560 ret = ZSTD_decompressStream(dstream, &out_buf, &in_buf);
561 if (ZSTD_isError(ret)) {
562 printf("%s: ZSTD_decompressStream error %d\n", __func__,
563 ZSTD_getErrorCode(ret));
564 return ZSTD_getErrorCode(ret);
565 }
566
567 if (in_buf.pos >= image_len || !ret)
568 break;
569 }
570
571 image_len = out_buf.pos;
572
573 break;
574 }
575 #endif /* CONFIG_ZSTD */
576 #endif
577 default:
578 printf("Unimplemented compression type %d\n", comp);
579 return -ENOSYS;
580 }
581
582 *load_end = load + image_len;
583
584 return ret;
585 }
586
587
588 #ifndef USE_HOSTCC
589 #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
590 /**
591 * image_get_ramdisk - get and verify ramdisk image
592 * @rd_addr: ramdisk image start address
593 * @arch: expected ramdisk architecture
594 * @verify: checksum verification flag
595 *
596 * image_get_ramdisk() returns a pointer to the verified ramdisk image
597 * header. Routine receives image start address and expected architecture
598 * flag. Verification done covers data and header integrity and os/type/arch
599 * fields checking.
600 *
601 * returns:
602 * pointer to a ramdisk image header, if image was found and valid
603 * otherwise, return NULL
604 */
image_get_ramdisk(ulong rd_addr,uint8_t arch,int verify)605 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
606 int verify)
607 {
608 const image_header_t *rd_hdr = (const image_header_t *)rd_addr;
609
610 if (!image_check_magic(rd_hdr)) {
611 puts("Bad Magic Number\n");
612 bootstage_error(BOOTSTAGE_ID_RD_MAGIC);
613 return NULL;
614 }
615
616 if (!image_check_hcrc(rd_hdr)) {
617 puts("Bad Header Checksum\n");
618 bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM);
619 return NULL;
620 }
621
622 bootstage_mark(BOOTSTAGE_ID_RD_MAGIC);
623 image_print_contents(rd_hdr);
624
625 if (verify) {
626 puts(" Verifying Checksum ... ");
627 if (!image_check_dcrc(rd_hdr)) {
628 puts("Bad Data CRC\n");
629 bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM);
630 return NULL;
631 }
632 puts("OK\n");
633 }
634
635 bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM);
636
637 if (!image_check_os(rd_hdr, IH_OS_LINUX) ||
638 !image_check_arch(rd_hdr, arch) ||
639 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) {
640 printf("No Linux %s Ramdisk Image\n",
641 genimg_get_arch_name(arch));
642 bootstage_error(BOOTSTAGE_ID_RAMDISK);
643 return NULL;
644 }
645
646 return rd_hdr;
647 }
648 #endif
649 #endif /* !USE_HOSTCC */
650
651 /*****************************************************************************/
652 /* Shared dual-format routines */
653 /*****************************************************************************/
654 #ifndef USE_HOSTCC
655 ulong image_load_addr = CONFIG_SYS_LOAD_ADDR; /* Default Load Address */
656 ulong image_save_addr; /* Default Save Address */
657 ulong image_save_size; /* Default Save Size (in bytes) */
658
on_loadaddr(const char * name,const char * value,enum env_op op,int flags)659 static int on_loadaddr(const char *name, const char *value, enum env_op op,
660 int flags)
661 {
662 switch (op) {
663 case env_op_create:
664 case env_op_overwrite:
665 image_load_addr = simple_strtoul(value, NULL, 16);
666 break;
667 default:
668 break;
669 }
670
671 return 0;
672 }
673 U_BOOT_ENV_CALLBACK(loadaddr, on_loadaddr);
674
env_get_bootm_low(void)675 ulong env_get_bootm_low(void)
676 {
677 char *s = env_get("bootm_low");
678 if (s) {
679 ulong tmp = simple_strtoul(s, NULL, 16);
680 return tmp;
681 }
682
683 #if defined(CONFIG_SYS_SDRAM_BASE)
684 return CONFIG_SYS_SDRAM_BASE;
685 #elif defined(CONFIG_ARM) || defined(CONFIG_MICROBLAZE)
686 return gd->bd->bi_dram[0].start;
687 #else
688 return 0;
689 #endif
690 }
691
env_get_bootm_size(void)692 phys_size_t env_get_bootm_size(void)
693 {
694 phys_size_t tmp, size;
695 phys_addr_t start;
696 char *s = env_get("bootm_size");
697 if (s) {
698 tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
699 return tmp;
700 }
701
702 start = gd->ram_base;
703 size = gd->ram_size;
704
705 if (start + size > gd->ram_top)
706 size = gd->ram_top - start;
707
708 s = env_get("bootm_low");
709 if (s)
710 tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
711 else
712 tmp = start;
713
714 return size - (tmp - start);
715 }
716
env_get_bootm_mapsize(void)717 phys_size_t env_get_bootm_mapsize(void)
718 {
719 phys_size_t tmp;
720 char *s = env_get("bootm_mapsize");
721 if (s) {
722 tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
723 return tmp;
724 }
725
726 #if defined(CONFIG_SYS_BOOTMAPSZ)
727 return CONFIG_SYS_BOOTMAPSZ;
728 #else
729 return env_get_bootm_size();
730 #endif
731 }
732
memmove_wd(void * to,void * from,size_t len,ulong chunksz)733 void memmove_wd(void *to, void *from, size_t len, ulong chunksz)
734 {
735 if (to == from)
736 return;
737
738 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
739 if (to > from) {
740 from += len;
