1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3 * Copyright (c) 2015-2021, Linaro Limited
4 */
5
6 #include <arm.h>
7 #include <assert.h>
8 #include <compiler.h>
9 #include <config.h>
10 #include <console.h>
11 #include <crypto/crypto.h>
12 #include <drivers/gic.h>
13 #include <initcall.h>
14 #include <inttypes.h>
15 #include <keep.h>
16 #include <kernel/asan.h>
17 #include <kernel/boot.h>
18 #include <kernel/linker.h>
19 #include <kernel/misc.h>
20 #include <kernel/panic.h>
21 #include <kernel/tee_misc.h>
22 #include <kernel/thread.h>
23 #include <kernel/tpm.h>
24 #include <libfdt.h>
25 #include <malloc.h>
26 #include <mm/core_memprot.h>
27 #include <mm/core_mmu.h>
28 #include <mm/fobj.h>
29 #include <mm/tee_mm.h>
30 #include <mm/tee_pager.h>
31 #include <sm/psci.h>
32 #include <stdio.h>
33 #include <trace.h>
34 #include <utee_defines.h>
35 #include <util.h>
36
37 #include <platform_config.h>
38
39 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
40 #include <sm/sm.h>
41 #endif
42
43 #if defined(CFG_WITH_VFP)
44 #include <kernel/vfp.h>
45 #endif
46
47 /*
48 * In this file we're using unsigned long to represent physical pointers as
49 * they are received in a single register when OP-TEE is initially entered.
50 * This limits 32-bit systems to only use make use of the lower 32 bits
51 * of a physical address for initial parameters.
52 *
53 * 64-bit systems on the other hand can use full 64-bit physical pointers.
54 */
55 #define PADDR_INVALID ULONG_MAX
56
57 #if defined(CFG_BOOT_SECONDARY_REQUEST)
58 struct ns_entry_context {
59 uintptr_t entry_point;
60 uintptr_t context_id;
61 };
62 struct ns_entry_context ns_entry_contexts[CFG_TEE_CORE_NB_CORE];
63 static uint32_t spin_table[CFG_TEE_CORE_NB_CORE];
64 #endif
65
66 #ifdef CFG_BOOT_SYNC_CPU
67 /*
68 * Array used when booting, to synchronize cpu.
69 * When 0, the cpu has not started.
70 * When 1, it has started
71 */
72 uint32_t sem_cpu_sync[CFG_TEE_CORE_NB_CORE];
73 DECLARE_KEEP_PAGER(sem_cpu_sync);
74 #endif
75
76 #ifdef CFG_DT
77 struct dt_descriptor {
78 void *blob;
79 #ifdef _CFG_USE_DTB_OVERLAY
80 int frag_id;
81 #endif
82 };
83
84 static struct dt_descriptor external_dt __nex_bss;
85 #endif
86
87 #ifdef CFG_SECONDARY_INIT_CNTFRQ
88 static uint32_t cntfrq;
89 #endif
90
91 /* May be overridden in plat-$(PLATFORM)/main.c */
plat_primary_init_early(void)92 __weak void plat_primary_init_early(void)
93 {
94 }
95 DECLARE_KEEP_PAGER(plat_primary_init_early);
96
97 /* May be overridden in plat-$(PLATFORM)/main.c */
main_init_gic(void)98 __weak void main_init_gic(void)
99 {
100 }
101
102 /* May be overridden in plat-$(PLATFORM)/main.c */
main_secondary_init_gic(void)103 __weak void main_secondary_init_gic(void)
104 {
105 }
106
107 /* May be overridden in plat-$(PLATFORM)/main.c */
plat_get_aslr_seed(void)108 __weak unsigned long plat_get_aslr_seed(void)
109 {
110 DMSG("Warning: no ASLR seed");
111
112 return 0;
113 }
114
115 #if defined(CFG_WITH_ARM_TRUSTED_FW)
init_sec_mon(unsigned long nsec_entry __maybe_unused)116 void init_sec_mon(unsigned long nsec_entry __maybe_unused)
117 {
118 assert(nsec_entry == PADDR_INVALID);
119 /* Do nothing as we don't have a secure monitor */
120 }
121 #else
122 /* May be overridden in plat-$(PLATFORM)/main.c */
init_sec_mon(unsigned long nsec_entry)123 __weak void init_sec_mon(unsigned long nsec_entry)
124 {
125 struct sm_nsec_ctx *nsec_ctx;
126
127 assert(nsec_entry != PADDR_INVALID);
128
129 /* Initialize secure monitor */
130 nsec_ctx = sm_get_nsec_ctx();
131 nsec_ctx->mon_lr = nsec_entry;
132 nsec_ctx->mon_spsr = CPSR_MODE_SVC | CPSR_I;
133 if (nsec_entry & 1)
134 nsec_ctx->mon_spsr |= CPSR_T;
135 }
136 #endif
137
138 #if defined(CFG_WITH_ARM_TRUSTED_FW)
init_vfp_nsec(void)139 static void init_vfp_nsec(void)
140 {
141 }
142 #else
init_vfp_nsec(void)143 static void init_vfp_nsec(void)
144 {
145 /* Normal world can use CP10 and CP11 (SIMD/VFP) */
146 write_nsacr(read_nsacr() | NSACR_CP10 | NSACR_CP11);
147 }
148 #endif
149
150 #if defined(CFG_WITH_VFP)
151
152 #ifdef ARM32
init_vfp_sec(void)153 static void init_vfp_sec(void)
154 {
155 uint32_t cpacr = read_cpacr();
156
157 /*
158 * Enable Advanced SIMD functionality.
159 * Enable use of D16-D31 of the Floating-point Extension register
160 * file.
161 */
162 cpacr &= ~(CPACR_ASEDIS | CPACR_D32DIS);
163 /*
164 * Enable usage of CP10 and CP11 (SIMD/VFP) (both kernel and user
165 * mode.
