1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2008-2015 Intel Corporation
4 */
5
6 #include "i915_drv.h"
7 #include "i915_scatterlist.h"
8 #include "i915_pvinfo.h"
9 #include "i915_vgpu.h"
10
11 /**
12 * DOC: fence register handling
13 *
14 * Important to avoid confusions: "fences" in the i915 driver are not execution
15 * fences used to track command completion but hardware detiler objects which
16 * wrap a given range of the global GTT. Each platform has only a fairly limited
17 * set of these objects.
18 *
19 * Fences are used to detile GTT memory mappings. They're also connected to the
20 * hardware frontbuffer render tracking and hence interact with frontbuffer
21 * compression. Furthermore on older platforms fences are required for tiled
22 * objects used by the display engine. They can also be used by the render
23 * engine - they're required for blitter commands and are optional for render
24 * commands. But on gen4+ both display (with the exception of fbc) and rendering
25 * have their own tiling state bits and don't need fences.
26 *
27 * Also note that fences only support X and Y tiling and hence can't be used for
28 * the fancier new tiling formats like W, Ys and Yf.
29 *
30 * Finally note that because fences are such a restricted resource they're
31 * dynamically associated with objects. Furthermore fence state is committed to
32 * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
33 * explicitly call i915_gem_object_get_fence() to synchronize fencing status
34 * for cpu access. Also note that some code wants an unfenced view, for those
35 * cases the fence can be removed forcefully with i915_gem_object_put_fence().
36 *
37 * Internally these functions will synchronize with userspace access by removing
38 * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
39 */
40
41 #define pipelined 0
42
fence_to_i915(struct i915_fence_reg * fence)43 static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
44 {
45 return fence->ggtt->vm.i915;
46 }
47
fence_to_uncore(struct i915_fence_reg * fence)48 static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
49 {
50 return fence->ggtt->vm.gt->uncore;
51 }
52
i965_write_fence_reg(struct i915_fence_reg * fence)53 static void i965_write_fence_reg(struct i915_fence_reg *fence)
54 {
55 i915_reg_t fence_reg_lo, fence_reg_hi;
56 int fence_pitch_shift;
57 u64 val;
58
59 if (GRAPHICS_VER(fence_to_i915(fence)) >= 6) {
60 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
61 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
62 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
63
64 } else {
65 fence_reg_lo = FENCE_REG_965_LO(fence->id);
66 fence_reg_hi = FENCE_REG_965_HI(fence->id);
67 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
68 }
69
70 val = 0;
71 if (fence->tiling) {
72 unsigned int stride = fence->stride;
73
74 GEM_BUG_ON(!IS_ALIGNED(stride, 128));
75
76 val = fence->start + fence->size - I965_FENCE_PAGE;
77 val <<= 32;
78 val |= fence->start;
79 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
80 if (fence->tiling == I915_TILING_Y)
81 val |= BIT(I965_FENCE_TILING_Y_SHIFT);
82 val |= I965_FENCE_REG_VALID;
83 }
84
85 if (!pipelined) {
86 struct intel_uncore *uncore = fence_to_uncore(fence);
87
88 /*
89 * To w/a incoherency with non-atomic 64-bit register updates,
90 * we split the 64-bit update into two 32-bit writes. In order
91 * for a partial fence not to be evaluated between writes, we
92 * precede the update with write to turn off the fence register,
93 * and only enable the fence as the last step.
94 *
95 * For extra levels of paranoia, we make sure each step lands
96 * before applying the next step.