741 to += len;
742 }
743 while (len > 0) {
744 size_t tail = (len > chunksz) ? chunksz : len;
745 WATCHDOG_RESET();
746 if (to > from) {
747 to -= tail;
748 from -= tail;
749 }
750 memmove(to, from, tail);
751 if (to < from) {
752 to += tail;
753 from += tail;
754 }
755 len -= tail;
756 }
757 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */
758 memmove(to, from, len);
759 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */
760 }
761 #else /* USE_HOSTCC */
memmove_wd(void * to,void * from,size_t len,ulong chunksz)762 void memmove_wd(void *to, void *from, size_t len, ulong chunksz)
763 {
764 memmove(to, from, len);
765 }
766 #endif /* !USE_HOSTCC */
767
genimg_print_size(uint32_t size)768 void genimg_print_size(uint32_t size)
769 {
770 #ifndef USE_HOSTCC
771 printf("%d Bytes = ", size);
772 print_size(size, "\n");
773 #else
774 printf("%d Bytes = %.2f KiB = %.2f MiB\n",
775 size, (double)size / 1.024e3,
776 (double)size / 1.048576e6);
777 #endif
778 }
779
780 #if IMAGE_ENABLE_TIMESTAMP
genimg_print_time(time_t timestamp)781 void genimg_print_time(time_t timestamp)
782 {
783 #ifndef USE_HOSTCC
784 struct rtc_time tm;
785
786 rtc_to_tm(timestamp, &tm);
787 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n",
788 tm.tm_year, tm.tm_mon, tm.tm_mday,
789 tm.tm_hour, tm.tm_min, tm.tm_sec);
790 #else
791 printf("%s", ctime(×tamp));
792 #endif
793 }
794 #endif
795
get_table_entry(const table_entry_t * table,int id)796 const table_entry_t *get_table_entry(const table_entry_t *table, int id)
797 {
798 for (; table->id >= 0; ++table) {
799 if (table->id == id)
800 return table;
801 }
802 return NULL;
803 }
804
unknown_msg(enum ih_category category)805 static const char *unknown_msg(enum ih_category category)
806 {
807 static const char unknown_str[] = "Unknown ";
808 static char msg[30];
809
810 strcpy(msg, unknown_str);
811 strncat(msg, table_info[category].desc,
812 sizeof(msg) - sizeof(unknown_str));
813
814 return msg;
815 }
816
817 /**
818 * genimg_get_cat_name - translate entry id to long name
819 * @category: category to look up (enum ih_category)
820 * @id: entry id to be translated
821 *
822 * This will scan the translation table trying to find the entry that matches
823 * the given id.
824 *
825 * @return long entry name if translation succeeds; error string on failure
826 */
genimg_get_cat_name(enum ih_category category,uint id)827 const char *genimg_get_cat_name(enum ih_category category, uint id)
828 {
829 const table_entry_t *entry;
830
831 entry = get_table_entry(table_info[category].table, id);
832 if (!entry)
833 return unknown_msg(category);
834 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
835 return entry->lname;
836 #else
837 return entry->lname + gd->reloc_off;
838 #endif
839 }
840
841 /**
842 * genimg_get_cat_short_name - translate entry id to short name
843 * @category: category to look up (enum ih_category)
844 * @id: entry id to be translated
845 *
846 * This will scan the translation table trying to find the entry that matches
847 * the given id.
848 *
849 * @return short entry name if translation succeeds; error string on failure
850 */
genimg_get_cat_short_name(enum ih_category category,uint id)851 const char *genimg_get_cat_short_name(enum ih_category category, uint id)
852 {
853 const table_entry_t *entry;
854
855 entry = get_table_entry(table_info[category].table, id);
856 if (!entry)
857 return unknown_msg(category);
858 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
859 return entry->sname;
860 #else
861 return entry->sname + gd->reloc_off;
862 #endif
863 }
864
genimg_get_cat_count(enum ih_category category)865 int genimg_get_cat_count(enum ih_category category)
866 {
867 return table_info[category].count;
868 }
869
genimg_get_cat_desc(enum ih_category category)870 const char *genimg_get_cat_desc(enum ih_category category)
871 {
872 return table_info[category].desc;
873 }
874
875 /**
876 * genimg_cat_has_id - check whether category has entry id
877 * @category: category to look up (enum ih_category)
878 * @id: entry id to be checked
879 *
880 * This will scan the translation table trying to find the entry that matches
881 * the given id.
882 *
883 * @return true if category has entry id; false if not
884 */
genimg_cat_has_id(enum ih_category category,uint id)885 bool genimg_cat_has_id(enum ih_category category, uint id)
886 {
887 if (get_table_entry(table_info[category].table, id))
888 return true;
889
890 return false;
891 }
892
893 /**
894 * get_table_entry_name - translate entry id to long name
895 * @table: pointer to a translation table for entries of a specific type
896 * @msg: message to be returned when translation fails
897 * @id: entry id to be translated
898 *
899 * get_table_entry_name() will go over translation table trying to find
900 * entry that matches given id. If matching entry is found, its long
901 * name is returned to the caller.