166 */
167 cpacr |= CPACR_CP(10, CPACR_CP_ACCESS_FULL);
168 cpacr |= CPACR_CP(11, CPACR_CP_ACCESS_FULL);
169 write_cpacr(cpacr);
170 }
171 #endif /* ARM32 */
172
173 #ifdef ARM64
init_vfp_sec(void)174 static void init_vfp_sec(void)
175 {
176 /* Not using VFP until thread_kernel_enable_vfp() */
177 vfp_disable();
178 }
179 #endif /* ARM64 */
180
181 #else /* CFG_WITH_VFP */
182
init_vfp_sec(void)183 static void init_vfp_sec(void)
184 {
185 /* Not using VFP */
186 }
187 #endif
188
189 #ifdef CFG_SECONDARY_INIT_CNTFRQ
primary_save_cntfrq(void)190 static void primary_save_cntfrq(void)
191 {
192 assert(cntfrq == 0);
193
194 /*
195 * CNTFRQ should be initialized on the primary CPU by a
196 * previous boot stage
197 */
198 cntfrq = read_cntfrq();
199 }
200
secondary_init_cntfrq(void)201 static void secondary_init_cntfrq(void)
202 {
203 assert(cntfrq != 0);
204 write_cntfrq(cntfrq);
205 }
206 #else /* CFG_SECONDARY_INIT_CNTFRQ */
primary_save_cntfrq(void)207 static void primary_save_cntfrq(void)
208 {
209 }
210
secondary_init_cntfrq(void)211 static void secondary_init_cntfrq(void)
212 {
213 }
214 #endif
215
216 #ifdef CFG_CORE_SANITIZE_KADDRESS
init_run_constructors(void)217 static void init_run_constructors(void)
218 {
219 const vaddr_t *ctor;
220
221 for (ctor = &__ctor_list; ctor < &__ctor_end; ctor++)
222 ((void (*)(void))(*ctor))();
223 }
224
init_asan(void)225 static void init_asan(void)
226 {
227
228 /*
229 * CFG_ASAN_SHADOW_OFFSET is also supplied as
230 * -fasan-shadow-offset=$(CFG_ASAN_SHADOW_OFFSET) to the compiler.
231 * Since all the needed values to calculate the value of
232 * CFG_ASAN_SHADOW_OFFSET isn't available in to make we need to
233 * calculate it in advance and hard code it into the platform
234 * conf.mk. Here where we have all the needed values we double
235 * check that the compiler is supplied the correct value.
236 */
237
238 #define __ASAN_SHADOW_START \
239 ROUNDUP(TEE_RAM_VA_START + (TEE_RAM_VA_SIZE * 8) / 9 - 8, 8)
240 assert(__ASAN_SHADOW_START == (vaddr_t)&__asan_shadow_start);
241 #define __CFG_ASAN_SHADOW_OFFSET \
242 (__ASAN_SHADOW_START - (TEE_RAM_VA_START / 8))
243 COMPILE_TIME_ASSERT(CFG_ASAN_SHADOW_OFFSET == __CFG_ASAN_SHADOW_OFFSET);
244 #undef __ASAN_SHADOW_START
245 #undef __CFG_ASAN_SHADOW_OFFSET
246
247 /*
248 * Assign area covered by the shadow area, everything from start up
249 * to the beginning of the shadow area.
250 */
251 asan_set_shadowed((void *)TEE_TEXT_VA_START, &__asan_shadow_start);
252
253 /*
254 * Add access to areas that aren't opened automatically by a
255 * constructor.
256 */
257 asan_tag_access(&__ctor_list, &__ctor_end);
258 asan_tag_access(__rodata_start, __rodata_end);
259 #ifdef CFG_WITH_PAGER
260 asan_tag_access(__pageable_start, __pageable_end);
261 #endif /*CFG_WITH_PAGER*/
262 asan_tag_access(__nozi_start, __nozi_end);
263 asan_tag_access(__exidx_start, __exidx_end);
264 asan_tag_access(__extab_start, __extab_end);
265
266 init_run_constructors();
267
268 /* Everything is tagged correctly, let's start address sanitizing. */
269 asan_start();
270 }
271 #else /*CFG_CORE_SANITIZE_KADDRESS*/
init_asan(void)272 static void init_asan(void)
273 {
274 }
275 #endif /*CFG_CORE_SANITIZE_KADDRESS*/
276
277 #ifdef CFG_WITH_PAGER
278
279 #ifdef CFG_CORE_SANITIZE_KADDRESS
carve_out_asan_mem(tee_mm_pool_t * pool)280 static void carve_out_asan_mem(tee_mm_pool_t *pool)
281 {
282 const size_t s = pool->hi - pool->lo;
283 tee_mm_entry_t *mm;
284 paddr_t apa = ASAN_MAP_PA;
285 size_t asz = ASAN_MAP_SZ;
286
287 if (core_is_buffer_outside(apa, asz, pool->lo, s))
288 return;
289
290 /* Reserve the shadow area */
291 if (!core_is_buffer_inside(apa, asz, pool->lo, s)) {
292 if (apa < pool->lo) {
293 /*
294 * ASAN buffer is overlapping with the beginning of
295 * the pool.
296 */
297 asz -= pool->lo - apa;
298 apa = pool->lo;
299 } else {
300 /*
301 * ASAN buffer is overlapping with the end of the
302 * pool.
303 */
304 asz = pool->hi - apa;
305 }
306 }
307 mm = tee_mm_alloc2(pool, apa, asz);
308 assert(mm);
309 }
310 #else
carve_out_asan_mem(tee_mm_pool_t * pool __unused)311 static void carve_out_asan_mem(tee_mm_pool_t *pool __unused)
312 {
313 }
314 #endif
315
print_pager_pool_size(void)316 static void print_pager_pool_size(void)
317 {
318 struct tee_pager_stats __maybe_unused stats;
319
320 tee_pager_get_stats(&stats);
321 IMSG("Pager pool size: %zukB",
322 stats.npages_all * SMALL_PAGE_SIZE / 1024);
323 }
324
init_vcore(tee_mm_pool_t * mm_vcore)325 static void init_vcore(tee_mm_pool_t *mm_vcore)
326 {
327 const vaddr_t begin = VCORE_START_VA;
328 size_t size = TEE_RAM_VA_SIZE;
329
330 #ifdef CFG_CORE_SANITIZE_KADDRESS
331 /* Carve out asan memory, flat maped after core memory */
332 if (begin + size > ASAN_SHADOW_PA)
333 size = ASAN_MAP_PA - begin;
334 #endif
335
336 if (!tee_mm_init(mm_vcore, begin, size, SMALL_PAGE_SHIFT,
337 TEE_MM_POOL_NO_FLAGS))
338 panic("tee_mm_vcore init failed");
339 }
340
341 /*
342 * With CFG_CORE_ASLR=y the init part is relocated very early during boot.
343 * The init part is also paged just as the rest of the normal paged code, with
344 * the difference that it's preloaded during boot. When the backing store
345 * is configured the entire paged binary is copied in place and then also
346 * the init part. Since the init part has been relocated (references to
347 * addresses updated to compensate for the new load address) this has to be
348 * undone for the hashes of those pages to match with the original binary.
349 *
350 * If CFG_CORE_ASLR=n, nothing needs to be done as the code/ro pages are
351 * unchanged.