97 */
98 intel_uncore_write_fw(uncore, fence_reg_lo, 0);
99 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
100
101 intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
102 intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
103 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
104 }
105 }
106
i915_write_fence_reg(struct i915_fence_reg * fence)107 static void i915_write_fence_reg(struct i915_fence_reg *fence)
108 {
109 u32 val;
110
111 val = 0;
112 if (fence->tiling) {
113 unsigned int stride = fence->stride;
114 unsigned int tiling = fence->tiling;
115 bool is_y_tiled = tiling == I915_TILING_Y;
116
117 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
118 stride /= 128;
119 else
120 stride /= 512;
121 GEM_BUG_ON(!is_power_of_2(stride));
122
123 val = fence->start;
124 if (is_y_tiled)
125 val |= BIT(I830_FENCE_TILING_Y_SHIFT);
126 val |= I915_FENCE_SIZE_BITS(fence->size);
127 val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
128
129 val |= I830_FENCE_REG_VALID;
130 }
131
132 if (!pipelined) {
133 struct intel_uncore *uncore = fence_to_uncore(fence);
134 i915_reg_t reg = FENCE_REG(fence->id);
135
136 intel_uncore_write_fw(uncore, reg, val);
137 intel_uncore_posting_read_fw(uncore, reg);
138 }
139 }
140
i830_write_fence_reg(struct i915_fence_reg * fence)141 static void i830_write_fence_reg(struct i915_fence_reg *fence)
142 {
143 u32 val;
144
145 val = 0;
146 if (fence->tiling) {
147 unsigned int stride = fence->stride;
148
149 val = fence->start;
150 if (fence->tiling == I915_TILING_Y)
151 val |= BIT(I830_FENCE_TILING_Y_SHIFT);
152 val |= I830_FENCE_SIZE_BITS(fence->size);
153 val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
154 val |= I830_FENCE_REG_VALID;
155 }
156
157 if (!pipelined) {
158 struct intel_uncore *uncore = fence_to_uncore(fence);
159 i915_reg_t reg = FENCE_REG(fence->id);
160
161 intel_uncore_write_fw(uncore, reg, val);
162 intel_uncore_posting_read_fw(uncore, reg);
163 }
164 }
165
fence_write(struct i915_fence_reg * fence)166 static void fence_write(struct i915_fence_reg *fence)
167 {
168 struct drm_i915_private *i915 = fence_to_i915(fence);
169
170 /*
171 * Previous access through the fence register is marshalled by
172 * the mb() inside the fault handlers (i915_gem_release_mmaps)
173 * and explicitly managed for internal users.
174 */
175
176 if (GRAPHICS_VER(i915) == 2)
177 i830_write_fence_reg(fence);
178 else if (GRAPHICS_VER(i915) == 3)
179 i915_write_fence_reg(fence);
180 else
181 i965_write_fence_reg(fence);
182
183 /*
184 * Access through the fenced region afterwards is
185 * ordered by the posting reads whilst writing the registers.
186 */
187 }
188
gpu_uses_fence_registers(struct i915_fence_reg * fence)189 static bool gpu_uses_fence_registers(struct i915_fence_reg *fence)
190 {
191 return GRAPHICS_VER(fence_to_i915(fence)) < 4;
192 }
193
fence_update(struct i915_fence_reg * fence,struct i915_vma * vma)194 static int fence_update(struct i915_fence_reg *fence,
195 struct i915_vma *vma)
196 {
197 struct i915_ggtt *ggtt = fence->ggtt;
198 struct intel_uncore *uncore = fence_to_uncore(fence);
199 intel_wakeref_t wakeref;
200 struct i915_vma *old;
201 int ret;
202
203 fence->tiling = 0;
204 if (vma) {
205 GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) ||
206 !i915_gem_object_get_tiling(vma->obj));
207
208 if (!i915_vma_is_map_and_fenceable(vma))
209 return -EINVAL;
210
211 if (gpu_uses_fence_registers(fence)) {
212 /* implicit 'unfenced' GPU blits */
213 ret = i915_vma_sync(vma);
214 if (ret)
215 return ret;
216 }
217
218 fence->start = vma->node.start;
219 fence->size = vma->fence_size;
220 fence->stride = i915_gem_object_get_stride(vma->obj);
221 fence->tiling = i915_gem_object_get_tiling(vma->obj);
222 }
223 WRITE_ONCE(fence->dirty, false);
224
225 old = xchg(&fence->vma, NULL);
226 if (old) {
227 /* XXX Ideally we would move the waiting to outside the mutex */
228 ret = i915_active_wait(&fence->active);
229 if (ret) {
230 fence->vma = old;
231 return ret;
232 }
233
234 i915_vma_flush_writes(old);
235
236 /*
237 * Ensure that all userspace CPU access is completed before
238 * stealing the fence.
