1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * SEC Descriptor Construction Library
4  * Basic job descriptor construction
5  *
6  * Copyright 2014 Freescale Semiconductor, Inc.
7  *
8  */
9 
10 #include <common.h>
11 #include <cpu_func.h>
12 #include <fsl_sec.h>
13 #include "desc_constr.h"
14 #include "jobdesc.h"
15 #include "rsa_caam.h"
16 #include <asm/cache.h>
17 
18 #if defined(CONFIG_MX6) || defined(CONFIG_MX7)
19 /*!
20  * Secure memory run command
21  *
22  * @param   sec_mem_cmd  Secure memory command register
23  * @return  cmd_status  Secure memory command status register
24  */
secmem_set_cmd(uint32_t sec_mem_cmd)25 uint32_t secmem_set_cmd(uint32_t sec_mem_cmd)
26 {
27 	uint32_t temp_reg;
28 
29 	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
30 	uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
31 	uint32_t jr_id = 0;
32 
33 	sec_out32(CAAM_SMCJR(sm_vid, jr_id), sec_mem_cmd);
34 
35 	do {
36 		temp_reg = sec_in32(CAAM_SMCSJR(sm_vid, jr_id));
37 	} while (temp_reg & CMD_COMPLETE);
38 
39 	return temp_reg;
40 }
41 
42 /*!
43  * CAAM page allocation:
44  * Allocates a partition from secure memory, with the id
45  * equal to partition_num. This will de-allocate the page
46  * if it is already allocated. The partition will have
47  * full access permissions. The permissions are set before,
48  * running a job descriptor. A memory page of secure RAM
49  * is allocated for the partition.
50  *
51  * @param   page  Number of the page to allocate.
52  * @param   partition  Number of the partition to allocate.
53  * @return  0 on success, ERROR_IN_PAGE_ALLOC otherwise
54  */
caam_page_alloc(uint8_t page_num,uint8_t partition_num)55 int caam_page_alloc(uint8_t page_num, uint8_t partition_num)
56 {
57 	uint32_t temp_reg;
58 
59 	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
60 	uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
61 	uint32_t jr_id = 0;
62 
63 	/*
64 	 * De-Allocate partition_num if already allocated to ARM core
65 	 */
66 	if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) {
67 		temp_reg = secmem_set_cmd(PARTITION(partition_num) |
68 						CMD_PART_DEALLOC);
69 		if (temp_reg & SMCSJR_AERR) {
70 			printf("Error: De-allocation status 0x%X\n", temp_reg);
71 			return ERROR_IN_PAGE_ALLOC;
72 		}
73 	}
74 
75 	/* set the access rights to allow full access */
76 	sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, partition_num), 0xF);
77 	sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, partition_num), 0xF);
78 	sec_out32(CAAM_SMAPJR(sm_vid, jr_id, partition_num), 0xFF);
79 
80 	/* Now need to allocate partition_num of secure RAM. */
81 	/* De-Allocate page_num by starting with a page inquiry command */
82 	temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
83 
84 	/* if the page is owned, de-allocate it */
85 	if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) {
86 		temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC);
87 		if (temp_reg & SMCSJR_AERR) {
88 			printf("Error: Allocation status 0x%X\n", temp_reg);
89 			return ERROR_IN_PAGE_ALLOC;
90 		}
91 	}
92 
93 	/* Allocate page_num to partition_num */
94 	temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num)
95 						| CMD_PAGE_ALLOC);
96 	if (temp_reg & SMCSJR_AERR) {
97 		printf("Error: Allocation status 0x%X\n", temp_reg);
98 		return ERROR_IN_PAGE_ALLOC;
99 	}
100 	/* page inquiry command to ensure that the page was allocated */
101 	temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
102 
103 	/* if the page is not owned => problem */
104 	if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) {
105 		printf("Allocation of page %u in partition %u failed 0x%X\n",
106 		       page_num, partition_num, temp_reg);
107 
108 		return ERROR_IN_PAGE_ALLOC;
109 	}
110 
111 	return 0;
112 }
113 
inline_cnstr_jobdesc_blob_dek(uint32_t * desc,const uint8_t * plain_txt,uint8_t * dek_blob,uint32_t in_sz)114 int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt,
115 				       uint8_t *dek_blob, uint32_t in_sz)
116 {
117 	ccsr_sec_t *sec = (void *)CONFIG_SYS_FSL_SEC_ADDR;
118 	uint32_t sm_vid = SM_VERSION(sec_in32(&sec->smvid));