352 */
undo_init_relocation(uint8_t * paged_store __maybe_unused)353 static void undo_init_relocation(uint8_t *paged_store __maybe_unused)
354 {
355 #ifdef CFG_CORE_ASLR
356 unsigned long *ptr = NULL;
357 const uint32_t *reloc = NULL;
358 const uint32_t *reloc_end = NULL;
359 unsigned long offs = boot_mmu_config.load_offset;
360 const struct boot_embdata *embdata = (const void *)__init_end;
361 vaddr_t addr_end = (vaddr_t)__init_end - offs - TEE_RAM_START;
362 vaddr_t addr_start = (vaddr_t)__init_start - offs - TEE_RAM_START;
363
364 reloc = (const void *)((vaddr_t)embdata + embdata->reloc_offset);
365 reloc_end = reloc + embdata->reloc_len / sizeof(*reloc);
366
367 for (; reloc < reloc_end; reloc++) {
368 if (*reloc < addr_start)
369 continue;
370 if (*reloc >= addr_end)
371 break;
372 ptr = (void *)(paged_store + *reloc - addr_start);
373 *ptr -= offs;
374 }
375 #endif
376 }
377
ro_paged_alloc(tee_mm_entry_t * mm,void * hashes,void * store)378 static struct fobj *ro_paged_alloc(tee_mm_entry_t *mm, void *hashes,
379 void *store)
380 {
381 const unsigned int num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE;
382 #ifdef CFG_CORE_ASLR
383 unsigned int reloc_offs = (vaddr_t)__pageable_start - VCORE_START_VA;
384 const struct boot_embdata *embdata = (const void *)__init_end;
385 const void *reloc = __init_end + embdata->reloc_offset;
386
387 return fobj_ro_reloc_paged_alloc(num_pages, hashes, reloc_offs,
388 reloc, embdata->reloc_len, store);
389 #else
390 return fobj_ro_paged_alloc(num_pages, hashes, store);
391 #endif
392 }
393
init_runtime(unsigned long pageable_part)394 static void init_runtime(unsigned long pageable_part)
395 {
396 size_t n;
397 size_t init_size = (size_t)(__init_end - __init_start);
398 size_t pageable_start = (size_t)__pageable_start;
399 size_t pageable_end = (size_t)__pageable_end;
400 size_t pageable_size = pageable_end - pageable_start;
401 size_t tzsram_end = TZSRAM_BASE + TZSRAM_SIZE;
402 size_t hash_size = (pageable_size / SMALL_PAGE_SIZE) *
403 TEE_SHA256_HASH_SIZE;
404 const struct boot_embdata *embdata = (const void *)__init_end;
405 const void *tmp_hashes = NULL;
406 tee_mm_entry_t *mm = NULL;
407 struct fobj *fobj = NULL;
408 uint8_t *paged_store = NULL;
409 uint8_t *hashes = NULL;
410
411 assert(pageable_size % SMALL_PAGE_SIZE == 0);
412 assert(embdata->total_len >= embdata->hashes_offset +
413 embdata->hashes_len);
414 assert(hash_size == embdata->hashes_len);
415
416 tmp_hashes = __init_end + embdata->hashes_offset;
417
418 init_asan();
419
420 /* Add heap2 first as heap1 may be too small as initial bget pool */
421 malloc_add_pool(__heap2_start, __heap2_end - __heap2_start);
422 malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
423
424 /*
425 * This needs to be initialized early to support address lookup
426 * in MEM_AREA_TEE_RAM
427 */
428 tee_pager_early_init();
429
430 hashes = malloc(hash_size);
431 IMSG_RAW("\n");
432 IMSG("Pager is enabled. Hashes: %zu bytes", hash_size);
433 assert(hashes);
434 asan_memcpy_unchecked(hashes, tmp_hashes, hash_size);
435
436 /*
437 * Need tee_mm_sec_ddr initialized to be able to allocate secure
438 * DDR below.
439 */
440 core_mmu_init_ta_ram();
441
442 carve_out_asan_mem(&tee_mm_sec_ddr);
443
444 mm = tee_mm_alloc(&tee_mm_sec_ddr, pageable_size);
445 assert(mm);
446 paged_store = phys_to_virt(tee_mm_get_smem(mm), MEM_AREA_TA_RAM,
447 pageable_size);
448 /*
449 * Load pageable part in the dedicated allocated area:
450 * - Move pageable non-init part into pageable area. Note bootloader
451 * may have loaded it anywhere in TA RAM hence use memmove().
452 * - Copy pageable init part from current location into pageable area.
453 */
454 memmove(paged_store + init_size,
455 phys_to_virt(pageable_part,
456 core_mmu_get_type_by_pa(pageable_part),
457 __pageable_part_end - __pageable_part_start),
458 __pageable_part_end - __pageable_part_start);
459 asan_memcpy_unchecked(paged_store, __init_start, init_size);
460 /*
461 * Undo eventual relocation for the init part so the hash checks
462 * can pass.
463 */
464 undo_init_relocation(paged_store);
465
466 /* Check that hashes of what's in pageable area is OK */
467 DMSG("Checking hashes of pageable area");
468 for (n = 0; (n * SMALL_PAGE_SIZE) < pageable_size; n++) {
469 const uint8_t *hash = hashes + n * TEE_SHA256_HASH_SIZE;
470 const uint8_t *page = paged_store + n * SMALL_PAGE_SIZE;
471 TEE_Result res;
472
473 DMSG("hash pg_idx %zu hash %p page %p", n, hash, page);
474 res = hash_sha256_check(hash, page, SMALL_PAGE_SIZE);
475 if (res != TEE_SUCCESS) {
476 EMSG("Hash failed for page %zu at %p: res 0x%x",
477 n, (void *)page, res);
478 panic();
479 }
480 }
481
482 /*
483 * Assert prepaged init sections are page aligned so that nothing
484 * trails uninited at the end of the premapped init area.
485 */
486 assert(!(init_size & SMALL_PAGE_MASK));
487
488 /*
489 * Initialize the virtual memory pool used for main_mmu_l2_ttb which
490 * is supplied to tee_pager_init() below.
491 */
492 init_vcore(&tee_mm_vcore);
493
494 /*
495 * Assign alias area for pager end of the small page block the rest
496 * of the binary is loaded into. We're taking more than needed, but
497 * we're guaranteed to not need more than the physical amount of
498 * TZSRAM.
499 */
500 mm = tee_mm_alloc2(&tee_mm_vcore,
501 (vaddr_t)tee_mm_vcore.lo +
502 tee_mm_vcore.size - TZSRAM_SIZE,
503 TZSRAM_SIZE);
504 assert(mm);
505 tee_pager_set_alias_area(mm);
506
507 /*
508 * Claim virtual memory which isn't paged.
509 * Linear memory (flat map core memory) ends there.
510 */
511 mm = tee_mm_alloc2(&tee_mm_vcore, VCORE_UNPG_RX_PA,
512 (vaddr_t)(__pageable_start - VCORE_UNPG_RX_PA));
513 assert(mm);
514
515 /*
516 * Allocate virtual memory for the pageable area and let the pager
517 * take charge of all the pages already assigned to that memory.