239 */
240 if (old != vma) {
241 GEM_BUG_ON(old->fence != fence);
242 i915_vma_revoke_mmap(old);
243 old->fence = NULL;
244 }
245
246 list_move(&fence->link, &ggtt->fence_list);
247 }
248
249 /*
250 * We only need to update the register itself if the device is awake.
251 * If the device is currently powered down, we will defer the write
252 * to the runtime resume, see intel_ggtt_restore_fences().
253 *
254 * This only works for removing the fence register, on acquisition
255 * the caller must hold the rpm wakeref. The fence register must
256 * be cleared before we can use any other fences to ensure that
257 * the new fences do not overlap the elided clears, confusing HW.
258 */
259 wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
260 if (!wakeref) {
261 GEM_BUG_ON(vma);
262 return 0;
263 }
264
265 WRITE_ONCE(fence->vma, vma);
266 fence_write(fence);
267
268 if (vma) {
269 vma->fence = fence;
270 list_move_tail(&fence->link, &ggtt->fence_list);
271 }
272
273 intel_runtime_pm_put(uncore->rpm, wakeref);
274 return 0;
275 }
276
277 /**
278 * i915_vma_revoke_fence - force-remove fence for a VMA
279 * @vma: vma to map linearly (not through a fence reg)
280 *
281 * This function force-removes any fence from the given object, which is useful
282 * if the kernel wants to do untiled GTT access.
283 */
i915_vma_revoke_fence(struct i915_vma * vma)284 void i915_vma_revoke_fence(struct i915_vma *vma)
285 {
286 struct i915_fence_reg *fence = vma->fence;
287 intel_wakeref_t wakeref;
288
289 lockdep_assert_held(&vma->vm->mutex);
290 if (!fence)
291 return;
292
293 GEM_BUG_ON(fence->vma != vma);
294 GEM_BUG_ON(!i915_active_is_idle(&fence->active));
295 GEM_BUG_ON(atomic_read(&fence->pin_count));
296
297 fence->tiling = 0;
298 WRITE_ONCE(fence->vma, NULL);
299 vma->fence = NULL;
300
301 /*
302 * Skip the write to HW if and only if the device is currently
303 * suspended.
304 *
305 * If the driver does not currently hold a wakeref (if_in_use == 0),
306 * the device may currently be runtime suspended, or it may be woken
307 * up before the suspend takes place. If the device is not suspended
308 * (powered down) and we skip clearing the fence register, the HW is
309 * left in an undefined state where we may end up with multiple
310 * registers overlapping.