902 *
903 * returns:
904 * long entry name if translation succeeds
905 * msg otherwise
906 */
get_table_entry_name(const table_entry_t * table,char * msg,int id)907 char *get_table_entry_name(const table_entry_t *table, char *msg, int id)
908 {
909 table = get_table_entry(table, id);
910 if (!table)
911 return msg;
912 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
913 return table->lname;
914 #else
915 return table->lname + gd->reloc_off;
916 #endif
917 }
918
genimg_get_os_name(uint8_t os)919 const char *genimg_get_os_name(uint8_t os)
920 {
921 return (get_table_entry_name(uimage_os, "Unknown OS", os));
922 }
923
genimg_get_arch_name(uint8_t arch)924 const char *genimg_get_arch_name(uint8_t arch)
925 {
926 return (get_table_entry_name(uimage_arch, "Unknown Architecture",
927 arch));
928 }
929
genimg_get_type_name(uint8_t type)930 const char *genimg_get_type_name(uint8_t type)
931 {
932 return (get_table_entry_name(uimage_type, "Unknown Image", type));
933 }
934
genimg_get_comp_name(uint8_t comp)935 const char *genimg_get_comp_name(uint8_t comp)
936 {
937 return (get_table_entry_name(uimage_comp, "Unknown Compression",
938 comp));
939 }
940
genimg_get_short_name(const table_entry_t * table,int val)941 static const char *genimg_get_short_name(const table_entry_t *table, int val)
942 {
943 table = get_table_entry(table, val);
944 if (!table)
945 return "unknown";
946 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
947 return table->sname;
948 #else
949 return table->sname + gd->reloc_off;
950 #endif
951 }
952
genimg_get_type_short_name(uint8_t type)953 const char *genimg_get_type_short_name(uint8_t type)
954 {
955 return genimg_get_short_name(uimage_type, type);
956 }
957
genimg_get_comp_short_name(uint8_t comp)958 const char *genimg_get_comp_short_name(uint8_t comp)
959 {
960 return genimg_get_short_name(uimage_comp, comp);
961 }
962
genimg_get_os_short_name(uint8_t os)963 const char *genimg_get_os_short_name(uint8_t os)
964 {
965 return genimg_get_short_name(uimage_os, os);
966 }
967
genimg_get_arch_short_name(uint8_t arch)968 const char *genimg_get_arch_short_name(uint8_t arch)
969 {
970 return genimg_get_short_name(uimage_arch, arch);
971 }
972
973 /**
974 * get_table_entry_id - translate short entry name to id
975 * @table: pointer to a translation table for entries of a specific type
976 * @table_name: to be used in case of error
977 * @name: entry short name to be translated
978 *
979 * get_table_entry_id() will go over translation table trying to find
980 * entry that matches given short name. If matching entry is found,
981 * its id returned to the caller.
982 *
983 * returns:
984 * entry id if translation succeeds
985 * -1 otherwise
986 */
get_table_entry_id(const table_entry_t * table,const char * table_name,const char * name)987 int get_table_entry_id(const table_entry_t *table,
988 const char *table_name, const char *name)
989 {
990 const table_entry_t *t;
991
992 for (t = table; t->id >= 0; ++t) {
993 #ifdef CONFIG_NEEDS_MANUAL_RELOC
994 if (t->sname && strcasecmp(t->sname + gd->reloc_off, name) == 0)
995 #else
996 if (t->sname && strcasecmp(t->sname, name) == 0)
997 #endif
998 return (t->id);
999 }
1000 debug("Invalid %s Type: %s\n", table_name, name);
1001
1002 return -1;
1003 }
1004
genimg_get_os_id(const char * name)1005 int genimg_get_os_id(const char *name)
1006 {
1007 return (get_table_entry_id(uimage_os, "OS", name));
1008 }
1009
genimg_get_arch_id(const char * name)1010 int genimg_get_arch_id(const char *name)
1011 {
1012 return (get_table_entry_id(uimage_arch, "CPU", name));
1013 }
1014
genimg_get_type_id(const char * name)1015 int genimg_get_type_id(const char *name)
1016 {
1017 return (get_table_entry_id(uimage_type, "Image", name));
1018 }
1019
genimg_get_comp_id(const char * name)1020 int genimg_get_comp_id(const char *name)
1021 {
1022 return (get_table_entry_id(uimage_comp, "Compression", name));
1023 }
1024
1025 #ifndef USE_HOSTCC
1026 /**
1027 * genimg_get_kernel_addr_fit - get the real kernel address and return 2
1028 * FIT strings
1029 * @img_addr: a string might contain real image address
1030 * @fit_uname_config: double pointer to a char, will hold pointer to a
1031 * configuration unit name
1032 * @fit_uname_kernel: double pointer to a char, will hold pointer to a subimage
1033 * name
1034 *
1035 * genimg_get_kernel_addr_fit get the real kernel start address from a string
1036 * which is normally the first argv of bootm/bootz
1037 *
1038 * returns:
1039 * kernel start address
1040 */
genimg_get_kernel_addr_fit(char * const img_addr,const char ** fit_uname_config,const char ** fit_uname_kernel)1041 ulong genimg_get_kernel_addr_fit(char * const img_addr,
1042 const char **fit_uname_config,
1043 const char **fit_uname_kernel)
1044 {
1045 ulong kernel_addr;
1046
1047 /* find out kernel image address */
