1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPU-agnostic ARM page table allocator.
4  *
5  * ARMv7 Short-descriptor format, supporting
6  * - Basic memory attributes
7  * - Simplified access permissions (AP[2:1] model)
8  * - Backwards-compatible TEX remap
9  * - Large pages/supersections (if indicated by the caller)
10  *
11  * Not supporting:
12  * - Legacy access permissions (AP[2:0] model)
13  *
14  * Almost certainly never supporting:
15  * - PXN
16  * - Domains
17  *
18  * Copyright (C) 2014-2015 ARM Limited
19  * Copyright (c) 2014-2015 MediaTek Inc.
20  */
21 
22 #define pr_fmt(fmt)	"arm-v7s io-pgtable: " fmt
23 
24 #include <linux/atomic.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/gfp.h>
27 #include <linux/io-pgtable.h>
28 #include <linux/iommu.h>
29 #include <linux/kernel.h>
30 #include <linux/kmemleak.h>
31 #include <linux/sizes.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 #include <linux/types.h>
35 
36 #include <asm/barrier.h>
37 
38 /* Struct accessors */
39 #define io_pgtable_to_data(x)						\
40 	container_of((x), struct arm_v7s_io_pgtable, iop)
41 
42 #define io_pgtable_ops_to_data(x)					\
43 	io_pgtable_to_data(io_pgtable_ops_to_pgtable(x))
44 
45 /*
46  * We have 32 bits total; 12 bits resolved at level 1, 8 bits at level 2,
47  * and 12 bits in a page.
48  * MediaTek extend 2 bits to reach 34bits, 14 bits at lvl1 and 8 bits at lvl2.
49  */
50 #define ARM_V7S_ADDR_BITS		32
51 #define _ARM_V7S_LVL_BITS(lvl, cfg)	((lvl) == 1 ? ((cfg)->ias - 20) : 8)
52 #define ARM_V7S_LVL_SHIFT(lvl)		((lvl) == 1 ? 20 : 12)
53 #define ARM_V7S_TABLE_SHIFT		10
54 
55 #define ARM_V7S_PTES_PER_LVL(lvl, cfg)	(1 << _ARM_V7S_LVL_BITS(lvl, cfg))
56 #define ARM_V7S_TABLE_SIZE(lvl, cfg)						\
57 	(ARM_V7S_PTES_PER_LVL(lvl, cfg) * sizeof(arm_v7s_iopte))
58 
59 #define ARM_V7S_BLOCK_SIZE(lvl)		(1UL << ARM_V7S_LVL_SHIFT(lvl))
60 #define ARM_V7S_LVL_MASK(lvl)		((u32)(~0U << ARM_V7S_LVL_SHIFT(lvl)))
61 #define ARM_V7S_TABLE_MASK		((u32)(~0U << ARM_V7S_TABLE_SHIFT))
62 #define _ARM_V7S_IDX_MASK(lvl, cfg)	(ARM_V7S_PTES_PER_LVL(lvl, cfg) - 1)
63 #define ARM_V7S_LVL_IDX(addr, lvl, cfg)	({				\
64 	int _l = lvl;							\
65 	((addr) >> ARM_V7S_LVL_SHIFT(_l)) & _ARM_V7S_IDX_MASK(_l, cfg); \
66 })
67 
68 /*
69  * Large page/supersection entries are effectively a block of 16 page/section
70  * entries, along the lines of the LPAE contiguous hint, but all with the
71  * same output address. For want of a better common name we'll call them
72  * "contiguous" versions of their respective page/section entries here, but
73  * noting the distinction (WRT to TLB maintenance) that they represent *one*
74  * entry repeated 16 times, not 16 separate entries (as in the LPAE case).
75  */
76 #define ARM_V7S_CONT_PAGES		16
77 
78 /* PTE type bits: these are all mixed up with XN/PXN bits in most cases */
79 #define ARM_V7S_PTE_TYPE_TABLE		0x1
80 #define ARM_V7S_PTE_TYPE_PAGE		0x2
81 #define ARM_V7S_PTE_TYPE_CONT_PAGE	0x1
82 
83 #define ARM_V7S_PTE_IS_VALID(pte)	(((pte) & 0x3) != 0)
84 #define ARM_V7S_PTE_IS_TABLE(pte, lvl) \
85 	((lvl) == 1 && (((pte) & 0x3) == ARM_V7S_PTE_TYPE_TABLE))
86 
87 /* Page table bits */
88 #define ARM_V7S_ATTR_XN(lvl)		BIT(4 * (2 - (lvl)))
89 #define ARM_V7S_ATTR_B			BIT(2)
90 #define ARM_V7S_ATTR_C			BIT(3)
91 #define ARM_V7S_ATTR_NS_TABLE		BIT(3)
92 #define ARM_V7S_ATTR_NS_SECTION		BIT(19)
93 
94 #define ARM_V7S_CONT_SECTION		BIT(18)
95 #define ARM_V7S_CONT_PAGE_XN_SHIFT	15
96 
97 /*
98  * The attribute bits are consistently ordered*, but occupy bits [17:10] of
99  * a level 1 PTE vs. bits [11:4] at level 2. Thus we define the individual
100  * fields relative to that 8-bit block, plus a total shift relative to the PTE.