311 */
312 with_intel_runtime_pm_if_active(fence_to_uncore(fence)->rpm, wakeref)
313 fence_write(fence);
314 }
315
fence_is_active(const struct i915_fence_reg * fence)316 static bool fence_is_active(const struct i915_fence_reg *fence)
317 {
318 return fence->vma && i915_vma_is_active(fence->vma);
319 }
320
fence_find(struct i915_ggtt * ggtt)321 static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
322 {
323 struct i915_fence_reg *active = NULL;
324 struct i915_fence_reg *fence, *fn;
325
326 list_for_each_entry_safe(fence, fn, &ggtt->fence_list, link) {
327 GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
328
329 if (fence == active) /* now seen this fence twice */
330 active = ERR_PTR(-EAGAIN);
331
332 /* Prefer idle fences so we do not have to wait on the GPU */
333 if (active != ERR_PTR(-EAGAIN) && fence_is_active(fence)) {
334 if (!active)
335 active = fence;
336
337 list_move_tail(&fence->link, &ggtt->fence_list);
338 continue;
339 }
340
341 if (atomic_read(&fence->pin_count))
342 continue;
343
344 return fence;
345 }
346
347 /* Wait for completion of pending flips which consume fences */
348 if (intel_has_pending_fb_unpin(ggtt->vm.i915))
349 return ERR_PTR(-EAGAIN);
350
351 return ERR_PTR(-ENOBUFS);
352 }
353
__i915_vma_pin_fence(struct i915_vma * vma)354 int __i915_vma_pin_fence(struct i915_vma *vma)
355 {
356 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
357 struct i915_fence_reg *fence;
358 struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
359 int err;
360
361 lockdep_assert_held(&vma->vm->mutex);
362
363 /* Just update our place in the LRU if our fence is getting reused. */
364 if (vma->fence) {
365 fence = vma->fence;
366 GEM_BUG_ON(fence->vma != vma);
367 atomic_inc(&fence->pin_count);
368 if (!fence->dirty) {
369 list_move_tail(&fence->link, &ggtt->fence_list);
370 return 0;
371 }
372 } else if (set) {
373 fence = fence_find(ggtt);
374 if (IS_ERR(fence))
375 return PTR_ERR(fence);
376
377 GEM_BUG_ON(atomic_read(&fence->pin_count));
378 atomic_inc(&fence->pin_count);
379 } else {
380 return 0;
381 }
382
383 err = fence_update(fence, set);
384 if (err)
385 goto out_unpin;
386
387 GEM_BUG_ON(fence->vma != set);
388 GEM_BUG_ON(vma->fence != (set ? fence : NULL));
389
390 if (set)
391 return 0;
392
393 out_unpin:
394 atomic_dec(&fence->pin_count);
395 return err;
396 }
397
398 /**
399 * i915_vma_pin_fence - set up fencing for a vma
400 * @vma: vma to map through a fence reg
401 *
402 * When mapping objects through the GTT, userspace wants to be able to write
403 * to them without having to worry about swizzling if the object is tiled.
404 * This function walks the fence regs looking for a free one for @obj,
405 * stealing one if it can't find any.
406 *
407 * It then sets up the reg based on the object's properties: address, pitch
408 * and tiling format.
409 *
410 * For an untiled surface, this removes any existing fence.
411 *
412 * Returns:
413 *
414 * 0 on success, negative error code on failure.
415 */
i915_vma_pin_fence(struct i915_vma * vma)416 int i915_vma_pin_fence(struct i915_vma *vma)
417 {
418 int err;
419
420 if (!vma->fence && !i915_gem_object_is_tiled(vma->obj))
421 return 0;
422
423 /*
424 * Note that we revoke fences on runtime suspend. Therefore the user
425 * must keep the device awake whilst using the fence.
426 */
427 assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
428 GEM_BUG_ON(!i915_vma_is_pinned(vma));
429 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
430
431 err = mutex_lock_interruptible(&vma->vm->mutex);
432 if (err)
433 return err;
434
435 err = __i915_vma_pin_fence(vma);
436 mutex_unlock(&vma->vm->mutex);
437
438 return err;
439 }
440
441 /**
442 * i915_reserve_fence - Reserve a fence for vGPU
443 * @ggtt: Global GTT
444 *
445 * This function walks the fence regs looking for a free one and remove
446 * it from the fence_list. It is used to reserve fence for vGPU to use.