1048 if (!img_addr) {
1049 kernel_addr = image_load_addr;
1050 debug("* kernel: default image load address = 0x%08lx\n",
1051 image_load_addr);
1052 #if CONFIG_IS_ENABLED(FIT)
1053 } else if (fit_parse_conf(img_addr, image_load_addr, &kernel_addr,
1054 fit_uname_config)) {
1055 debug("* kernel: config '%s' from image at 0x%08lx\n",
1056 *fit_uname_config, kernel_addr);
1057 } else if (fit_parse_subimage(img_addr, image_load_addr, &kernel_addr,
1058 fit_uname_kernel)) {
1059 debug("* kernel: subimage '%s' from image at 0x%08lx\n",
1060 *fit_uname_kernel, kernel_addr);
1061 #endif
1062 } else {
1063 kernel_addr = simple_strtoul(img_addr, NULL, 16);
1064 debug("* kernel: cmdline image address = 0x%08lx\n",
1065 kernel_addr);
1066 }
1067
1068 return kernel_addr;
1069 }
1070
1071 /**
1072 * genimg_get_kernel_addr() is the simple version of
1073 * genimg_get_kernel_addr_fit(). It ignores those return FIT strings
1074 */
genimg_get_kernel_addr(char * const img_addr)1075 ulong genimg_get_kernel_addr(char * const img_addr)
1076 {
1077 const char *fit_uname_config = NULL;
1078 const char *fit_uname_kernel = NULL;
1079
1080 return genimg_get_kernel_addr_fit(img_addr, &fit_uname_config,
1081 &fit_uname_kernel);
1082 }
1083
1084 /**
1085 * genimg_get_format - get image format type
1086 * @img_addr: image start address
1087 *
1088 * genimg_get_format() checks whether provided address points to a valid
1089 * legacy or FIT image.
1090 *
1091 * New uImage format and FDT blob are based on a libfdt. FDT blob
1092 * may be passed directly or embedded in a FIT image. In both situations
1093 * genimg_get_format() must be able to dectect libfdt header.
1094 *
1095 * returns:
1096 * image format type or IMAGE_FORMAT_INVALID if no image is present
1097 */
genimg_get_format(const void * img_addr)1098 int genimg_get_format(const void *img_addr)
1099 {
1100 #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
1101 const image_header_t *hdr;
1102
1103 hdr = (const image_header_t *)img_addr;
1104 if (image_check_magic(hdr))
1105 return IMAGE_FORMAT_LEGACY;
1106 #endif
1107 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT
1108 if (fdt_check_header(img_addr) == 0)
1109 return IMAGE_FORMAT_FIT;
1110 #endif
1111 #ifdef CONFIG_ANDROID_BOOT_IMAGE
1112 if (android_image_check_header(img_addr) == 0)
1113 return IMAGE_FORMAT_ANDROID;
1114 #endif
1115
1116 return IMAGE_FORMAT_INVALID;
1117 }
1118
1119 /**
1120 * fit_has_config - check if there is a valid FIT configuration
1121 * @images: pointer to the bootm command headers structure
1122 *
1123 * fit_has_config() checks if there is a FIT configuration in use
1124 * (if FTI support is present).
1125 *
1126 * returns:
1127 * 0, no FIT support or no configuration found
1128 * 1, configuration found
1129 */
genimg_has_config(bootm_headers_t * images)1130 int genimg_has_config(bootm_headers_t *images)
1131 {
1132 #if IMAGE_ENABLE_FIT
1133 if (images->fit_uname_cfg)
1134 return 1;
1135 #endif
1136 return 0;
1137 }
1138
1139 /**
1140 * boot_get_ramdisk - main ramdisk handling routine
1141 * @argc: command argument count
1142 * @argv: command argument list
1143 * @images: pointer to the bootm images structure
1144 * @arch: expected ramdisk architecture
1145 * @rd_start: pointer to a ulong variable, will hold ramdisk start address
1146 * @rd_end: pointer to a ulong variable, will hold ramdisk end
1147 *
1148 * boot_get_ramdisk() is responsible for finding a valid ramdisk image.
1149 * Curently supported are the following ramdisk sources:
1150 * - multicomponent kernel/ramdisk image,
1151 * - commandline provided address of decicated ramdisk image.
1152 *
1153 * returns:
1154 * 0, if ramdisk image was found and valid, or skiped
1155 * rd_start and rd_end are set to ramdisk start/end addresses if
1156 * ramdisk image is found and valid
1157 *
1158 * 1, if ramdisk image is found but corrupted, or invalid
1159 * rd_start and rd_end are set to 0 if no ramdisk exists
1160 */
boot_get_ramdisk(int argc,char * const argv[],bootm_headers_t * images,uint8_t arch,ulong * rd_start,ulong * rd_end)1161 int boot_get_ramdisk(int argc, char *const argv[], bootm_headers_t *images,
1162 uint8_t arch, ulong *rd_start, ulong *rd_end)
1163 {
1164 ulong rd_addr, rd_load;
1165 ulong rd_data, rd_len;
1166 #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
1167 const image_header_t *rd_hdr;
1168 #endif
1169 void *buf;
1170 #ifdef CONFIG_SUPPORT_RAW_INITRD
1171 char *end;
1172 #endif
1173 #if IMAGE_ENABLE_FIT
1174 const char *fit_uname_config = images->fit_uname_cfg;
1175 const char *fit_uname_ramdisk = NULL;
1176 ulong default_addr;
1177 int rd_noffset;
1178 #endif
1179 const char *select = NULL;
1180
1181 *rd_start = 0;
1182 *rd_end = 0;
1183
1184 #ifdef CONFIG_ANDROID_BOOT_IMAGE
1185 /*
1186 * Look for an Android boot image.