518 */
519 mm = tee_mm_alloc2(&tee_mm_vcore, (vaddr_t)__pageable_start,
520 pageable_size);
521 assert(mm);
522 fobj = ro_paged_alloc(mm, hashes, paged_store);
523 assert(fobj);
524 tee_pager_add_core_region(tee_mm_get_smem(mm), PAGED_REGION_TYPE_RO,
525 fobj);
526 fobj_put(fobj);
527
528 tee_pager_add_pages(pageable_start, init_size / SMALL_PAGE_SIZE, false);
529 tee_pager_add_pages(pageable_start + init_size,
530 (pageable_size - init_size) / SMALL_PAGE_SIZE,
531 true);
532 if (pageable_end < tzsram_end)
533 tee_pager_add_pages(pageable_end, (tzsram_end - pageable_end) /
534 SMALL_PAGE_SIZE, true);
535
536 /*
537 * There may be physical pages in TZSRAM before the core load address.
538 * These pages can be added to the physical pages pool of the pager.
539 * This setup may happen when a the secure bootloader runs in TZRAM
540 * and its memory can be reused by OP-TEE once boot stages complete.
541 */
542 tee_pager_add_pages(tee_mm_vcore.lo,
543 (VCORE_UNPG_RX_PA - tee_mm_vcore.lo) / SMALL_PAGE_SIZE,
544 true);
545
546 print_pager_pool_size();
547 }
548 #else
549
init_runtime(unsigned long pageable_part __unused)550 static void init_runtime(unsigned long pageable_part __unused)
551 {
552 init_asan();
553
554 /*
555 * By default whole OP-TEE uses malloc, so we need to initialize
556 * it early. But, when virtualization is enabled, malloc is used
557 * only by TEE runtime, so malloc should be initialized later, for
558 * every virtual partition separately. Core code uses nex_malloc
559 * instead.
560 */
561 #ifdef CFG_VIRTUALIZATION
562 nex_malloc_add_pool(__nex_heap_start, __nex_heap_end -
563 __nex_heap_start);
564 #else
565 malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
566 #endif
567
568 IMSG_RAW("\n");
569 }
570 #endif
571
get_dt(void)572 void *get_dt(void)
573 {
574 void *fdt = get_embedded_dt();
575
576 if (!fdt)
577 fdt = get_external_dt();
578
579 return fdt;
580 }
581
582 #if defined(CFG_EMBED_DTB)
get_embedded_dt(void)583 void *get_embedded_dt(void)
584 {
585 static bool checked;
586
587 assert(cpu_mmu_enabled());
588
589 if (!checked) {
590 IMSG("Embedded DTB found");
591
592 if (fdt_check_header(embedded_secure_dtb))
593 panic("Invalid embedded DTB");
594
595 checked = true;
596 }
597
598 return embedded_secure_dtb;
599 }
600 #else
get_embedded_dt(void)601 void *get_embedded_dt(void)
602 {
603 return NULL;
604 }
605 #endif /*CFG_EMBED_DTB*/
606
607 #if defined(CFG_DT)
get_external_dt(void)608 void *get_external_dt(void)
609 {
610 assert(cpu_mmu_enabled());
611 return external_dt.blob;
612 }
613
release_external_dt(void)614 static TEE_Result release_external_dt(void)
615 {
616 int ret = 0;
617
618 if (!external_dt.blob)
619 return TEE_SUCCESS;
620
621 ret = fdt_pack(external_dt.blob);
622 if (ret < 0) {
623 EMSG("Failed to pack Device Tree at 0x%" PRIxPA ": error %d",
624 virt_to_phys(external_dt.blob), ret);
625 panic();
626 }
627
628 if (core_mmu_remove_mapping(MEM_AREA_EXT_DT, external_dt.blob,
629 CFG_DTB_MAX_SIZE))
630 panic("Failed to remove temporary Device Tree mapping");
631
632 /* External DTB no more reached, reset pointer to invalid */
633 external_dt.blob = NULL;
634
635 return TEE_SUCCESS;
636 }
637 boot_final(release_external_dt);
638
639 #ifdef _CFG_USE_DTB_OVERLAY
add_dt_overlay_fragment(struct dt_descriptor * dt,int ioffs)640 static int add_dt_overlay_fragment(struct dt_descriptor *dt, int ioffs)
641 {
642 char frag[32];
643 int offs;
644 int ret;
645
646 snprintf(frag, sizeof(frag), "fragment@%d", dt->frag_id);
647 offs = fdt_add_subnode(dt->blob, ioffs, frag);
648 if (offs < 0)
649 return offs;
650
651 dt->frag_id += 1;
652
653 ret = fdt_setprop_string(dt->blob, offs, "target-path", "/");
654 if (ret < 0)
655 return -1;
656
657 return fdt_add_subnode(dt->blob, offs, "__overlay__");
658 }
659
init_dt_overlay(struct dt_descriptor * dt,int __maybe_unused dt_size)660 static int init_dt_overlay(struct dt_descriptor *dt, int __maybe_unused dt_size)
661 {
662 int fragment;
663
664 if (IS_ENABLED(CFG_EXTERNAL_DTB_OVERLAY)) {
665 if (!fdt_check_header(dt->blob)) {
666 fdt_for_each_subnode(fragment, dt->blob, 0)
667 dt->frag_id += 1;
668 return 0;
669 }
670 }
671
672 return fdt_create_empty_tree(dt->blob, dt_size);
673 }
674 #else
add_dt_overlay_fragment(struct dt_descriptor * dt __unused,int offs)675 static int add_dt_overlay_fragment(struct dt_descriptor *dt __unused, int offs)
676 {
677 return offs;
678 }
679
init_dt_overlay(struct dt_descriptor * dt __unused,int dt_size __unused)680 static int init_dt_overlay(struct dt_descriptor *dt __unused,
681 int dt_size __unused)
682 {
683 return 0;
684 }
685 #endif /* _CFG_USE_DTB_OVERLAY */
686
add_dt_path_subnode(struct dt_descriptor * dt,const char * path,const char * subnode)687 static int add_dt_path_subnode(struct dt_descriptor *dt, const char *path,
688 const char *subnode)
689 {
690 int offs;
691
692 offs = fdt_path_offset(dt->blob, path);
693 if (offs < 0)
694 return -1;
695 offs = add_dt_overlay_fragment(dt, offs);
696 if (offs < 0)
697 return -1;
698 offs = fdt_add_subnode(dt->blob, offs, subnode);
699 if (offs < 0)
700 return -1;
701 return offs;
702 }
703
add_optee_dt_node(struct dt_descriptor * dt)704 static int add_optee_dt_node(struct dt_descriptor *dt)
705 {
706 int offs;
707 int ret;
708
709 if (fdt_path_offset(dt->blob, "/firmware/optee") >= 0) {
710 DMSG("OP-TEE Device Tree node already exists!");
711 return 0;
712 }
713
714 offs = fdt_path_offset(dt->blob, "/firmware");
715 if (offs < 0) {
716 offs = add_dt_path_subnode(dt, "/", "firmware");
717 if (offs < 0)
718 return -1;
719 }
720
721 offs = fdt_add_subnode(dt->blob, offs, "optee");
722 if (offs < 0)
723 return -1;
724
725 ret = fdt_setprop_string(dt->blob, offs, "compatible",
726 "linaro,optee-tz");
727 if (ret < 0)
728 return -1;
729 ret = fdt_setprop_string(dt->blob, offs, "method", "smc");
730 if (ret < 0)
731 return -1;
732 if (CFG_CORE_ASYNC_NOTIF_GIC_INTID) {
733 /*
734 * The format of the interrupt property is defined by the
735 * binding of the interrupt domain root. In this case it's
736 * one Arm GIC v1, v2 or v3 so we must be compatible with
737 * these.