119 	uint32_t jr_id = 0;
120 
121 	uint32_t ret = 0;
122 	u32 aad_w1, aad_w2;
123 	/* output blob will have 32 bytes key blob in beginning and
124 	 * 16 byte HMAC identifier at end of data blob */
125 	uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
126 	/* Setting HDR for blob */
127 	uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz,
128 			     HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG};
129 
130 	/* initialize the blob array */
131 	memset(dek_blob, 0, out_sz + 8);
132 	/* Copy the header into the DEK blob buffer */
133 	memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr));
134 
135 	/* allocating secure memory */
136 	ret = caam_page_alloc(PAGE_1, PARTITION_1);
137 	if (ret)
138 		return ret;
139 
140 	/* Write DEK to secure memory */
141 	memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz);
142 
143 	unsigned long start = (unsigned long)SEC_MEM_PAGE1 &
144 				~(ARCH_DMA_MINALIGN - 1);
145 	unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN);
146 	flush_dcache_range(start, end);
147 
148 	/* Now configure the access rights of the partition */
149 	sec_out32(CAAM_SMAG1JR(sm_vid, jr_id, PARTITION_1), KS_G1);
150 	sec_out32(CAAM_SMAG2JR(sm_vid, jr_id, PARTITION_1), 0);
151 	sec_out32(CAAM_SMAPJR(sm_vid, jr_id, PARTITION_1), PERM);
152 
153 	/* construct aad for AES */
154 	aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE;
155 	aad_w2 = 0x0;
156 
157 	init_job_desc(desc, 0);
158 
159 	append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC |
160 				(0x0c << LDST_OFFSET_SHIFT) | 0x08);
161 
162 	append_u32(desc, aad_w1);
163 
164 	append_u32(desc, aad_w2);
165 
166 	append_cmd_ptr(desc, (dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR);
167 
168 	append_cmd_ptr(desc, (dma_addr_t)dek_blob + 8, out_sz, CMD_SEQ_OUT_PTR);
169 
170 	append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB |
171 						OP_PCLID_SECMEM);
172 
173 	return ret;
174 }
175 #endif
176 
inline_cnstr_jobdesc_hash(uint32_t * desc,const uint8_t * msg,uint32_t msgsz,uint8_t * digest,u32 alg_type,uint32_t alg_size,int sg_tbl)177 void inline_cnstr_jobdesc_hash(uint32_t *desc,
178 			  const uint8_t *msg, uint32_t msgsz, uint8_t *digest,
179 			  u32 alg_type, uint32_t alg_size, int sg_tbl)
180 {
181 	/* SHA 256 , output is of length 32 words */
182 	uint32_t storelen = alg_size;
183 	u32 options;
184 	dma_addr_t dma_addr_in, dma_addr_out;
185 
186 	dma_addr_in = virt_to_phys((void *)msg);
187 	dma_addr_out = virt_to_phys((void *)digest);
188 
189 	init_job_desc(desc, 0);
190 	append_operation(desc, OP_TYPE_CLASS2_ALG |
191 			 OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL |
192 			 OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type);
193 
194 	options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2;
195 	if (sg_tbl)
196 		options |= FIFOLDST_SGF;
197 	if (msgsz > 0xffff) {
198 		options |= FIFOLDST_EXT;
199 		append_fifo_load(desc, dma_addr_in, 0, options);
200 		append_cmd(desc, msgsz);
201 	} else {
202 		append_fifo_load(desc, dma_addr_in, msgsz, options);
203 	}
204 
205 	append_store(desc, dma_addr_out, storelen,
206 		     LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT);
207 }
208 #ifndef CONFIG_SPL_BUILD
inline_cnstr_jobdesc_blob_encap(uint32_t * desc,uint8_t * key_idnfr,uint8_t * plain_txt,uint8_t * enc_blob,uint32_t in_sz)209 void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr,
210 				     uint8_t *plain_txt, uint8_t *enc_blob,
211 				     uint32_t in_sz)
212 {
213 	dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
214 	uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
215 	/* output blob will have 32 bytes key blob in beginning and
216 	 * 16 byte HMAC identifier at end of data blob */
217 	uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
218 
219 	dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
220 	dma_addr_in	= virt_to_phys((void *)plain_txt);
221 	dma_addr_out	= virt_to_phys((void *)enc_blob);
222 
223 	init_job_desc(desc, 0);
224 
225 	append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
226 
227 	append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