447 */
i915_reserve_fence(struct i915_ggtt * ggtt)448 struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
449 {
450 struct i915_fence_reg *fence;
451 int count;
452 int ret;
453
454 lockdep_assert_held(&ggtt->vm.mutex);
455
456 /* Keep at least one fence available for the display engine. */
457 count = 0;
458 list_for_each_entry(fence, &ggtt->fence_list, link)
459 count += !atomic_read(&fence->pin_count);
460 if (count <= 1)
461 return ERR_PTR(-ENOSPC);
462
463 fence = fence_find(ggtt);
464 if (IS_ERR(fence))
465 return fence;
466
467 if (fence->vma) {
468 /* Force-remove fence from VMA */
469 ret = fence_update(fence, NULL);
470 if (ret)
471 return ERR_PTR(ret);
472 }
473
474 list_del(&fence->link);
475
476 return fence;
477 }
478
479 /**
480 * i915_unreserve_fence - Reclaim a reserved fence
481 * @fence: the fence reg
482 *
483 * This function add a reserved fence register from vGPU to the fence_list.
484 */
i915_unreserve_fence(struct i915_fence_reg * fence)485 void i915_unreserve_fence(struct i915_fence_reg *fence)
486 {
487 struct i915_ggtt *ggtt = fence->ggtt;
488
489 lockdep_assert_held(&ggtt->vm.mutex);
490
491 list_add(&fence->link, &ggtt->fence_list);
492 }
493
494 /**
495 * intel_ggtt_restore_fences - restore fence state
496 * @ggtt: Global GTT
497 *
498 * Restore the hw fence state to match the software tracking again, to be called
499 * after a gpu reset and on resume. Note that on runtime suspend we only cancel
500 * the fences, to be reacquired by the user later.
501 */
intel_ggtt_restore_fences(struct i915_ggtt * ggtt)502 void intel_ggtt_restore_fences(struct i915_ggtt *ggtt)
503 {
504 int i;
505
506 for (i = 0; i < ggtt->num_fences; i++)
507 fence_write(&ggtt->fence_regs[i]);
508 }
509
510 /**
511 * DOC: tiling swizzling details
512 *
513 * The idea behind tiling is to increase cache hit rates by rearranging
514 * pixel data so that a group of pixel accesses are in the same cacheline.
515 * Performance improvement from doing this on the back/depth buffer are on
516 * the order of 30%.
517 *
518 * Intel architectures make this somewhat more complicated, though, by
519 * adjustments made to addressing of data when the memory is in interleaved
520 * mode (matched pairs of DIMMS) to improve memory bandwidth.
521 * For interleaved memory, the CPU sends every sequential 64 bytes
522 * to an alternate memory channel so it can get the bandwidth from both.
523 *
524 * The GPU also rearranges its accesses for increased bandwidth to interleaved
525 * memory, and it matches what the CPU does for non-tiled. However, when tiled
526 * it does it a little differently, since one walks addresses not just in the
527 * X direction but also Y. So, along with alternating channels when bit
528 * 6 of the address flips, it also alternates when other bits flip -- Bits 9
529 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
530 * are common to both the 915 and 965-class hardware.
531 *
532 * The CPU also sometimes XORs in higher bits as well, to improve
533 * bandwidth doing strided access like we do so frequently in graphics. This
534 * is called "Channel XOR Randomization" in the MCH documentation. The result
535 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
536 * decode.
537 *
538 * All of this bit 6 XORing has an effect on our memory management,
539 * as we need to make sure that the 3d driver can correctly address object
540 * contents.
541 *
542 * If we don't have interleaved memory, all tiling is safe and no swizzling is
543 * required.
544 *
545 * When bit 17 is XORed in, we simply refuse to tile at all. Bit
546 * 17 is not just a page offset, so as we page an object out and back in,
547 * individual pages in it will have different bit 17 addresses, resulting in
548 * each 64 bytes being swapped with its neighbor!
549 *
550 * Otherwise, if interleaved, we have to tell the 3d driver what the address
551 * swizzling it needs to do is, since it's writing with the CPU to the pages
552 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
553 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
554 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
555 * to match what the GPU expects.