738 *
739 * An SPI type of interrupt is indicated with a 0 in the
740 * first cell.
741 *
742 * The interrupt number goes in the second cell where
743 * SPIs ranges from 0 to 987.
744 *
745 * Flags are passed in the third cell where a 1 means edge
746 * triggered.
747 */
748 const uint32_t gic_spi = 0;
749 const uint32_t irq_type_edge = 1;
750 uint32_t val[] = {
751 TEE_U32_TO_BIG_ENDIAN(gic_spi),
752 TEE_U32_TO_BIG_ENDIAN(CFG_CORE_ASYNC_NOTIF_GIC_INTID -
753 GIC_SPI_BASE),
754 TEE_U32_TO_BIG_ENDIAN(irq_type_edge),
755 };
756
757 ret = fdt_setprop(dt->blob, offs, "interrupts", val,
758 sizeof(val));
759 if (ret < 0)
760 return -1;
761 }
762 return 0;
763 }
764
765 #ifdef CFG_PSCI_ARM32
append_psci_compatible(void * fdt,int offs,const char * str)766 static int append_psci_compatible(void *fdt, int offs, const char *str)
767 {
768 return fdt_appendprop(fdt, offs, "compatible", str, strlen(str) + 1);
769 }
770
dt_add_psci_node(struct dt_descriptor * dt)771 static int dt_add_psci_node(struct dt_descriptor *dt)
772 {
773 int offs;
774
775 if (fdt_path_offset(dt->blob, "/psci") >= 0) {
776 DMSG("PSCI Device Tree node already exists!");
777 return 0;
778 }
779
780 offs = add_dt_path_subnode(dt, "/", "psci");
781 if (offs < 0)
782 return -1;
783 if (append_psci_compatible(dt->blob, offs, "arm,psci-1.0"))
784 return -1;
785 if (append_psci_compatible(dt->blob, offs, "arm,psci-0.2"))
786 return -1;
787 if (append_psci_compatible(dt->blob, offs, "arm,psci"))
788 return -1;
789 if (fdt_setprop_string(dt->blob, offs, "method", "smc"))
790 return -1;
791 if (fdt_setprop_u32(dt->blob, offs, "cpu_suspend", PSCI_CPU_SUSPEND))
792 return -1;
793 if (fdt_setprop_u32(dt->blob, offs, "cpu_off", PSCI_CPU_OFF))
794 return -1;
795 if (fdt_setprop_u32(dt->blob, offs, "cpu_on", PSCI_CPU_ON))
796 return -1;
797 if (fdt_setprop_u32(dt->blob, offs, "sys_poweroff", PSCI_SYSTEM_OFF))
798 return -1;
799 if (fdt_setprop_u32(dt->blob, offs, "sys_reset", PSCI_SYSTEM_RESET))
800 return -1;
801 return 0;
802 }
803
check_node_compat_prefix(struct dt_descriptor * dt,int offs,const char * prefix)804 static int check_node_compat_prefix(struct dt_descriptor *dt, int offs,
805 const char *prefix)
806 {
807 const size_t prefix_len = strlen(prefix);
808 size_t l;
809 int plen;
810 const char *prop;
811
812 prop = fdt_getprop(dt->blob, offs, "compatible", &plen);
813 if (!prop)
814 return -1;
815
816 while (plen > 0) {
817 if (memcmp(prop, prefix, prefix_len) == 0)
818 return 0; /* match */
819
820 l = strlen(prop) + 1;
821 prop += l;
822 plen -= l;
823 }
824
825 return -1;
826 }
827
dt_add_psci_cpu_enable_methods(struct dt_descriptor * dt)828 static int dt_add_psci_cpu_enable_methods(struct dt_descriptor *dt)
829 {
830 int offs = 0;
831
832 while (1) {
833 offs = fdt_next_node(dt->blob, offs, NULL);
834 if (offs < 0)
835 break;
836 if (fdt_getprop(dt->blob, offs, "enable-method", NULL))
837 continue; /* already set */
838 if (check_node_compat_prefix(dt, offs, "arm,cortex-a"))
839 continue; /* no compatible */
840 if (fdt_setprop_string(dt->blob, offs, "enable-method", "psci"))
841 return -1;
842 /* Need to restart scanning as offsets may have changed */
843 offs = 0;
844 }
845 return 0;
846 }
847
config_psci(struct dt_descriptor * dt)848 static int config_psci(struct dt_descriptor *dt)
849 {
850 if (dt_add_psci_node(dt))
851 return -1;
852 return dt_add_psci_cpu_enable_methods(dt);
853 }
854 #else
config_psci(struct dt_descriptor * dt __unused)855 static int config_psci(struct dt_descriptor *dt __unused)
856 {
857 return 0;
858 }
859 #endif /*CFG_PSCI_ARM32*/
860
set_dt_val(void * data,uint32_t cell_size,uint64_t val)861 static void set_dt_val(void *data, uint32_t cell_size, uint64_t val)
862 {
863 if (cell_size == 1) {
864 fdt32_t v = cpu_to_fdt32((uint32_t)val);
865
866 memcpy(data, &v, sizeof(v));
867 } else {
868 fdt64_t v = cpu_to_fdt64(val);
869
870 memcpy(data, &v, sizeof(v));
871 }
872 }
873
add_res_mem_dt_node(struct dt_descriptor * dt,const char * name,paddr_t pa,size_t size)874 static int add_res_mem_dt_node(struct dt_descriptor *dt, const char *name,
875 paddr_t pa, size_t size)
876 {
877 int offs = 0;
878 int ret = 0;
879 int addr_size = -1;
880 int len_size = -1;
881 bool found = true;
882 char subnode_name[80] = { 0 };
883
884 offs = fdt_path_offset(dt->blob, "/reserved-memory");
885
886 if (offs < 0) {
887 found = false;
888 offs = 0;
889 }
890
891 if (IS_ENABLED(_CFG_USE_DTB_OVERLAY)) {
892 len_size = sizeof(paddr_t) / sizeof(uint32_t);
893 addr_size = sizeof(paddr_t) / sizeof(uint32_t);
894 } else {
895 len_size = fdt_size_cells(dt->blob, offs);
896 if (len_size < 0)
897 return -1;
898 addr_size = fdt_address_cells(dt->blob, offs);
899 if (addr_size < 0)
900 return -1;
901 }
902
903 if (!found) {
904 offs = add_dt_path_subnode(dt, "/", "reserved-memory");