101  */
102 #define ARM_V7S_ATTR_SHIFT(lvl)		(16 - (lvl) * 6)
103 
104 #define ARM_V7S_ATTR_MASK		0xff
105 #define ARM_V7S_ATTR_AP0		BIT(0)
106 #define ARM_V7S_ATTR_AP1		BIT(1)
107 #define ARM_V7S_ATTR_AP2		BIT(5)
108 #define ARM_V7S_ATTR_S			BIT(6)
109 #define ARM_V7S_ATTR_NG			BIT(7)
110 #define ARM_V7S_TEX_SHIFT		2
111 #define ARM_V7S_TEX_MASK		0x7
112 #define ARM_V7S_ATTR_TEX(val)		(((val) & ARM_V7S_TEX_MASK) << ARM_V7S_TEX_SHIFT)
113 
114 /* MediaTek extend the bits below for PA 32bit/33bit/34bit */
115 #define ARM_V7S_ATTR_MTK_PA_BIT32	BIT(9)
116 #define ARM_V7S_ATTR_MTK_PA_BIT33	BIT(4)
117 #define ARM_V7S_ATTR_MTK_PA_BIT34	BIT(5)
118 
119 /* *well, except for TEX on level 2 large pages, of course :( */
120 #define ARM_V7S_CONT_PAGE_TEX_SHIFT	6
121 #define ARM_V7S_CONT_PAGE_TEX_MASK	(ARM_V7S_TEX_MASK << ARM_V7S_CONT_PAGE_TEX_SHIFT)
122 
123 /* Simplified access permissions */
124 #define ARM_V7S_PTE_AF			ARM_V7S_ATTR_AP0
125 #define ARM_V7S_PTE_AP_UNPRIV		ARM_V7S_ATTR_AP1
126 #define ARM_V7S_PTE_AP_RDONLY		ARM_V7S_ATTR_AP2
127 
128 /* Register bits */
129 #define ARM_V7S_RGN_NC			0
130 #define ARM_V7S_RGN_WBWA		1
131 #define ARM_V7S_RGN_WT			2
132 #define ARM_V7S_RGN_WB			3
133 
134 #define ARM_V7S_PRRR_TYPE_DEVICE	1
135 #define ARM_V7S_PRRR_TYPE_NORMAL	2
136 #define ARM_V7S_PRRR_TR(n, type)	(((type) & 0x3) << ((n) * 2))
137 #define ARM_V7S_PRRR_DS0		BIT(16)
138 #define ARM_V7S_PRRR_DS1		BIT(17)
139 #define ARM_V7S_PRRR_NS0		BIT(18)
140 #define ARM_V7S_PRRR_NS1		BIT(19)
141 #define ARM_V7S_PRRR_NOS(n)		BIT((n) + 24)
142 
143 #define ARM_V7S_NMRR_IR(n, attr)	(((attr) & 0x3) << ((n) * 2))
144 #define ARM_V7S_NMRR_OR(n, attr)	(((attr) & 0x3) << ((n) * 2 + 16))
145 
146 #define ARM_V7S_TTBR_S			BIT(1)
147 #define ARM_V7S_TTBR_NOS		BIT(5)
148 #define ARM_V7S_TTBR_ORGN_ATTR(attr)	(((attr) & 0x3) << 3)
149 #define ARM_V7S_TTBR_IRGN_ATTR(attr)					\
150 	((((attr) & 0x1) << 6) | (((attr) & 0x2) >> 1))
151 
152 #ifdef CONFIG_ZONE_DMA32
153 #define ARM_V7S_TABLE_GFP_DMA GFP_DMA32
154 #define ARM_V7S_TABLE_SLAB_FLAGS SLAB_CACHE_DMA32
155 #else
156 #define ARM_V7S_TABLE_GFP_DMA GFP_DMA
157 #define ARM_V7S_TABLE_SLAB_FLAGS SLAB_CACHE_DMA
158 #endif
159 
160 typedef u32 arm_v7s_iopte;
161 
162 static bool selftest_running;
163 
164 struct arm_v7s_io_pgtable {
165 	struct io_pgtable	iop;
166 
167 	arm_v7s_iopte		*pgd;
168 	struct kmem_cache	*l2_tables;
169 	spinlock_t		split_lock;
170 };
171 
172 static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl);
173 
__arm_v7s_dma_addr(void * pages)174 static dma_addr_t __arm_v7s_dma_addr(void *pages)
175 {
176 	return (dma_addr_t)virt_to_phys(pages);
177 }
178 
arm_v7s_is_mtk_enabled(struct io_pgtable_cfg * cfg)179 static bool arm_v7s_is_mtk_enabled(struct io_pgtable_cfg *cfg)
180 {
181 	return IS_ENABLED(CONFIG_PHYS_ADDR_T_64BIT) &&