1187 */
1188 buf = map_sysmem(images->os.start, 0);
1189 if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID)
1190 select = (argc == 0) ? env_get("loadaddr") : argv[0];
1191 #endif
1192
1193 if (argc >= 2)
1194 select = argv[1];
1195
1196 /*
1197 * Look for a '-' which indicates to ignore the
1198 * ramdisk argument
1199 */
1200 if (select && strcmp(select, "-") == 0) {
1201 debug("## Skipping init Ramdisk\n");
1202 rd_len = rd_data = 0;
1203 } else if (select || genimg_has_config(images)) {
1204 #if IMAGE_ENABLE_FIT
1205 if (select) {
1206 /*
1207 * If the init ramdisk comes from the FIT image and
1208 * the FIT image address is omitted in the command
1209 * line argument, try to use os FIT image address or
1210 * default load address.
1211 */
1212 if (images->fit_uname_os)
1213 default_addr = (ulong)images->fit_hdr_os;
1214 else
1215 default_addr = image_load_addr;
1216
1217 if (fit_parse_conf(select, default_addr,
1218 &rd_addr, &fit_uname_config)) {
1219 debug("* ramdisk: config '%s' from image at "
1220 "0x%08lx\n",
1221 fit_uname_config, rd_addr);
1222 } else if (fit_parse_subimage(select, default_addr,
1223 &rd_addr, &fit_uname_ramdisk)) {
1224 debug("* ramdisk: subimage '%s' from image at "
1225 "0x%08lx\n",
1226 fit_uname_ramdisk, rd_addr);
1227 } else
1228 #endif
1229 {
1230 rd_addr = simple_strtoul(select, NULL, 16);
1231 debug("* ramdisk: cmdline image address = "
1232 "0x%08lx\n",
1233 rd_addr);
1234 }
1235 #if IMAGE_ENABLE_FIT
1236 } else {
1237 /* use FIT configuration provided in first bootm
1238 * command argument. If the property is not defined,
1239 * quit silently.
1240 */
1241 rd_addr = map_to_sysmem(images->fit_hdr_os);
1242 rd_noffset = fit_get_node_from_config(images,
1243 FIT_RAMDISK_PROP, rd_addr);
1244 if (rd_noffset == -ENOENT)
1245 return 0;
1246 else if (rd_noffset < 0)
1247 return 1;
1248 }
1249 #endif
1250
1251 /*
1252 * Check if there is an initrd image at the
1253 * address provided in the second bootm argument
1254 * check image type, for FIT images get FIT node.
1255 */
1256 buf = map_sysmem(rd_addr, 0);
1257 switch (genimg_get_format(buf)) {
1258 #if CONFIG_IS_ENABLED(LEGACY_IMAGE_FORMAT)
1259 case IMAGE_FORMAT_LEGACY:
1260 printf("## Loading init Ramdisk from Legacy "
1261 "Image at %08lx ...\n", rd_addr);
1262
1263 bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK);
1264 rd_hdr = image_get_ramdisk(rd_addr, arch,
1265 images->verify);
1266
1267 if (rd_hdr == NULL)
1268 return 1;
1269
1270 rd_data = image_get_data(rd_hdr);
1271 rd_len = image_get_data_size(rd_hdr);
1272 rd_load = image_get_load(rd_hdr);
1273 break;
1274 #endif
1275 #if IMAGE_ENABLE_FIT
1276 case IMAGE_FORMAT_FIT:
1277 rd_noffset = fit_image_load(images,
1278 rd_addr, &fit_uname_ramdisk,
1279 &fit_uname_config, arch,
1280 IH_TYPE_RAMDISK,
1281 BOOTSTAGE_ID_FIT_RD_START,
1282 FIT_LOAD_OPTIONAL_NON_ZERO,
1283 &rd_data, &rd_len);
1284 if (rd_noffset < 0)
1285 return 1;
1286
1287 images->fit_hdr_rd = map_sysmem(rd_addr, 0);
1288 images->fit_uname_rd = fit_uname_ramdisk;
1289 images->fit_noffset_rd = rd_noffset;
1290 break;
1291 #endif
1292 #ifdef CONFIG_ANDROID_BOOT_IMAGE
1293 case IMAGE_FORMAT_ANDROID:
1294 android_image_get_ramdisk((void *)images->os.start,
1295 &rd_data, &rd_len);
1296 break;
1297 #endif
1298 default:
1299 #ifdef CONFIG_SUPPORT_RAW_INITRD
1300 end = NULL;
1301 if (select)
1302 end = strchr(select, ':');
1303 if (end) {
1304 rd_len = simple_strtoul(++end, NULL, 16);
1305 rd_data = rd_addr;
1306 } else
1307 #endif
1308 {
1309 puts("Wrong Ramdisk Image Format\n");
1310 rd_data = rd_len = rd_load = 0;
1311 return 1;
1312 }
1313 }
1314 } else if (images->legacy_hdr_valid &&
1315 image_check_type(&images->legacy_hdr_os_copy,
1316 IH_TYPE_MULTI)) {
1317
1318 /*
1319 * Now check if we have a legacy mult-component image,
1320 * get second entry data start address and len.
