1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020,2021 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "intel_step.h"
8 
9 /*
10  * Some platforms have unusual ways of mapping PCI revision ID to GT/display
11  * steppings.  E.g., in some cases a higher PCI revision may translate to a
12  * lower stepping of the GT and/or display IP.  This file provides lookup
13  * tables to map the PCI revision into a standard set of stepping values that
14  * can be compared numerically.
15  *
16  * Also note that some revisions/steppings may have been set aside as
17  * placeholders but never materialized in real hardware; in those cases there
18  * may be jumps in the revision IDs or stepping values in the tables below.
19  */
20 
21 /*
22  * Some platforms always have the same stepping value for GT and display;
23  * use a macro to define these to make it easier to identify the platforms
24  * where the two steppings can deviate.
25  */
26 #define COMMON_STEP(x)  .gt_step = STEP_##x, .display_step = STEP_##x
27 
28 static const struct intel_step_info skl_revids[] = {
29 	[0x6] = { COMMON_STEP(G0) },
30 	[0x7] = { COMMON_STEP(H0) },
31 	[0x9] = { COMMON_STEP(J0) },
32 	[0xA] = { COMMON_STEP(I1) },
33 };
34 
35 static const struct intel_step_info kbl_revids[] = {
36 	[1] = { .gt_step = STEP_B0, .display_step = STEP_B0 },
37 	[2] = { .gt_step = STEP_C0, .display_step = STEP_B0 },
38 	[3] = { .gt_step = STEP_D0, .display_step = STEP_B0 },
39 	[4] = { .gt_step = STEP_F0, .display_step = STEP_C0 },
40 	[5] = { .gt_step = STEP_C0, .display_step = STEP_B1 },
41 	[6] = { .gt_step = STEP_D1, .display_step = STEP_B1 },
42 	[7] = { .gt_step = STEP_G0, .display_step = STEP_C0 },
43 };
44 
45 static const struct intel_step_info bxt_revids[] = {
46 	[0xA] = { COMMON_STEP(C0) },
47 	[0xB] = { COMMON_STEP(C0) },
48 	[0xC] = { COMMON_STEP(D0) },
49 	[0xD] = { COMMON_STEP(E0) },
50 };
51 
52 static const struct intel_step_info glk_revids[] = {
53 	[3] = { COMMON_STEP(B0) },
54 };
55 
56 static const struct intel_step_info icl_revids[] = {
57 	[7] = { COMMON_STEP(D0) },
58 };
59 
60 static const struct intel_step_info jsl_ehl_revids[] = {
61 	[0] = { COMMON_STEP(A0) },
62 	[1] = { COMMON_STEP(B0) },
63 };
64 
65 static const struct intel_step_info tgl_uy_revids[] = {
66 	[0] = { .gt_step = STEP_A0, .display_step = STEP_A0 },
67 	[1] = { .gt_step = STEP_B0, .display_step = STEP_C0 },
68 	[2] = { .gt_step = STEP_B1, .display_step = STEP_C0 },
69 	[3] = { .gt_step = STEP_C0, .display_step = STEP_D0 },
70 };
71 
72 /* Same GT stepping between tgl_uy_revids and tgl_revids don't mean the same HW */
73 static const struct intel_step_info tgl_revids[] = {
74 	[0] = { .gt_step = STEP_A0, .display_step = STEP_B0 },
75 	[1] = { .gt_step = STEP_B0, .display_step = STEP_D0 },
76 };
77 
78 static const struct intel_step_info rkl_revids[] = {
79 	[0] = { COMMON_STEP(A0) },
80 	[1] = { COMMON_STEP(B0) },
81 	[4] = { COMMON_STEP(C0) },
82 };
83 
84 static const struct intel_step_info dg1_revids[] = {
85 	[0] = { COMMON_STEP(A0) },
86 	[1] = { COMMON_STEP(B0) },
87 };
88 
89 static const struct intel_step_info adls_revids[] = {
90 	[0x0] = { .gt_step = STEP_A0, .display_step = STEP_A0 },
91 	[0x1] = { .gt_step = STEP_A0, .display_step = STEP_A2 },
92 	[0x4] = { .gt_step = STEP_B0, .display_step = STEP_B0 },
93 	[0x8] = { .gt_step = STEP_C0, .display_step = STEP_B0 },
94 	[0xC] = { .gt_step = STEP_D0, .display_step = STEP_C0 },
95 };
96 
97 static const struct intel_step_info adlp_revids[] = {
98 	[0x0] = { .gt_step = STEP_A0, .display_step = STEP_A0 },
99 	[0x4] = { .gt_step = STEP_B0, .display_step = STEP_B0 },
100 	[0x8] = { .gt_step = STEP_C0, .display_step = STEP_C0 },
101 	[0xC] = { .gt_step = STEP_C0, .display_step = STEP_D0 },
102 };
103 
104 static const struct intel_step_info xehpsdv_revids[] = {
105 	[0x0] = { .gt_step = STEP_A0 },
106 	[0x1] = { .gt_step = STEP_A1 },