182 		(cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_EXT);
183 }
184 
paddr_to_iopte(phys_addr_t paddr,int lvl,struct io_pgtable_cfg * cfg)185 static arm_v7s_iopte paddr_to_iopte(phys_addr_t paddr, int lvl,
186 				    struct io_pgtable_cfg *cfg)
187 {
188 	arm_v7s_iopte pte = paddr & ARM_V7S_LVL_MASK(lvl);
189 
190 	if (!arm_v7s_is_mtk_enabled(cfg))
191 		return pte;
192 
193 	if (paddr & BIT_ULL(32))
194 		pte |= ARM_V7S_ATTR_MTK_PA_BIT32;
195 	if (paddr & BIT_ULL(33))
196 		pte |= ARM_V7S_ATTR_MTK_PA_BIT33;
197 	if (paddr & BIT_ULL(34))
198 		pte |= ARM_V7S_ATTR_MTK_PA_BIT34;
199 	return pte;
200 }
201 
iopte_to_paddr(arm_v7s_iopte pte,int lvl,struct io_pgtable_cfg * cfg)202 static phys_addr_t iopte_to_paddr(arm_v7s_iopte pte, int lvl,
203 				  struct io_pgtable_cfg *cfg)
204 {
205 	arm_v7s_iopte mask;
206 	phys_addr_t paddr;
207 
208 	if (ARM_V7S_PTE_IS_TABLE(pte, lvl))
209 		mask = ARM_V7S_TABLE_MASK;
210 	else if (arm_v7s_pte_is_cont(pte, lvl))
211 		mask = ARM_V7S_LVL_MASK(lvl) * ARM_V7S_CONT_PAGES;
212 	else
213 		mask = ARM_V7S_LVL_MASK(lvl);
214 
215 	paddr = pte & mask;
216 	if (!arm_v7s_is_mtk_enabled(cfg))
217 		return paddr;
218 
219 	if (pte & ARM_V7S_ATTR_MTK_PA_BIT32)
220 		paddr |= BIT_ULL(32);
221 	if (pte & ARM_V7S_ATTR_MTK_PA_BIT33)
222 		paddr |= BIT_ULL(33);
223 	if (pte & ARM_V7S_ATTR_MTK_PA_BIT34)
224 		paddr |= BIT_ULL(34);
225 	return paddr;
226 }
227 
iopte_deref(arm_v7s_iopte pte,int lvl,struct arm_v7s_io_pgtable * data)228 static arm_v7s_iopte *iopte_deref(arm_v7s_iopte pte, int lvl,
229 				  struct arm_v7s_io_pgtable *data)
230 {
231 	return phys_to_virt(iopte_to_paddr(pte, lvl, &data->iop.cfg));
232 }
233 
__arm_v7s_alloc_table(int lvl,gfp_t gfp,struct arm_v7s_io_pgtable * data)234 static void *__arm_v7s_alloc_table(int lvl, gfp_t gfp,
235 				   struct arm_v7s_io_pgtable *data)
236 {
237 	struct io_pgtable_cfg *cfg = &data->iop.cfg;
238 	struct device *dev = cfg->iommu_dev;
239 	phys_addr_t phys;
240 	dma_addr_t dma;
241 	size_t size = ARM_V7S_TABLE_SIZE(lvl, cfg);
242 	void *table = NULL;
243 
244 	if (lvl == 1)
245 		table = (void *)__get_free_pages(
246 			__GFP_ZERO | ARM_V7S_TABLE_GFP_DMA, get_order(size));
247 	else if (lvl == 2)
248 		table = kmem_cache_zalloc(data->l2_tables, gfp);
249 	phys = virt_to_phys(table);
250 	if (phys != (arm_v7s_iopte)phys) {
251 		/* Doesn't fit in PTE */
252 		dev_err(dev, "Page table does not fit in PTE: %pa", &phys);
253 		goto out_free;
254 	}
255 	if (table && !cfg->coherent_walk) {
256 		dma = dma_map_single(dev, table, size, DMA_TO_DEVICE);
257 		if (dma_mapping_error(dev, dma))
258 			goto out_free;
259 		/*
260 		 * We depend on the IOMMU being able to work with any physical
261 		 * address directly, so if the DMA layer suggests otherwise by
262 		 * translating or truncating them, that bodes very badly...