905 if (offs < 0)
906 return -1;
907 ret = fdt_setprop_cell(dt->blob, offs, "#address-cells",
908 addr_size);
909 if (ret < 0)
910 return -1;
911 ret = fdt_setprop_cell(dt->blob, offs, "#size-cells", len_size);
912 if (ret < 0)
913 return -1;
914 ret = fdt_setprop(dt->blob, offs, "ranges", NULL, 0);
915 if (ret < 0)
916 return -1;
917 }
918
919 ret = snprintf(subnode_name, sizeof(subnode_name),
920 "%s@%" PRIxPA, name, pa);
921 if (ret < 0 || ret >= (int)sizeof(subnode_name))
922 DMSG("truncated node \"%s@%" PRIxPA"\"", name, pa);
923 offs = fdt_add_subnode(dt->blob, offs, subnode_name);
924 if (offs >= 0) {
925 uint32_t data[FDT_MAX_NCELLS * 2];
926
927 set_dt_val(data, addr_size, pa);
928 set_dt_val(data + addr_size, len_size, size);
929 ret = fdt_setprop(dt->blob, offs, "reg", data,
930 sizeof(uint32_t) * (addr_size + len_size));
931 if (ret < 0)
932 return -1;
933 ret = fdt_setprop(dt->blob, offs, "no-map", NULL, 0);
934 if (ret < 0)
935 return -1;
936 } else {
937 return -1;
938 }
939 return 0;
940 }
941
942 #ifdef CFG_CORE_DYN_SHM
get_dt_val_and_advance(const void * data,size_t * offs,uint32_t cell_size)943 static uint64_t get_dt_val_and_advance(const void *data, size_t *offs,
944 uint32_t cell_size)
945 {
946 uint64_t rv = 0;
947
948 if (cell_size == 1) {
949 uint32_t v;
950
951 memcpy(&v, (const uint8_t *)data + *offs, sizeof(v));
952 *offs += sizeof(v);
953 rv = fdt32_to_cpu(v);
954 } else {
955 uint64_t v;
956
957 memcpy(&v, (const uint8_t *)data + *offs, sizeof(v));
958 *offs += sizeof(v);
959 rv = fdt64_to_cpu(v);
960 }
961
962 return rv;
963 }
964
965 /*
966 * Find all non-secure memory from DT. Memory marked inaccessible by Secure
967 * World is ignored since it could not be mapped to be used as dynamic shared
968 * memory.
969 */
get_nsec_memory_helper(void * fdt,struct core_mmu_phys_mem * mem)970 static int get_nsec_memory_helper(void *fdt, struct core_mmu_phys_mem *mem)
971 {
972 const uint8_t *prop = NULL;
973 uint64_t a = 0;
974 uint64_t l = 0;
975 size_t prop_offs = 0;
976 size_t prop_len = 0;
977 int elems_total = 0;
978 int addr_size = 0;
979 int len_size = 0;
980 int offs = 0;
981 size_t n = 0;
982 int len = 0;
983
984 addr_size = fdt_address_cells(fdt, 0);
985 if (addr_size < 0)
986 return 0;
987
988 len_size = fdt_size_cells(fdt, 0);
989 if (len_size < 0)
990 return 0;
991
992 while (true) {
993 offs = fdt_node_offset_by_prop_value(fdt, offs, "device_type",
994 "memory",
995 sizeof("memory"));
996 if (offs < 0)
997 break;
998
999 if (_fdt_get_status(fdt, offs) != (DT_STATUS_OK_NSEC |
1000 DT_STATUS_OK_SEC))
1001 continue;
1002
1003 prop = fdt_getprop(fdt, offs, "reg", &len);
1004 if (!prop)
1005 continue;
1006
1007 prop_len = len;
1008 for (n = 0, prop_offs = 0; prop_offs < prop_len; n++) {
1009 a = get_dt_val_and_advance(prop, &prop_offs, addr_size);
1010 if (prop_offs >= prop_len) {
1011 n--;
1012 break;
1013 }
1014
1015 l = get_dt_val_and_advance(prop, &prop_offs, len_size);
1016 if (mem) {
1017 mem->type = MEM_AREA_DDR_OVERALL;
1018 mem->addr = a;
1019 mem->size = l;
1020 mem++;
1021 }
1022 }
1023
1024 elems_total += n;
1025 }
1026
1027 return elems_total;
1028 }
1029
get_nsec_memory(void * fdt,size_t * nelems)1030 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt, size_t *nelems)
1031 {
1032 struct core_mmu_phys_mem *mem = NULL;
1033 int elems_total = 0;
1034
1035 elems_total = get_nsec_memory_helper(fdt, NULL);
1036 if (elems_total <= 0)
1037 return NULL;
1038
1039 mem = nex_calloc(elems_total, sizeof(*mem));
1040 if (!mem)
1041 panic();
1042
1043 elems_total = get_nsec_memory_helper(fdt, mem);
1044 assert(elems_total > 0);
1045
1046 *nelems = elems_total;
1047
1048 return mem;
1049 }
1050 #endif /*CFG_CORE_DYN_SHM*/
1051
1052 #ifdef CFG_CORE_RESERVED_SHM
mark_static_shm_as_reserved(struct dt_descriptor * dt)1053 static int mark_static_shm_as_reserved(struct dt_descriptor *dt)
1054 {
1055 vaddr_t shm_start;
1056 vaddr_t shm_end;
1057
1058 core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &shm_start, &shm_end);
1059 if (shm_start != shm_end)
1060 return add_res_mem_dt_node(dt, "optee_shm",
1061 virt_to_phys((void *)shm_start),
1062 shm_end - shm_start);
1063
1064 DMSG("No SHM configured");
1065 return -1;
1066 }
1067 #endif /*CFG_CORE_RESERVED_SHM*/
1068
init_external_dt(unsigned long phys_dt)1069 static void init_external_dt(unsigned long phys_dt)
1070 {
1071 struct dt_descriptor *dt = &external_dt;
1072 void *fdt;
1073 int ret;
1074
1075 if (!phys_dt) {
1076 /*
1077 * No need to panic as we're not using the DT in OP-TEE
1078 * yet, we're only adding some nodes for normal world use.
1079 * This makes the switch to using DT easier as we can boot
1080 * a newer OP-TEE with older boot loaders. Once we start to
1081 * initialize devices based on DT we'll likely panic
1082 * instead of returning here.