107 	[0x4] = { .gt_step = STEP_B0 },
108 	[0x8] = { .gt_step = STEP_C0 },
109 };
110 
111 static const struct intel_step_info dg2_g10_revid_step_tbl[] = {
112 	[0x0] = { .gt_step = STEP_A0, .display_step = STEP_A0 },
113 	[0x1] = { .gt_step = STEP_A1, .display_step = STEP_A0 },
114 	[0x4] = { .gt_step = STEP_B0, .display_step = STEP_B0 },
115 	[0x8] = { .gt_step = STEP_C0, .display_step = STEP_C0 },
116 };
117 
118 static const struct intel_step_info dg2_g11_revid_step_tbl[] = {
119 	[0x0] = { .gt_step = STEP_A0, .display_step = STEP_B0 },
120 	[0x4] = { .gt_step = STEP_B0, .display_step = STEP_C0 },
121 	[0x5] = { .gt_step = STEP_B1, .display_step = STEP_C0 },
122 };
123 
intel_step_init(struct drm_i915_private * i915)124 void intel_step_init(struct drm_i915_private *i915)
125 {
126 	const struct intel_step_info *revids = NULL;
127 	int size = 0;
128 	int revid = INTEL_REVID(i915);
129 	struct intel_step_info step = {};
130 
131 	if (IS_DG2_G10(i915)) {
132 		revids = dg2_g10_revid_step_tbl;
133 		size = ARRAY_SIZE(dg2_g10_revid_step_tbl);
134 	} else if (IS_DG2_G11(i915)) {
135 		revids = dg2_g11_revid_step_tbl;
136 		size = ARRAY_SIZE(dg2_g11_revid_step_tbl);
137 	} else if (IS_XEHPSDV(i915)) {
138 		revids = xehpsdv_revids;
139 		size = ARRAY_SIZE(xehpsdv_revids);
140 	} else if (IS_ALDERLAKE_P(i915)) {
141 		revids = adlp_revids;
142 		size = ARRAY_SIZE(adlp_revids);
143 	} else if (IS_ALDERLAKE_S(i915)) {
144 		revids = adls_revids;
145 		size = ARRAY_SIZE(adls_revids);
146 	} else if (IS_DG1(i915)) {
147 		revids = dg1_revids;
148 		size = ARRAY_SIZE(dg1_revids);
149 	} else if (IS_ROCKETLAKE(i915)) {
150 		revids = rkl_revids;
151 		size = ARRAY_SIZE(rkl_revids);
152 	} else if (IS_TGL_U(i915) || IS_TGL_Y(i915)) {
153 		revids = tgl_uy_revids;
154 		size = ARRAY_SIZE(tgl_uy_revids);
155 	} else if (IS_TIGERLAKE(i915)) {
156 		revids = tgl_revids;
157 		size = ARRAY_SIZE(tgl_revids);
158 	} else if (IS_JSL_EHL(i915)) {
159 		revids = jsl_ehl_revids;
160 		size = ARRAY_SIZE(jsl_ehl_revids);
161 	} else if (IS_ICELAKE(i915)) {
162 		revids = icl_revids;
163 		size = ARRAY_SIZE(icl_revids);
164 	} else if (IS_GEMINILAKE(i915)) {
165 		revids = glk_revids;
166 		size = ARRAY_SIZE(glk_revids);
167 	} else if (IS_BROXTON(i915)) {
168 		revids = bxt_revids;
169 		size = ARRAY_SIZE(bxt_revids);
170 	} else if (IS_KABYLAKE(i915)) {
171 		revids = kbl_revids;
172 		size = ARRAY_SIZE(kbl_revids);
173 	} else if (IS_SKYLAKE(i915)) {
174 		revids = skl_revids;
175 		size = ARRAY_SIZE(skl_revids);
176 	}
177 
178 	/* Not using the stepping scheme for the platform yet. */
179 	if (!revids)
180 		return;
181 
182 	if (revid < size && revids[revid].gt_step != STEP_NONE) {
183 		step = revids[revid];
184 	} else {
185 		drm_warn(&i915->drm, "Unknown revid 0x%02x\n", revid);
186 
187 		/*
188 		 * If we hit a gap in the revid array, use the information for
189 		 * the next revid.
190 		 *
191 		 * This may be wrong in all sorts of ways, especially if the
192 		 * steppings in the array are not monotonically increasing, but
193 		 * it's better than defaulting to 0.
194 		 */
195 		while (revid < size && revids[revid].gt_step == STEP_NONE)
196 			revid++;
197 
198 		if (revid < size) {
199 			drm_dbg(&i915->drm, "Using steppings for revid 0x%02x\n",
200 				revid);
201 			step = revids[revid];
202 		} else {
203 			drm_dbg(&i915->drm, "Using future steppings\n");
204 			step.gt_step = STEP_FUTURE;
205 			step.display_step = STEP_FUTURE;
206 		}
207 	}
208 
209 	if (drm_WARN_ON(&i915->drm, step.gt_step == STEP_NONE))
210 		return;
211 
212 	RUNTIME_INFO(i915)->step = step;
213 }
214 
215 #define STEP_NAME_CASE(name)	\
216 	case STEP_##name:	\
217 		return #name;
218 
intel_step_name(enum intel_step step)219 const char *intel_step_name(enum intel_step step)
220 {
221 	switch (step) {
222 	STEP_NAME_LIST(STEP_NAME_CASE);
223 
224 	default:
225 		return "**";
226 	}
227 }
228