263 		 */
264 		if (dma != phys)
265 			goto out_unmap;
266 	}
267 	if (lvl == 2)
268 		kmemleak_ignore(table);
269 	return table;
270 
271 out_unmap:
272 	dev_err(dev, "Cannot accommodate DMA translation for IOMMU page tables\n");
273 	dma_unmap_single(dev, dma, size, DMA_TO_DEVICE);
274 out_free:
275 	if (lvl == 1)
276 		free_pages((unsigned long)table, get_order(size));
277 	else
278 		kmem_cache_free(data->l2_tables, table);
279 	return NULL;
280 }
281 
__arm_v7s_free_table(void * table,int lvl,struct arm_v7s_io_pgtable * data)282 static void __arm_v7s_free_table(void *table, int lvl,
283 				 struct arm_v7s_io_pgtable *data)
284 {
285 	struct io_pgtable_cfg *cfg = &data->iop.cfg;
286 	struct device *dev = cfg->iommu_dev;
287 	size_t size = ARM_V7S_TABLE_SIZE(lvl, cfg);
288 
289 	if (!cfg->coherent_walk)
290 		dma_unmap_single(dev, __arm_v7s_dma_addr(table), size,
291 				 DMA_TO_DEVICE);
292 	if (lvl == 1)
293 		free_pages((unsigned long)table, get_order(size));
294 	else
295 		kmem_cache_free(data->l2_tables, table);
296 }
297 
__arm_v7s_pte_sync(arm_v7s_iopte * ptep,int num_entries,struct io_pgtable_cfg * cfg)298 static void __arm_v7s_pte_sync(arm_v7s_iopte *ptep, int num_entries,
299 			       struct io_pgtable_cfg *cfg)
300 {
301 	if (cfg->coherent_walk)
302 		return;
303 
304 	dma_sync_single_for_device(cfg->iommu_dev, __arm_v7s_dma_addr(ptep),
305 				   num_entries * sizeof(*ptep), DMA_TO_DEVICE);
306 }
__arm_v7s_set_pte(arm_v7s_iopte * ptep,arm_v7s_iopte pte,int num_entries,struct io_pgtable_cfg * cfg)307 static void __arm_v7s_set_pte(arm_v7s_iopte *ptep, arm_v7s_iopte pte,
308 			      int num_entries, struct io_pgtable_cfg *cfg)
309 {
310 	int i;
311 
312 	for (i = 0; i < num_entries; i++)
313 		ptep[i] = pte;
314 
315 	__arm_v7s_pte_sync(ptep, num_entries, cfg);
316 }
317 
arm_v7s_prot_to_pte(int prot,int lvl,struct io_pgtable_cfg * cfg)318 static arm_v7s_iopte arm_v7s_prot_to_pte(int prot, int lvl,
319 					 struct io_pgtable_cfg *cfg)
320 {
321 	bool ap = !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS);
322 	arm_v7s_iopte pte = ARM_V7S_ATTR_NG | ARM_V7S_ATTR_S;
323 
324 	if (!(prot & IOMMU_MMIO))
325 		pte |= ARM_V7S_ATTR_TEX(1);
326 	if (ap) {
327 		pte |= ARM_V7S_PTE_AF;
328 		if (!(prot & IOMMU_PRIV))
329 			pte |= ARM_V7S_PTE_AP_UNPRIV;
330 		if (!(prot & IOMMU_WRITE))
331 			pte |= ARM_V7S_PTE_AP_RDONLY;
332 	}
333 	pte <<= ARM_V7S_ATTR_SHIFT(lvl);
334 
335 	if ((prot & IOMMU_NOEXEC) && ap)
336 		pte |= ARM_V7S_ATTR_XN(lvl);
337 	if (prot & IOMMU_MMIO)
338 		pte |= ARM_V7S_ATTR_B;
339 	else if (prot & IOMMU_CACHE)
340 		pte |= ARM_V7S_ATTR_B | ARM_V7S_ATTR_C;
341 
342 	pte |= ARM_V7S_PTE_TYPE_PAGE;
343 	if (lvl == 1 && (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS))
344 		pte |= ARM_V7S_ATTR_NS_SECTION;
345 
346 	return pte;
347 }
348 
arm_v7s_pte_to_prot(arm_v7s_iopte pte,int lvl)349 static int arm_v7s_pte_to_prot(arm_v7s_iopte pte, int lvl)
350 {
351 	int prot = IOMMU_READ;
352 	arm_v7s_iopte attr = pte >> ARM_V7S_ATTR_SHIFT(lvl);
353 
354 	if (!(attr & ARM_V7S_PTE_AP_RDONLY))
355 		prot |= IOMMU_WRITE;
356 	if (!(attr & ARM_V7S_PTE_AP_UNPRIV))
357 		prot |= IOMMU_PRIV;
358 	if ((attr & (ARM_V7S_TEX_MASK << ARM_V7S_TEX_SHIFT)) == 0)
359 		prot |= IOMMU_MMIO;
360 	else if (pte & ARM_V7S_ATTR_C)
361 		prot |= IOMMU_CACHE;
362 	if (pte & ARM_V7S_ATTR_XN(lvl))
363 		prot |= IOMMU_NOEXEC;
364 
365 	return prot;
366 }
367 
arm_v7s_pte_to_cont(arm_v7s_iopte pte,int lvl)368 static arm_v7s_iopte arm_v7s_pte_to_cont(arm_v7s_iopte pte, int lvl)