1321 */
1322 bootstage_mark(BOOTSTAGE_ID_RAMDISK);
1323 printf("## Loading init Ramdisk from multi component "
1324 "Legacy Image at %08lx ...\n",
1325 (ulong)images->legacy_hdr_os);
1326
1327 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len);
1328 } else {
1329 /*
1330 * no initrd image
1331 */
1332 bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK);
1333 rd_len = rd_data = 0;
1334 }
1335
1336 if (!rd_data) {
1337 debug("## No init Ramdisk\n");
1338 } else {
1339 *rd_start = rd_data;
1340 *rd_end = rd_data + rd_len;
1341 }
1342 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n",
1343 *rd_start, *rd_end);
1344
1345 return 0;
1346 }
1347
1348 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
1349 /**
1350 * boot_ramdisk_high - relocate init ramdisk
1351 * @lmb: pointer to lmb handle, will be used for memory mgmt
1352 * @rd_data: ramdisk data start address
1353 * @rd_len: ramdisk data length
1354 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk
1355 * start address (after possible relocation)
1356 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk
1357 * end address (after possible relocation)
1358 *
1359 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environment
1360 * variable and if requested ramdisk data is moved to a specified location.
1361 *
1362 * Initrd_start and initrd_end are set to final (after relocation) ramdisk
1363 * start/end addresses if ramdisk image start and len were provided,
1364 * otherwise set initrd_start and initrd_end set to zeros.
1365 *
1366 * returns:
1367 * 0 - success
1368 * -1 - failure
1369 */
boot_ramdisk_high(struct lmb * lmb,ulong rd_data,ulong rd_len,ulong * initrd_start,ulong * initrd_end)1370 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len,
1371 ulong *initrd_start, ulong *initrd_end)
1372 {
1373 char *s;
1374 ulong initrd_high;
1375 int initrd_copy_to_ram = 1;
1376
1377 s = env_get("initrd_high");
1378 if (s) {
1379 /* a value of "no" or a similar string will act like 0,
1380 * turning the "load high" feature off. This is intentional.
1381 */
1382 initrd_high = simple_strtoul(s, NULL, 16);
1383 if (initrd_high == ~0)
1384 initrd_copy_to_ram = 0;
1385 } else {
1386 initrd_high = env_get_bootm_mapsize() + env_get_bootm_low();
1387 }
1388
1389
1390 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n",
1391 initrd_high, initrd_copy_to_ram);
1392
1393 if (rd_data) {
1394 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */
1395 debug(" in-place initrd\n");
1396 *initrd_start = rd_data;
1397 *initrd_end = rd_data + rd_len;
1398 lmb_reserve(lmb, rd_data, rd_len);
1399 } else {
1400 if (initrd_high)
1401 *initrd_start = (ulong)lmb_alloc_base(lmb,
1402 rd_len, 0x1000, initrd_high);
1403 else
1404 *initrd_start = (ulong)lmb_alloc(lmb, rd_len,
1405 0x1000);
1406
1407 if (*initrd_start == 0) {
1408 puts("ramdisk - allocation error\n");
1409 goto error;
1410 }
1411 bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK);
1412
1413 *initrd_end = *initrd_start + rd_len;
1414 printf(" Loading Ramdisk to %08lx, end %08lx ... ",
1415 *initrd_start, *initrd_end);
1416
1417 memmove_wd((void *)*initrd_start,
1418 (void *)rd_data, rd_len, CHUNKSZ);
1419
1420 #ifdef CONFIG_MP
1421 /*
1422 * Ensure the image is flushed to memory to handle
1423 * AMP boot scenarios in which we might not be
1424 * HW cache coherent
1425 */
1426 flush_cache((unsigned long)*initrd_start,
1427 ALIGN(rd_len, ARCH_DMA_MINALIGN));
1428 #endif
1429 puts("OK\n");
1430 }
1431 } else {
1432 *initrd_start = 0;
1433 *initrd_end = 0;
1434 }
1435 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n",
1436 *initrd_start, *initrd_end);
1437
1438 return 0;
1439
1440 error:
1441 return -1;
1442 }
1443 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */
1444
boot_get_setup(bootm_headers_t * images,uint8_t arch,ulong * setup_start,ulong * setup_len)1445 int boot_get_setup(bootm_headers_t *images, uint8_t arch,
1446 ulong *setup_start, ulong *setup_len)
1447 {
1448 #if IMAGE_ENABLE_FIT
1449 return boot_get_setup_fit(images, arch, setup_start, setup_len);
1450 #else
1451 return -ENOENT;
1452 #endif
1453 }
1454
1455 #if IMAGE_ENABLE_FIT
1456 #if defined(CONFIG_FPGA)
boot_get_fpga(int argc,char * const argv[],bootm_headers_t * images,uint8_t arch,const ulong * ld_start,ulong * const ld_len)1457 int boot_get_fpga(int argc, char *const argv[], bootm_headers_t *images,
1458 uint8_t arch, const ulong *ld_start, ulong * const ld_len)
1459 {
1460 ulong tmp_img_addr, img_data, img_len;
1461 void *buf;
1462 int conf_noffset;
1463 int fit_img_result;
1464 const char *uname, *name;
1465 int err;
1466 int devnum = 0; /* TODO support multi fpga platforms */
1467
1468 /* Check to see if the images struct has a FIT configuration */
1469 if (!genimg_has_config(images)) {
1470 debug("## FIT configuration was not specified\n");
1471 return 0;
1472 }
1473
1474 /*
1475 * Obtain the os FIT header from the images struct
1476 */
1477 tmp_img_addr = map_to_sysmem(images->fit_hdr_os);
1478 buf = map_sysmem(tmp_img_addr, 0);
1479 /*
1480 * Check image type. For FIT images get FIT node
1481 * and attempt to locate a generic binary.