556 */
557
558 /**
559 * detect_bit_6_swizzle - detect bit 6 swizzling pattern
560 * @ggtt: Global GGTT
561 *
562 * Detects bit 6 swizzling of address lookup between IGD access and CPU
563 * access through main memory.
564 */
detect_bit_6_swizzle(struct i915_ggtt * ggtt)565 static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
566 {
567 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
568 struct drm_i915_private *i915 = ggtt->vm.i915;
569 u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
570 u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
571
572 if (GRAPHICS_VER(i915) >= 8 || IS_VALLEYVIEW(i915)) {
573 /*
574 * On BDW+, swizzling is not used. We leave the CPU memory
575 * controller in charge of optimizing memory accesses without
576 * the extra address manipulation GPU side.
577 *
578 * VLV and CHV don't have GPU swizzling.
579 */
580 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
581 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
582 } else if (GRAPHICS_VER(i915) >= 6) {
583 if (i915->preserve_bios_swizzle) {
584 if (intel_uncore_read(uncore, DISP_ARB_CTL) &
585 DISP_TILE_SURFACE_SWIZZLING) {
586 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
587 swizzle_y = I915_BIT_6_SWIZZLE_9;
588 } else {
589 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
590 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
591 }
592 } else {
593 u32 dimm_c0, dimm_c1;
594
595 dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
596 dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
597 dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
598 dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
599 /*
600 * Enable swizzling when the channels are populated
601 * with identically sized dimms. We don't need to check
602 * the 3rd channel because no cpu with gpu attached
603 * ships in that configuration. Also, swizzling only
604 * makes sense for 2 channels anyway.
605 */
606 if (dimm_c0 == dimm_c1) {
607 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
608 swizzle_y = I915_BIT_6_SWIZZLE_9;
609 } else {
610 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
611 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
612 }
613 }
614 } else if (GRAPHICS_VER(i915) == 5) {
615 /*
616 * On Ironlake whatever DRAM config, GPU always do
617 * same swizzling setup.
618 */
619 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
620 swizzle_y = I915_BIT_6_SWIZZLE_9;
621 } else if (GRAPHICS_VER(i915) == 2) {
622 /*
623 * As far as we know, the 865 doesn't have these bit 6
624 * swizzling issues.
625 */
626 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
627 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
628 } else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
629 /*
630 * The 965, G33, and newer, have a very flexible memory
631 * configuration. It will enable dual-channel mode
632 * (interleaving) on as much memory as it can, and the GPU
633 * will additionally sometimes enable different bit 6
634 * swizzling for tiled objects from the CPU.
635 *
636 * Here's what I found on the G965:
637 * slot fill memory size swizzling
638 * 0A 0B 1A 1B 1-ch 2-ch
639 * 512 0 0 0 512 0 O
640 * 512 0 512 0 16 1008 X
641 * 512 0 0 512 16 1008 X
642 * 0 512 0 512 16 1008 X
643 * 1024 1024 1024 0 2048 1024 O
644 *
645 * We could probably detect this based on either the DRB
646 * matching, which was the case for the swizzling required in
647 * the table above, or from the 1-ch value being less than
648 * the minimum size of a rank.
649 *
650 * Reports indicate that the swizzling actually
651 * varies depending upon page placement inside the
652 * channels, i.e. we see swizzled pages where the
653 * banks of memory are paired and unswizzled on the
654 * uneven portion, so leave that as unknown.
655 */
656 if (intel_uncore_read16(uncore, C0DRB3_BW) ==
657 intel_uncore_read16(uncore, C1DRB3_BW)) {
658 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
659 swizzle_y = I915_BIT_6_SWIZZLE_9;
660 }
661 } else {
662 u32 dcc = intel_uncore_read(uncore, DCC);
663
664 /*
665 * On 9xx chipsets, channel interleave by the CPU is
666 * determined by DCC. For single-channel, neither the CPU
667 * nor the GPU do swizzling. For dual channel interleaved,
668 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
669 * 9 for Y tiled. The CPU's interleave is independent, and
670 * can be based on either bit 11 (haven't seen this yet) or
671 * bit 17 (common).