369 {
370 	if (lvl == 1) {
371 		pte |= ARM_V7S_CONT_SECTION;
372 	} else if (lvl == 2) {
373 		arm_v7s_iopte xn = pte & ARM_V7S_ATTR_XN(lvl);
374 		arm_v7s_iopte tex = pte & ARM_V7S_CONT_PAGE_TEX_MASK;
375 
376 		pte ^= xn | tex | ARM_V7S_PTE_TYPE_PAGE;
377 		pte |= (xn << ARM_V7S_CONT_PAGE_XN_SHIFT) |
378 		       (tex << ARM_V7S_CONT_PAGE_TEX_SHIFT) |
379 		       ARM_V7S_PTE_TYPE_CONT_PAGE;
380 	}
381 	return pte;
382 }
383 
arm_v7s_cont_to_pte(arm_v7s_iopte pte,int lvl)384 static arm_v7s_iopte arm_v7s_cont_to_pte(arm_v7s_iopte pte, int lvl)
385 {
386 	if (lvl == 1) {
387 		pte &= ~ARM_V7S_CONT_SECTION;
388 	} else if (lvl == 2) {
389 		arm_v7s_iopte xn = pte & BIT(ARM_V7S_CONT_PAGE_XN_SHIFT);
390 		arm_v7s_iopte tex = pte & (ARM_V7S_CONT_PAGE_TEX_MASK <<
391 					   ARM_V7S_CONT_PAGE_TEX_SHIFT);
392 
393 		pte ^= xn | tex | ARM_V7S_PTE_TYPE_CONT_PAGE;
394 		pte |= (xn >> ARM_V7S_CONT_PAGE_XN_SHIFT) |
395 		       (tex >> ARM_V7S_CONT_PAGE_TEX_SHIFT) |
396 		       ARM_V7S_PTE_TYPE_PAGE;
397 	}
398 	return pte;
399 }
400 
arm_v7s_pte_is_cont(arm_v7s_iopte pte,int lvl)401 static bool arm_v7s_pte_is_cont(arm_v7s_iopte pte, int lvl)
402 {
403 	if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte, lvl))
404 		return pte & ARM_V7S_CONT_SECTION;
405 	else if (lvl == 2)
406 		return !(pte & ARM_V7S_PTE_TYPE_PAGE);
407 	return false;
408 }
409 
410 static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *,
411 			      struct iommu_iotlb_gather *, unsigned long,
412 			      size_t, int, arm_v7s_iopte *);
413 
arm_v7s_init_pte(struct arm_v7s_io_pgtable * data,unsigned long iova,phys_addr_t paddr,int prot,int lvl,int num_entries,arm_v7s_iopte * ptep)414 static int arm_v7s_init_pte(struct arm_v7s_io_pgtable *data,
415 			    unsigned long iova, phys_addr_t paddr, int prot,
416 			    int lvl, int num_entries, arm_v7s_iopte *ptep)
417 {
418 	struct io_pgtable_cfg *cfg = &data->iop.cfg;
419 	arm_v7s_iopte pte;
420 	int i;
421 
422 	for (i = 0; i < num_entries; i++)
423 		if (ARM_V7S_PTE_IS_TABLE(ptep[i], lvl)) {
424 			/*
425 			 * We need to unmap and free the old table before
426 			 * overwriting it with a block entry.
427 			 */
428 			arm_v7s_iopte *tblp;
429 			size_t sz = ARM_V7S_BLOCK_SIZE(lvl);
430 
431 			tblp = ptep - ARM_V7S_LVL_IDX(iova, lvl, cfg);
432 			if (WARN_ON(__arm_v7s_unmap(data, NULL, iova + i * sz,
433 						    sz, lvl, tblp) != sz))
434 				return -EINVAL;
435 		} else if (ptep[i]) {
436 			/* We require an unmap first */
437 			WARN_ON(!selftest_running);
438 			return -EEXIST;
439 		}
440 
441 	pte = arm_v7s_prot_to_pte(prot, lvl, cfg);
442 	if (num_entries > 1)
443 		pte = arm_v7s_pte_to_cont(pte, lvl);
444 
445 	pte |= paddr_to_iopte(paddr, lvl, cfg);
446 
447 	__arm_v7s_set_pte(ptep, pte, num_entries, cfg);
448 	return 0;
449 }
450 
arm_v7s_install_table(arm_v7s_iopte * table,arm_v7s_iopte * ptep,arm_v7s_iopte curr,struct io_pgtable_cfg * cfg)451 static arm_v7s_iopte arm_v7s_install_table(arm_v7s_iopte *table,
452 					   arm_v7s_iopte *ptep,
453 					   arm_v7s_iopte curr,
454 					   struct io_pgtable_cfg *cfg)
455 {
456 	arm_v7s_iopte old, new;
457 
458 	new = virt_to_phys(table) | ARM_V7S_PTE_TYPE_TABLE;
459 	if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_NS)
460 		new |= ARM_V7S_ATTR_NS_TABLE;
461 
462 	/*
463 	 * Ensure the table itself is visible before its PTE can be.
464 	 * Whilst we could get away with cmpxchg64_release below, this
465 	 * doesn't have any ordering semantics when !CONFIG_SMP.