1482 */
1483 switch (genimg_get_format(buf)) {
1484 case IMAGE_FORMAT_FIT:
1485 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg);
1486
1487 uname = fdt_stringlist_get(buf, conf_noffset, FIT_FPGA_PROP, 0,
1488 NULL);
1489 if (!uname) {
1490 debug("## FPGA image is not specified\n");
1491 return 0;
1492 }
1493 fit_img_result = fit_image_load(images,
1494 tmp_img_addr,
1495 (const char **)&uname,
1496 &(images->fit_uname_cfg),
1497 arch,
1498 IH_TYPE_FPGA,
1499 BOOTSTAGE_ID_FPGA_INIT,
1500 FIT_LOAD_OPTIONAL_NON_ZERO,
1501 &img_data, &img_len);
1502
1503 debug("FPGA image (%s) loaded to 0x%lx/size 0x%lx\n",
1504 uname, img_data, img_len);
1505
1506 if (fit_img_result < 0) {
1507 /* Something went wrong! */
1508 return fit_img_result;
1509 }
1510
1511 if (!fpga_is_partial_data(devnum, img_len)) {
1512 name = "full";
1513 err = fpga_loadbitstream(devnum, (char *)img_data,
1514 img_len, BIT_FULL);
1515 if (err)
1516 err = fpga_load(devnum, (const void *)img_data,
1517 img_len, BIT_FULL);
1518 } else {
1519 name = "partial";
1520 err = fpga_loadbitstream(devnum, (char *)img_data,
1521 img_len, BIT_PARTIAL);
1522 if (err)
1523 err = fpga_load(devnum, (const void *)img_data,
1524 img_len, BIT_PARTIAL);
1525 }
1526
1527 if (err)
1528 return err;
1529
1530 printf(" Programming %s bitstream... OK\n", name);
1531 break;
1532 default:
1533 printf("The given image format is not supported (corrupt?)\n");
1534 return 1;
1535 }
1536
1537 return 0;
1538 }
1539 #endif
1540
fit_loadable_process(uint8_t img_type,ulong img_data,ulong img_len)1541 static void fit_loadable_process(uint8_t img_type,
1542 ulong img_data,
1543 ulong img_len)
1544 {
1545 int i;
1546 const unsigned int count =
1547 ll_entry_count(struct fit_loadable_tbl, fit_loadable);
1548 struct fit_loadable_tbl *fit_loadable_handler =
1549 ll_entry_start(struct fit_loadable_tbl, fit_loadable);
1550 /* For each loadable handler */
1551 for (i = 0; i < count; i++, fit_loadable_handler++)
1552 /* matching this type */
1553 if (fit_loadable_handler->type == img_type)
1554 /* call that handler with this image data */
1555 fit_loadable_handler->handler(img_data, img_len);
1556 }
1557
boot_get_loadable(int argc,char * const argv[],bootm_headers_t * images,uint8_t arch,const ulong * ld_start,ulong * const ld_len)1558 int boot_get_loadable(int argc, char *const argv[], bootm_headers_t *images,
1559 uint8_t arch, const ulong *ld_start, ulong * const ld_len)
1560 {
1561 /*
1562 * These variables are used to hold the current image location
1563 * in system memory.
1564 */
1565 ulong tmp_img_addr;
1566 /*
1567 * These two variables are requirements for fit_image_load, but
1568 * their values are not used
1569 */
1570 ulong img_data, img_len;
1571 void *buf;
1572 int loadables_index;
1573 int conf_noffset;
1574 int fit_img_result;
1575 const char *uname;
1576 uint8_t img_type;
1577
1578 /* Check to see if the images struct has a FIT configuration */
1579 if (!genimg_has_config(images)) {
1580 debug("## FIT configuration was not specified\n");
1581 return 0;
1582 }
1583
1584 /*
1585 * Obtain the os FIT header from the images struct
1586 */
1587 tmp_img_addr = map_to_sysmem(images->fit_hdr_os);
1588 buf = map_sysmem(tmp_img_addr, 0);
1589 /*
1590 * Check image type. For FIT images get FIT node
1591 * and attempt to locate a generic binary.