672 */
673 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
674 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
675 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
676 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
677 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
678 break;
679 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
680 if (dcc & DCC_CHANNEL_XOR_DISABLE) {
681 /*
682 * This is the base swizzling by the GPU for
683 * tiled buffers.
684 */
685 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
686 swizzle_y = I915_BIT_6_SWIZZLE_9;
687 } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
688 /* Bit 11 swizzling by the CPU in addition. */
689 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
690 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
691 } else {
692 /* Bit 17 swizzling by the CPU in addition. */
693 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
694 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
695 }
696 break;
697 }
698
699 /* check for L-shaped memory aka modified enhanced addressing */
700 if (GRAPHICS_VER(i915) == 4 &&
701 !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
702 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
703 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
704 }
705
706 if (dcc == 0xffffffff) {
707 drm_err(&i915->drm, "Couldn't read from MCHBAR. "
708 "Disabling tiling.\n");
709 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
710 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
711 }
712 }
713
714 if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
715 swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
716 /*
717 * Userspace likes to explode if it sees unknown swizzling,
718 * so lie. We will finish the lie when reporting through
719 * the get-tiling-ioctl by reporting the physical swizzle
720 * mode as unknown instead.
721 *
722 * As we don't strictly know what the swizzling is, it may be
723 * bit17 dependent, and so we need to also prevent the pages
724 * from being moved.
725 */
726 i915->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
727 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
728 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
729 }
730
731 i915->ggtt.bit_6_swizzle_x = swizzle_x;
732 i915->ggtt.bit_6_swizzle_y = swizzle_y;
733 }
734
735 /*
736 * Swap every 64 bytes of this page around, to account for it having a new
737 * bit 17 of its physical address and therefore being interpreted differently
738 * by the GPU.
739 */
swizzle_page(struct page * page)740 static void swizzle_page(struct page *page)
741 {
742 char temp[64];
743 char *vaddr;
744 int i;
745
746 vaddr = kmap(page);
747
748 for (i = 0; i < PAGE_SIZE; i += 128) {
749 memcpy(temp, &vaddr[i], 64);
750 memcpy(&vaddr[i], &vaddr[i + 64], 64);
751 memcpy(&vaddr[i + 64], temp, 64);
752 }
753
754 kunmap(page);
755 }
756
757 /**
758 * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
759 * @obj: i915 GEM buffer object
760 * @pages: the scattergather list of physical pages
761 *
762 * This function fixes up the swizzling in case any page frame number for this
763 * object has changed in bit 17 since that state has been saved with
764 * i915_gem_object_save_bit_17_swizzle().
765 *
766 * This is called when pinning backing storage again, since the kernel is free
767 * to move unpinned backing storage around (either by directly moving pages or
768 * by swapping them out and back in again).
769 */
770 void
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object * obj,struct sg_table * pages)771 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
772 struct sg_table *pages)
773 {
774 struct sgt_iter sgt_iter;
775 struct page *page;
776 int i;
777
778 if (obj->bit_17 == NULL)
779 return;
780
781 i = 0;
782 for_each_sgt_page(page, sgt_iter, pages) {
783 char new_bit_17 = page_to_phys(page) >> 17;
784
785 if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
786 swizzle_page(page);
787 set_page_dirty(page);
788 }
789
790 i++;
791 }
792 }
793
794 /**
795 * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
796 * @obj: i915 GEM buffer object
797 * @pages: the scattergather list of physical pages
798 *
799 * This function saves the bit 17 of each page frame number so that swizzling
800 * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
801 * be called before the backing storage can be unpinned.