466 	 */
467 	dma_wmb();
468 
469 	old = cmpxchg_relaxed(ptep, curr, new);
470 	__arm_v7s_pte_sync(ptep, 1, cfg);
471 
472 	return old;
473 }
474 
__arm_v7s_map(struct arm_v7s_io_pgtable * data,unsigned long iova,phys_addr_t paddr,size_t size,int prot,int lvl,arm_v7s_iopte * ptep,gfp_t gfp)475 static int __arm_v7s_map(struct arm_v7s_io_pgtable *data, unsigned long iova,
476 			 phys_addr_t paddr, size_t size, int prot,
477 			 int lvl, arm_v7s_iopte *ptep, gfp_t gfp)
478 {
479 	struct io_pgtable_cfg *cfg = &data->iop.cfg;
480 	arm_v7s_iopte pte, *cptep;
481 	int num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
482 
483 	/* Find our entry at the current level */
484 	ptep += ARM_V7S_LVL_IDX(iova, lvl, cfg);
485 
486 	/* If we can install a leaf entry at this level, then do so */
487 	if (num_entries)
488 		return arm_v7s_init_pte(data, iova, paddr, prot,
489 					lvl, num_entries, ptep);
490 
491 	/* We can't allocate tables at the final level */
492 	if (WARN_ON(lvl == 2))
493 		return -EINVAL;
494 
495 	/* Grab a pointer to the next level */
496 	pte = READ_ONCE(*ptep);
497 	if (!pte) {
498 		cptep = __arm_v7s_alloc_table(lvl + 1, gfp, data);
499 		if (!cptep)
500 			return -ENOMEM;
501 
502 		pte = arm_v7s_install_table(cptep, ptep, 0, cfg);
503 		if (pte)
504 			__arm_v7s_free_table(cptep, lvl + 1, data);
505 	} else {
506 		/* We've no easy way of knowing if it's synced yet, so... */
507 		__arm_v7s_pte_sync(ptep, 1, cfg);
508 	}
509 
510 	if (ARM_V7S_PTE_IS_TABLE(pte, lvl)) {
511 		cptep = iopte_deref(pte, lvl, data);
512 	} else if (pte) {
513 		/* We require an unmap first */
514 		WARN_ON(!selftest_running);
515 		return -EEXIST;
516 	}
517 
518 	/* Rinse, repeat */
519 	return __arm_v7s_map(data, iova, paddr, size, prot, lvl + 1, cptep, gfp);
520 }
521 
arm_v7s_map_pages(struct io_pgtable_ops * ops,unsigned long iova,phys_addr_t paddr,size_t pgsize,size_t pgcount,int prot,gfp_t gfp,size_t * mapped)522 static int arm_v7s_map_pages(struct io_pgtable_ops *ops, unsigned long iova,
523 			     phys_addr_t paddr, size_t pgsize, size_t pgcount,
524 			     int prot, gfp_t gfp, size_t *mapped)
525 {
526 	struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
527 	int ret = -EINVAL;
528 
529 	if (WARN_ON(iova >= (1ULL << data->iop.cfg.ias) ||
530 		    paddr >= (1ULL << data->iop.cfg.oas)))
531 		return -ERANGE;
532 
533 	/* If no access, then nothing to do */
534 	if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
535 		return 0;
536 
537 	while (pgcount--) {
538 		ret = __arm_v7s_map(data, iova, paddr, pgsize, prot, 1, data->pgd,
539 				    gfp);
540 		if (ret)
541 			break;
542 
543 		iova += pgsize;
544 		paddr += pgsize;
545 		if (mapped)
546 			*mapped += pgsize;
547 	}
548 	/*
549 	 * Synchronise all PTE updates for the new mapping before there's
550 	 * a chance for anything to kick off a table walk for the new iova.
551 	 */
552 	wmb();
553 
554 	return ret;
555 }
556 
arm_v7s_map(struct io_pgtable_ops * ops,unsigned long iova,phys_addr_t paddr,size_t size,int prot,gfp_t gfp)557 static int arm_v7s_map(struct io_pgtable_ops *ops, unsigned long iova,
558 		       phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
559 {
560 	return arm_v7s_map_pages(ops, iova, paddr, size, 1, prot, gfp, NULL);
561 }
562 
arm_v7s_free_pgtable(struct io_pgtable * iop)563 static void arm_v7s_free_pgtable(struct io_pgtable *iop)
564 {
565 	struct arm_v7s_io_pgtable *data = io_pgtable_to_data(iop);
566 	int i;
567 
568 	for (i = 0; i < ARM_V7S_PTES_PER_LVL(1, &data->iop.cfg); i++) {
569 		arm_v7s_iopte pte = data->pgd[i];
570 
571 		if (ARM_V7S_PTE_IS_TABLE(pte, 1))
572 			__arm_v7s_free_table(iopte_deref(pte, 1, data),
573 					     2, data);
574 	}
575 	__arm_v7s_free_table(data->pgd, 1, data);
576 	kmem_cache_destroy(data->l2_tables);
577 	kfree(data);
578 }
579 
arm_v7s_split_cont(struct arm_v7s_io_pgtable * data,unsigned long iova,int idx,int lvl,arm_v7s_iopte * ptep)580 static arm_v7s_iopte arm_v7s_split_cont(struct arm_v7s_io_pgtable *data,
581 					unsigned long iova, int idx, int lvl,
582 					arm_v7s_iopte *ptep)
583 {
584 	struct io_pgtable *iop = &data->iop;