1083 */
1084 IMSG("No non-secure external DT");
1085 return;
1086 }
1087
1088 fdt = core_mmu_add_mapping(MEM_AREA_EXT_DT, phys_dt, CFG_DTB_MAX_SIZE);
1089 if (!fdt)
1090 panic("Failed to map external DTB");
1091
1092 dt->blob = fdt;
1093
1094 ret = init_dt_overlay(dt, CFG_DTB_MAX_SIZE);
1095 if (ret < 0) {
1096 EMSG("Device Tree Overlay init fail @ %#lx: error %d", phys_dt,
1097 ret);
1098 panic();
1099 }
1100
1101 ret = fdt_open_into(fdt, fdt, CFG_DTB_MAX_SIZE);
1102 if (ret < 0) {
1103 EMSG("Invalid Device Tree at %#lx: error %d", phys_dt, ret);
1104 panic();
1105 }
1106
1107 IMSG("Non-secure external DT found");
1108 }
1109
mark_tzdram_as_reserved(struct dt_descriptor * dt)1110 static int mark_tzdram_as_reserved(struct dt_descriptor *dt)
1111 {
1112 return add_res_mem_dt_node(dt, "optee_core", CFG_TZDRAM_START,
1113 CFG_TZDRAM_SIZE);
1114 }
1115
update_external_dt(void)1116 static void update_external_dt(void)
1117 {
1118 struct dt_descriptor *dt = &external_dt;
1119
1120 if (!dt->blob)
1121 return;
1122
1123 if (!IS_ENABLED(CFG_CORE_FFA) && add_optee_dt_node(dt))
1124 panic("Failed to add OP-TEE Device Tree node");
1125
1126 if (config_psci(dt))
1127 panic("Failed to config PSCI");
1128
1129 #ifdef CFG_CORE_RESERVED_SHM
1130 if (mark_static_shm_as_reserved(dt))
1131 panic("Failed to config non-secure memory");
1132 #endif
1133
1134 if (mark_tzdram_as_reserved(dt))
1135 panic("Failed to config secure memory");
1136 }
1137 #else /*CFG_DT*/
get_external_dt(void)1138 void *get_external_dt(void)
1139 {
1140 return NULL;
1141 }
1142
init_external_dt(unsigned long phys_dt __unused)1143 static void init_external_dt(unsigned long phys_dt __unused)
1144 {
1145 }
1146
update_external_dt(void)1147 static void update_external_dt(void)
1148 {
1149 }
1150
1151 #ifdef CFG_CORE_DYN_SHM
get_nsec_memory(void * fdt __unused,size_t * nelems __unused)1152 static struct core_mmu_phys_mem *get_nsec_memory(void *fdt __unused,
1153 size_t *nelems __unused)
1154 {
1155 return NULL;
1156 }
1157 #endif /*CFG_CORE_DYN_SHM*/
1158 #endif /*!CFG_DT*/
1159
1160 #ifdef CFG_CORE_DYN_SHM
discover_nsec_memory(void)1161 static void discover_nsec_memory(void)
1162 {
1163 struct core_mmu_phys_mem *mem;
1164 const struct core_mmu_phys_mem *mem_begin = NULL;
1165 const struct core_mmu_phys_mem *mem_end = NULL;
1166 size_t nelems;
1167 void *fdt = get_external_dt();
1168
1169 if (fdt) {
1170 mem = get_nsec_memory(fdt, &nelems);
1171 if (mem) {
1172 core_mmu_set_discovered_nsec_ddr(mem, nelems);
1173 return;
1174 }
1175
1176 DMSG("No non-secure memory found in FDT");
1177 }
1178
1179 mem_begin = phys_ddr_overall_begin;
1180 mem_end = phys_ddr_overall_end;
1181 nelems = mem_end - mem_begin;
1182 if (nelems) {
1183 /*
1184 * Platform cannot use both register_ddr() and the now
1185 * deprecated register_dynamic_shm().
1186 */
1187 assert(phys_ddr_overall_compat_begin ==
1188 phys_ddr_overall_compat_end);
1189 } else {
1190 mem_begin = phys_ddr_overall_compat_begin;
1191 mem_end = phys_ddr_overall_compat_end;
1192 nelems = mem_end - mem_begin;
1193 if (!nelems)
1194 return;
1195 DMSG("Warning register_dynamic_shm() is deprecated, please use register_ddr() instead");
1196 }
1197
1198 mem = nex_calloc(nelems, sizeof(*mem));
1199 if (!mem)
1200 panic();
1201
1202 memcpy(mem, phys_ddr_overall_begin, sizeof(*mem) * nelems);
1203 core_mmu_set_discovered_nsec_ddr(mem, nelems);
1204 }
1205 #else /*CFG_CORE_DYN_SHM*/
discover_nsec_memory(void)1206 static void discover_nsec_memory(void)
1207 {
1208 }
1209 #endif /*!CFG_CORE_DYN_SHM*/
1210
1211 #ifdef CFG_VIRTUALIZATION
virt_init_heap(void)1212 static TEE_Result virt_init_heap(void)
1213 {
1214 /* We need to initialize pool for every virtual guest partition */
1215 malloc_add_pool(__heap1_start, __heap1_end - __heap1_start);
1216
1217 return TEE_SUCCESS;
1218 }
1219 preinit_early(virt_init_heap);
1220 #endif
1221
init_tee_runtime(void)1222 void init_tee_runtime(void)
1223 {
1224 #ifndef CFG_WITH_PAGER
1225 /* Pager initializes TA RAM early */
1226 core_mmu_init_ta_ram();
1227 #endif
1228 /*
1229 * With virtualization we call this function when creating the
1230 * OP-TEE partition instead.
1231 */
1232 if (!IS_ENABLED(CFG_VIRTUALIZATION))
1233 call_preinitcalls();
1234 call_initcalls();
1235 }
1236
init_primary(unsigned long pageable_part,unsigned long nsec_entry)1237 static void init_primary(unsigned long pageable_part, unsigned long nsec_entry)
1238 {
1239 /*
1240 * Mask asynchronous exceptions before switch to the thread vector
1241 * as the thread handler requires those to be masked while
1242 * executing with the temporary stack. The thread subsystem also
1243 * asserts that the foreign interrupts are blocked when using most of
1244 * its functions.
1245 */
1246 thread_set_exceptions(THREAD_EXCP_ALL);
1247 primary_save_cntfrq();
1248 init_vfp_sec();
1249 /*
1250 * Pager: init_runtime() calls thread_kernel_enable_vfp() so we must
1251 * set a current thread right now to avoid a chicken-and-egg problem
1252 * (thread_init_boot_thread() sets the current thread but needs
1253 * things set by init_runtime()).
1254 */
1255 thread_get_core_local()->curr_thread = 0;
1256 init_runtime(pageable_part);
1257
1258 if (IS_ENABLED(CFG_VIRTUALIZATION)) {
1259 /*
1260 * Virtualization: We can't initialize threads right now because
1261 * threads belong to "tee" part and will be initialized
1262 * separately per each new virtual guest. So, we'll clear
1263 * "curr_thread" and call it done.