802 */
803 void
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object * obj,struct sg_table * pages)804 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
805 struct sg_table *pages)
806 {
807 const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
808 struct sgt_iter sgt_iter;
809 struct page *page;
810 int i;
811
812 if (obj->bit_17 == NULL) {
813 obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
814 if (obj->bit_17 == NULL) {
815 DRM_ERROR("Failed to allocate memory for bit 17 "
816 "record\n");
817 return;
818 }
819 }
820
821 i = 0;
822
823 for_each_sgt_page(page, sgt_iter, pages) {
824 if (page_to_phys(page) & (1 << 17))
825 __set_bit(i, obj->bit_17);
826 else
827 __clear_bit(i, obj->bit_17);
828 i++;
829 }
830 }
831
intel_ggtt_init_fences(struct i915_ggtt * ggtt)832 void intel_ggtt_init_fences(struct i915_ggtt *ggtt)
833 {
834 struct drm_i915_private *i915 = ggtt->vm.i915;
835 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
836 int num_fences;
837 int i;
838
839 INIT_LIST_HEAD(&ggtt->fence_list);
840 INIT_LIST_HEAD(&ggtt->userfault_list);
841 intel_wakeref_auto_init(&ggtt->userfault_wakeref, uncore->rpm);
842
843 detect_bit_6_swizzle(ggtt);
844
845 if (!i915_ggtt_has_aperture(ggtt))
846 num_fences = 0;
847 else if (GRAPHICS_VER(i915) >= 7 &&
848 !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
849 num_fences = 32;
850 else if (GRAPHICS_VER(i915) >= 4 ||
851 IS_I945G(i915) || IS_I945GM(i915) ||
852 IS_G33(i915) || IS_PINEVIEW(i915))
853 num_fences = 16;
854 else
855 num_fences = 8;
856
857 if (intel_vgpu_active(i915))
858 num_fences = intel_uncore_read(uncore,
859 vgtif_reg(avail_rs.fence_num));
860 ggtt->fence_regs = kcalloc(num_fences,
861 sizeof(*ggtt->fence_regs),
862 GFP_KERNEL);
863 if (!ggtt->fence_regs)
864 num_fences = 0;
865
866 /* Initialize fence registers to zero */
867 for (i = 0; i < num_fences; i++) {
868 struct i915_fence_reg *fence = &ggtt->fence_regs[i];
869
870 i915_active_init(&fence->active, NULL, NULL, 0);
871 fence->ggtt = ggtt;
872 fence->id = i;
873 list_add_tail(&fence->link, &ggtt->fence_list);
874 }
875 ggtt->num_fences = num_fences;
876
877 intel_ggtt_restore_fences(ggtt);
878 }
879
intel_ggtt_fini_fences(struct i915_ggtt * ggtt)880 void intel_ggtt_fini_fences(struct i915_ggtt *ggtt)
881 {
882 int i;
883
884 for (i = 0; i < ggtt->num_fences; i++) {
885 struct i915_fence_reg *fence = &ggtt->fence_regs[i];
886
887 i915_active_fini(&fence->active);
888 }
889
890 kfree(ggtt->fence_regs);
891 }
892
intel_gt_init_swizzling(struct intel_gt * gt)893 void intel_gt_init_swizzling(struct intel_gt *gt)
894 {
895 struct drm_i915_private *i915 = gt->i915;
896 struct intel_uncore *uncore = gt->uncore;
897
898 if (GRAPHICS_VER(i915) < 5 ||
899 i915->ggtt.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
900 return;
901
902 intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
903
904 if (GRAPHICS_VER(i915) == 5)
905 return;
906
907 intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
908
909 if (GRAPHICS_VER(i915) == 6)
910 intel_uncore_write(uncore,
911 ARB_MODE,
912 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
913 else if (GRAPHICS_VER(i915) == 7)
914 intel_uncore_write(uncore,
915 ARB_MODE,
916 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
917 else if (GRAPHICS_VER(i915) == 8)
918 intel_uncore_write(uncore,
919 GAMTARBMODE,
920 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
921 else
922 MISSING_CASE(GRAPHICS_VER(i915));
923 }
924