585 	arm_v7s_iopte pte;
586 	size_t size = ARM_V7S_BLOCK_SIZE(lvl);
587 	int i;
588 
589 	/* Check that we didn't lose a race to get the lock */
590 	pte = *ptep;
591 	if (!arm_v7s_pte_is_cont(pte, lvl))
592 		return pte;
593 
594 	ptep -= idx & (ARM_V7S_CONT_PAGES - 1);
595 	pte = arm_v7s_cont_to_pte(pte, lvl);
596 	for (i = 0; i < ARM_V7S_CONT_PAGES; i++)
597 		ptep[i] = pte + i * size;
598 
599 	__arm_v7s_pte_sync(ptep, ARM_V7S_CONT_PAGES, &iop->cfg);
600 
601 	size *= ARM_V7S_CONT_PAGES;
602 	io_pgtable_tlb_flush_walk(iop, iova, size, size);
603 	return pte;
604 }
605 
arm_v7s_split_blk_unmap(struct arm_v7s_io_pgtable * data,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size,arm_v7s_iopte blk_pte,arm_v7s_iopte * ptep)606 static size_t arm_v7s_split_blk_unmap(struct arm_v7s_io_pgtable *data,
607 				      struct iommu_iotlb_gather *gather,
608 				      unsigned long iova, size_t size,
609 				      arm_v7s_iopte blk_pte,
610 				      arm_v7s_iopte *ptep)
611 {
612 	struct io_pgtable_cfg *cfg = &data->iop.cfg;
613 	arm_v7s_iopte pte, *tablep;
614 	int i, unmap_idx, num_entries, num_ptes;
615 
616 	tablep = __arm_v7s_alloc_table(2, GFP_ATOMIC, data);
617 	if (!tablep)
618 		return 0; /* Bytes unmapped */
619 
620 	num_ptes = ARM_V7S_PTES_PER_LVL(2, cfg);
621 	num_entries = size >> ARM_V7S_LVL_SHIFT(2);
622 	unmap_idx = ARM_V7S_LVL_IDX(iova, 2, cfg);
623 
624 	pte = arm_v7s_prot_to_pte(arm_v7s_pte_to_prot(blk_pte, 1), 2, cfg);
625 	if (num_entries > 1)
626 		pte = arm_v7s_pte_to_cont(pte, 2);
627 
628 	for (i = 0; i < num_ptes; i += num_entries, pte += size) {
629 		/* Unmap! */
630 		if (i == unmap_idx)
631 			continue;
632 
633 		__arm_v7s_set_pte(&tablep[i], pte, num_entries, cfg);
634 	}
635 
636 	pte = arm_v7s_install_table(tablep, ptep, blk_pte, cfg);
637 	if (pte != blk_pte) {
638 		__arm_v7s_free_table(tablep, 2, data);
639 
640 		if (!ARM_V7S_PTE_IS_TABLE(pte, 1))
641 			return 0;
642 
643 		tablep = iopte_deref(pte, 1, data);
644 		return __arm_v7s_unmap(data, gather, iova, size, 2, tablep);
645 	}
646 
647 	io_pgtable_tlb_add_page(&data->iop, gather, iova, size);
648 	return size;
649 }
650 
__arm_v7s_unmap(struct arm_v7s_io_pgtable * data,struct iommu_iotlb_gather * gather,unsigned long iova,size_t size,int lvl,arm_v7s_iopte * ptep)651 static size_t __arm_v7s_unmap(struct arm_v7s_io_pgtable *data,
652 			      struct iommu_iotlb_gather *gather,
653 			      unsigned long iova, size_t size, int lvl,
654 			      arm_v7s_iopte *ptep)
655 {
656 	arm_v7s_iopte pte[ARM_V7S_CONT_PAGES];
657 	struct io_pgtable *iop = &data->iop;
658 	int idx, i = 0, num_entries = size >> ARM_V7S_LVL_SHIFT(lvl);
659 
660 	/* Something went horribly wrong and we ran out of page table */
661 	if (WARN_ON(lvl > 2))
662 		return 0;
663 
664 	idx = ARM_V7S_LVL_IDX(iova, lvl, &iop->cfg);
665 	ptep += idx;
666 	do {
667 		pte[i] = READ_ONCE(ptep[i]);
668 		if (WARN_ON(!ARM_V7S_PTE_IS_VALID(pte[i])))
669 			return 0;
670 	} while (++i < num_entries);
671 
672 	/*
673 	 * If we've hit a contiguous 'large page' entry at this level, it
674 	 * needs splitting first, unless we're unmapping the whole lot.
675 	 *
676 	 * For splitting, we can't rewrite 16 PTEs atomically, and since we
677 	 * can't necessarily assume TEX remap we don't have a software bit to
678 	 * mark live entries being split. In practice (i.e. DMA API code), we
679 	 * will never be splitting large pages anyway, so just wrap this edge
680 	 * case in a lock for the sake of correctness and be done with it.
681 	 */
682 	if (num_entries <= 1 && arm_v7s_pte_is_cont(pte[0], lvl)) {
683 		unsigned long flags;
684 
685 		spin_lock_irqsave(&data->split_lock, flags);
686 		pte[0] = arm_v7s_split_cont(data, iova, idx, lvl, ptep);
687 		spin_unlock_irqrestore(&data->split_lock, flags);
688 	}
689 
690 	/* If the size matches this level, we're in the right place */
691 	if (num_entries) {
692 		size_t blk_size = ARM_V7S_BLOCK_SIZE(lvl);
693 
694 		__arm_v7s_set_pte(ptep, 0, num_entries, &iop->cfg);
695 
696 		for (i = 0; i < num_entries; i++) {
697 			if (ARM_V7S_PTE_IS_TABLE(pte[i], lvl)) {