1264 */
1265 thread_get_core_local()->curr_thread = -1;
1266 } else {
1267 thread_init_boot_thread();
1268 }
1269 thread_init_primary();
1270 thread_init_per_cpu();
1271 init_sec_mon(nsec_entry);
1272 }
1273
1274 /*
1275 * Note: this function is weak just to make it possible to exclude it from
1276 * the unpaged area.
1277 */
boot_init_primary_late(unsigned long fdt)1278 void __weak boot_init_primary_late(unsigned long fdt)
1279 {
1280 init_external_dt(fdt);
1281 tpm_map_log_area(get_external_dt());
1282 discover_nsec_memory();
1283 update_external_dt();
1284 configure_console_from_dt();
1285
1286 IMSG("OP-TEE version: %s", core_v_str);
1287 if (IS_ENABLED(CFG_WARN_INSECURE)) {
1288 IMSG("WARNING: This OP-TEE configuration might be insecure!");
1289 IMSG("WARNING: Please check https://optee.readthedocs.io/en/latest/architecture/porting_guidelines.html");
1290 }
1291 IMSG("Primary CPU initializing");
1292 #ifdef CFG_CORE_ASLR
1293 DMSG("Executing at offset %#lx with virtual load address %#"PRIxVA,
1294 (unsigned long)boot_mmu_config.load_offset, VCORE_START_VA);
1295 #endif
1296
1297 main_init_gic();
1298 init_vfp_nsec();
1299 if (IS_ENABLED(CFG_VIRTUALIZATION)) {
1300 IMSG("Initializing virtualization support");
1301 core_mmu_init_virtualization();
1302 } else {
1303 init_tee_runtime();
1304 }
1305 call_finalcalls();
1306 IMSG("Primary CPU switching to normal world boot");
1307 }
1308
init_secondary_helper(unsigned long nsec_entry)1309 static void init_secondary_helper(unsigned long nsec_entry)
1310 {
1311 IMSG("Secondary CPU %zu initializing", get_core_pos());
1312
1313 /*
1314 * Mask asynchronous exceptions before switch to the thread vector
1315 * as the thread handler requires those to be masked while
1316 * executing with the temporary stack. The thread subsystem also
1317 * asserts that the foreign interrupts are blocked when using most of
1318 * its functions.
1319 */
1320 thread_set_exceptions(THREAD_EXCP_ALL);
1321
1322 secondary_init_cntfrq();
1323 thread_init_per_cpu();
1324 init_sec_mon(nsec_entry);
1325 main_secondary_init_gic();
1326 init_vfp_sec();
1327 init_vfp_nsec();
1328
1329 IMSG("Secondary CPU %zu switching to normal world boot", get_core_pos());
1330 }
1331
1332 /*
1333 * Note: this function is weak just to make it possible to exclude it from
1334 * the unpaged area so that it lies in the init area.
1335 */
boot_init_primary_early(unsigned long pageable_part,unsigned long nsec_entry __maybe_unused)1336 void __weak boot_init_primary_early(unsigned long pageable_part,
1337 unsigned long nsec_entry __maybe_unused)
1338 {
1339 unsigned long e = PADDR_INVALID;
1340
1341 #if !defined(CFG_WITH_ARM_TRUSTED_FW)
1342 e = nsec_entry;
1343 #endif
1344
1345 init_primary(pageable_part, e);
1346 }
1347
1348 #if defined(CFG_WITH_ARM_TRUSTED_FW)
boot_cpu_on_handler(unsigned long a0 __maybe_unused,unsigned long a1 __unused)1349 unsigned long boot_cpu_on_handler(unsigned long a0 __maybe_unused,
1350 unsigned long a1 __unused)
1351 {
1352 init_secondary_helper(PADDR_INVALID);
1353 return 0;
1354 }
1355 #else
boot_init_secondary(unsigned long nsec_entry)1356 void boot_init_secondary(unsigned long nsec_entry)
1357 {
1358 init_secondary_helper(nsec_entry);
1359 }
1360 #endif
1361
1362 #if defined(CFG_BOOT_SECONDARY_REQUEST)
boot_set_core_ns_entry(size_t core_idx,uintptr_t entry,uintptr_t context_id)1363 void boot_set_core_ns_entry(size_t core_idx, uintptr_t entry,
1364 uintptr_t context_id)
1365 {
1366 ns_entry_contexts[core_idx].entry_point = entry;
1367 ns_entry_contexts[core_idx].context_id = context_id;
1368 dsb_ishst();
1369 }
1370
boot_core_release(size_t core_idx,paddr_t entry)1371 int boot_core_release(size_t core_idx, paddr_t entry)
1372 {
1373 if (!core_idx || core_idx >= CFG_TEE_CORE_NB_CORE)
1374 return -1;
1375
1376 ns_entry_contexts[core_idx].entry_point = entry;
1377 dmb();
1378 spin_table[core_idx] = 1;
1379 dsb();
1380 sev();
1381
1382 return 0;
1383 }
1384
1385 /*
1386 * spin until secondary boot request, then returns with
1387 * the secondary core entry address.
1388 */
boot_core_hpen(void)1389 struct ns_entry_context *boot_core_hpen(void)
1390 {
1391 #ifdef CFG_PSCI_ARM32
1392 return &ns_entry_contexts[get_core_pos()];
1393 #else
1394 do {
1395 wfe();
1396 } while (!spin_table[get_core_pos()]);
1397 dmb();
1398 return &ns_entry_contexts[get_core_pos()];
1399 #endif
1400 }
1401 #endif
1402
1403 #if defined(CFG_CORE_ASLR)
1404 #if defined(CFG_DT)
get_aslr_seed(void * fdt)1405 unsigned long __weak get_aslr_seed(void *fdt)
1406 {
1407 int rc = fdt_check_header(fdt);
1408 const uint64_t *seed = NULL;
1409 int offs = 0;
1410 int len = 0;
1411
1412 if (rc) {
1413 DMSG("Bad fdt: %d", rc);
1414 goto err;
1415 }
1416
1417 offs = fdt_path_offset(fdt, "/secure-chosen");
1418 if (offs < 0) {
1419 DMSG("Cannot find /secure-chosen");
1420 goto err;
1421 }
1422 seed = fdt_getprop(fdt, offs, "kaslr-seed", &len);
1423 if (!seed || len != sizeof(*seed)) {
1424 DMSG("Cannot find valid kaslr-seed");
1425 goto err;
1426 }
1427
1428 return fdt64_to_cpu(*seed);
1429
1430 err:
1431 /* Try platform implementation */
1432 return plat_get_aslr_seed();
1433 }
1434 #else /*!CFG_DT*/
get_aslr_seed(void * fdt __unused)1435 unsigned long __weak get_aslr_seed(void *fdt __unused)
1436 {
1437 /* Try platform implementation */
1438 return plat_get_aslr_seed();
1439 }
1440 #endif /*!CFG_DT*/
1441 #endif /*CFG_CORE_ASLR*/
1442