228 
229 	append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
230 
231 	append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB);
232 }
233 
inline_cnstr_jobdesc_blob_decap(uint32_t * desc,uint8_t * key_idnfr,uint8_t * enc_blob,uint8_t * plain_txt,uint32_t out_sz)234 void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr,
235 				     uint8_t *enc_blob, uint8_t *plain_txt,
236 				     uint32_t out_sz)
237 {
238 	dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
239 	uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
240 	uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE;
241 
242 	dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
243 	dma_addr_in	= virt_to_phys((void *)enc_blob);
244 	dma_addr_out	= virt_to_phys((void *)plain_txt);
245 
246 	init_job_desc(desc, 0);
247 
248 	append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
249 
250 	append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
251 
252 	append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
253 
254 	append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB);
255 }
256 #endif
257 /*
258  * Descriptor to instantiate RNG State Handle 0 in normal mode and
259  * load the JDKEK, TDKEK and TDSK registers
260  */
inline_cnstr_jobdesc_rng_instantiation(u32 * desc,int handle,int do_sk)261 void inline_cnstr_jobdesc_rng_instantiation(u32 *desc, int handle, int do_sk)
262 {
263 	u32 *jump_cmd;
264 
265 	init_job_desc(desc, 0);
266 
267 	/* INIT RNG in non-test mode */
268 	append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
269 			 (handle << OP_ALG_AAI_SHIFT) | OP_ALG_AS_INIT |
270 			 OP_ALG_PR_ON);
271 
272 	/* For SH0, Secure Keys must be generated as well */
273 	if (!handle && do_sk) {
274 		/* wait for done */
275 		jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1);
276 		set_jump_tgt_here(desc, jump_cmd);
277 
278 		/*
279 		 * load 1 to clear written reg:
280 		 * resets the done interrupt and returns the RNG to idle.
281 		 */
282 		append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW);
283 
284 		/* generate secure keys (non-test) */
285 		append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
286 				OP_ALG_RNG4_SK);
287 	}
288 }
289 
290 /* Descriptor for deinstantiation of the RNG block. */
inline_cnstr_jobdesc_rng_deinstantiation(u32 * desc,int handle)291 void inline_cnstr_jobdesc_rng_deinstantiation(u32 *desc, int handle)
292 {
293 	init_job_desc(desc, 0);
294 
295 	append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
296 			 (handle << OP_ALG_AAI_SHIFT) | OP_ALG_AS_INITFINAL);
297 }
298 
inline_cnstr_jobdesc_rng(u32 * desc,void * data_out,u32 size)299 void inline_cnstr_jobdesc_rng(u32 *desc, void *data_out, u32 size)
300 {
301 	dma_addr_t dma_data_out = virt_to_phys(data_out);
302 
303 	init_job_desc(desc, 0);
304 	append_operation(desc, OP_ALG_ALGSEL_RNG | OP_TYPE_CLASS1_ALG |
305 			 OP_ALG_PR_ON);
306 	append_fifo_store(desc, dma_data_out, size, FIFOST_TYPE_RNGSTORE);
307 }
308 
309 /* Change key size to bytes form bits in calling function*/
inline_cnstr_jobdesc_pkha_rsaexp(uint32_t * desc,struct pk_in_params * pkin,uint8_t * out,uint32_t out_siz)310 void inline_cnstr_jobdesc_pkha_rsaexp(uint32_t *desc,
311 				      struct pk_in_params *pkin, uint8_t *out,
312 				      uint32_t out_siz)
313 {
314 	dma_addr_t dma_addr_e, dma_addr_a, dma_addr_n, dma_addr_out;
315 
316 	dma_addr_e = virt_to_phys((void *)pkin->e);
317 	dma_addr_a = virt_to_phys((void *)pkin->a);
318 	dma_addr_n = virt_to_phys((void *)pkin->n);
319 	dma_addr_out = virt_to_phys((void *)out);
320 
321 	init_job_desc(desc, 0);
322 	append_key(desc, dma_addr_e, pkin->e_siz, KEY_DEST_PKHA_E | CLASS_1);
323 
324 	append_fifo_load(desc, dma_addr_a,
325 			 pkin->a_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_A);
326 
327 	append_fifo_load(desc, dma_addr_n,
328 			 pkin->n_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_N);
329 
330 	append_operation(desc, OP_TYPE_PK | OP_ALG_PK | OP_ALG_PKMODE_MOD_EXPO);
331 
332 	append_fifo_store(desc, dma_addr_out, out_siz,
333 			  LDST_CLASS_1_CCB | FIFOST_TYPE_PKHA_B);
334 }
335