1592 */
1593 switch (genimg_get_format(buf)) {
1594 case IMAGE_FORMAT_FIT:
1595 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg);
1596
1597 for (loadables_index = 0;
1598 uname = fdt_stringlist_get(buf, conf_noffset,
1599 FIT_LOADABLE_PROP, loadables_index,
1600 NULL), uname;
1601 loadables_index++)
1602 {
1603 fit_img_result = fit_image_load(images,
1604 tmp_img_addr,
1605 &uname,
1606 &(images->fit_uname_cfg), arch,
1607 IH_TYPE_LOADABLE,
1608 BOOTSTAGE_ID_FIT_LOADABLE_START,
1609 FIT_LOAD_OPTIONAL_NON_ZERO,
1610 &img_data, &img_len);
1611 if (fit_img_result < 0) {
1612 /* Something went wrong! */
1613 return fit_img_result;
1614 }
1615
1616 fit_img_result = fit_image_get_node(buf, uname);
1617 if (fit_img_result < 0) {
1618 /* Something went wrong! */
1619 return fit_img_result;
1620 }
1621 fit_img_result = fit_image_get_type(buf,
1622 fit_img_result,
1623 &img_type);
1624 if (fit_img_result < 0) {
1625 /* Something went wrong! */
1626 return fit_img_result;
1627 }
1628
1629 fit_loadable_process(img_type, img_data, img_len);
1630 }
1631 break;
1632 default:
1633 printf("The given image format is not supported (corrupt?)\n");
1634 return 1;
1635 }
1636
1637 return 0;
1638 }
1639 #endif
1640
1641 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE
1642 /**
1643 * boot_get_cmdline - allocate and initialize kernel cmdline
1644 * @lmb: pointer to lmb handle, will be used for memory mgmt
1645 * @cmd_start: pointer to a ulong variable, will hold cmdline start
1646 * @cmd_end: pointer to a ulong variable, will hold cmdline end
1647 *
1648 * boot_get_cmdline() allocates space for kernel command line below
1649 * BOOTMAPSZ + env_get_bootm_low() address. If "bootargs" U-Boot environment
1650 * variable is present its contents is copied to allocated kernel
1651 * command line.
1652 *
1653 * returns:
1654 * 0 - success
1655 * -1 - failure
1656 */
boot_get_cmdline(struct lmb * lmb,ulong * cmd_start,ulong * cmd_end)1657 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end)
1658 {
1659 char *cmdline;
1660 char *s;
1661
1662 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf,
1663 env_get_bootm_mapsize() + env_get_bootm_low());
1664
1665 if (cmdline == NULL)
1666 return -1;
1667
1668 s = env_get("bootargs");
1669 if (!s)
1670 s = "";
1671
1672 strcpy(cmdline, s);
1673
1674 *cmd_start = (ulong) & cmdline[0];
1675 *cmd_end = *cmd_start + strlen(cmdline);
1676
1677 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end);
1678
1679 return 0;
1680 }
1681 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */
1682
1683 #ifdef CONFIG_SYS_BOOT_GET_KBD
1684 /**
1685 * boot_get_kbd - allocate and initialize kernel copy of board info
1686 * @lmb: pointer to lmb handle, will be used for memory mgmt
1687 * @kbd: double pointer to board info data
1688 *
1689 * boot_get_kbd() allocates space for kernel copy of board info data below
1690 * BOOTMAPSZ + env_get_bootm_low() address and kernel board info is initialized
1691 * with the current u-boot board info data.
1692 *
1693 * returns:
1694 * 0 - success
1695 * -1 - failure
1696 */
boot_get_kbd(struct lmb * lmb,struct bd_info ** kbd)1697 int boot_get_kbd(struct lmb *lmb, struct bd_info **kbd)
1698 {
1699 *kbd = (struct bd_info *)(ulong)lmb_alloc_base(lmb,
1700 sizeof(struct bd_info),
1701 0xf,
1702 env_get_bootm_mapsize() + env_get_bootm_low());
1703 if (*kbd == NULL)
1704 return -1;
1705
1706 **kbd = *(gd->bd);
1707
1708 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd);
1709
1710 #if defined(DEBUG) && defined(CONFIG_CMD_BDI)
1711 do_bdinfo(NULL, 0, 0, NULL);
1712 #endif
1713
1714 return 0;
1715 }
1716 #endif /* CONFIG_SYS_BOOT_GET_KBD */
1717
1718 #ifdef CONFIG_LMB
image_setup_linux(bootm_headers_t * images)1719 int image_setup_linux(bootm_headers_t *images)
1720 {
1721 ulong of_size = images->ft_len;
1722 char **of_flat_tree = &images->ft_addr;
1723 struct lmb *lmb = &images->lmb;
1724 int ret;
1725
1726 if (IMAGE_ENABLE_OF_LIBFDT)
1727 boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree);
1728
1729 if (IMAGE_BOOT_GET_CMDLINE) {
1730 ret = boot_get_cmdline(lmb, &images->cmdline_start,
1731 &images->cmdline_end);
1732 if (ret) {
1733 puts("ERROR with allocation of cmdline\n");
1734 return ret;
1735 }
1736 }
1737
1738 if (IMAGE_ENABLE_OF_LIBFDT) {
1739 ret = boot_relocate_fdt(lmb, of_flat_tree, &of_size);
1740 if (ret)
1741 return ret;
1742 }
1743
1744 if (IMAGE_ENABLE_OF_LIBFDT && of_size) {
1745 ret = image_setup_libfdt(images, *of_flat_tree, of_size, lmb);
1746 if (ret)
1747 return ret;
1748 }
1749
1750 return 0;
1751 }
1752 #endif /* CONFIG_LMB */
1753 #endif /* !USE_HOSTCC */
1754