698 				/* Also flush any partial walks */
699 				io_pgtable_tlb_flush_walk(iop, iova, blk_size,
700 						ARM_V7S_BLOCK_SIZE(lvl + 1));
701 				ptep = iopte_deref(pte[i], lvl, data);
702 				__arm_v7s_free_table(ptep, lvl + 1, data);
703 			} else if (!iommu_iotlb_gather_queued(gather)) {
704 				io_pgtable_tlb_add_page(iop, gather, iova, blk_size);
705 			}
706 			iova += blk_size;
707 		}
708 		return size;
709 	} else if (lvl == 1 && !ARM_V7S_PTE_IS_TABLE(pte[0], lvl)) {
710 		/*
711 		 * Insert a table at the next level to map the old region,
712 		 * minus the part we want to unmap
713 		 */
714 		return arm_v7s_split_blk_unmap(data, gather, iova, size, pte[0],
715 					       ptep);
716 	}
717 
718 	/* Keep on walkin' */
719 	ptep = iopte_deref(pte[0], lvl, data);
720 	return __arm_v7s_unmap(data, gather, iova, size, lvl + 1, ptep);
721 }
722 
arm_v7s_unmap_pages(struct io_pgtable_ops * ops,unsigned long iova,size_t pgsize,size_t pgcount,struct iommu_iotlb_gather * gather)723 static size_t arm_v7s_unmap_pages(struct io_pgtable_ops *ops, unsigned long iova,
724 				  size_t pgsize, size_t pgcount,
725 				  struct iommu_iotlb_gather *gather)
726 {
727 	struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
728 	size_t unmapped = 0, ret;
729 
730 	if (WARN_ON(iova >= (1ULL << data->iop.cfg.ias)))
731 		return 0;
732 
733 	while (pgcount--) {
734 		ret = __arm_v7s_unmap(data, gather, iova, pgsize, 1, data->pgd);
735 		if (!ret)
736 			break;
737 
738 		unmapped += pgsize;
739 		iova += pgsize;
740 	}
741 
742 	return unmapped;
743 }
744 
arm_v7s_unmap(struct io_pgtable_ops * ops,unsigned long iova,size_t size,struct iommu_iotlb_gather * gather)745 static size_t arm_v7s_unmap(struct io_pgtable_ops *ops, unsigned long iova,
746 			    size_t size, struct iommu_iotlb_gather *gather)
747 {
748 	return arm_v7s_unmap_pages(ops, iova, size, 1, gather);
749 }
750 
arm_v7s_iova_to_phys(struct io_pgtable_ops * ops,unsigned long iova)751 static phys_addr_t arm_v7s_iova_to_phys(struct io_pgtable_ops *ops,
752 					unsigned long iova)
753 {
754 	struct arm_v7s_io_pgtable *data = io_pgtable_ops_to_data(ops);
755 	arm_v7s_iopte *ptep = data->pgd, pte;
756 	int lvl = 0;
757 	u32 mask;
758 
759 	do {
760 		ptep += ARM_V7S_LVL_IDX(iova, ++lvl, &data->iop.cfg);
761 		pte = READ_ONCE(*ptep);
762 		ptep = iopte_deref(pte, lvl, data);
763 	} while (ARM_V7S_PTE_IS_TABLE(pte, lvl));
764 
765 	if (!ARM_V7S_PTE_IS_VALID(pte))
766 		return 0;
767 
768 	mask = ARM_V7S_LVL_MASK(lvl);
769 	if (arm_v7s_pte_is_cont(pte, lvl))
770 		mask *= ARM_V7S_CONT_PAGES;
771 	return iopte_to_paddr(pte, lvl, &data->iop.cfg) | (iova & ~mask);
772 }
773 
arm_v7s_alloc_pgtable(struct io_pgtable_cfg * cfg,void * cookie)774 static struct io_pgtable *arm_v7s_alloc_pgtable(struct io_pgtable_cfg *cfg,
775 						void *cookie)
776 {
777 	struct arm_v7s_io_pgtable *data;
778 
779 	if (cfg->ias > (arm_v7s_is_mtk_enabled(cfg) ? 34 : ARM_V7S_ADDR_BITS))
780 		return NULL;
781 
782 	if (cfg->oas > (arm_v7s_is_mtk_enabled(cfg) ? 35 : ARM_V7S_ADDR_BITS))
783 		return NULL;
784 
785 	if (cfg->quirks & ~(IO_PGTABLE_QUIRK_ARM_NS |
786 			    IO_PGTABLE_QUIRK_NO_PERMS |
787 			    IO_PGTABLE_QUIRK_ARM_MTK_EXT))
788 		return NULL;
789 
790 	/* If ARM_MTK_4GB is enabled, the NO_PERMS is also expected. */
791 	if (cfg->quirks & IO_PGTABLE_QUIRK_ARM_MTK_EXT &&
792 	    !(cfg->quirks & IO_PGTABLE_QUIRK_NO_PERMS))
793 			return NULL;
794 
795 	data = kmalloc(sizeof(*data), GFP_KERNEL);
796 	if (!data)
797 		return NULL;
798 
799 	spin_lock_init(&data->split_lock);
800 	data->l2_tables = kmem_cache_create("io-pgtable_armv7s_l2",
801 					    ARM_V7S_TABLE_SIZE(2, cfg),
802 					    ARM_V7S_TABLE_SIZE(2, cfg),
803 					    ARM_V7S_TABLE_SLAB_FLAGS, NULL);
804 	if (!data->l2_tables)
805 		goto out_free_data;
806 
807 	data->iop.ops = (struct io_pgtable_ops) {
808 		.map		= arm_v7s_map,
809 		.map_pages	= arm_v7s_map_pages,
810 		.unmap		= arm_v7s_unmap,
811 		.unmap_pages	= arm_v7s_unmap_pages,
812 		.iova_to_phys	= arm_v7s_iova_to_phys,
813 	};
814 
815 	/* We have to do this early for __arm_v7s_alloc_table to work... */
816 	data->iop.cfg = *cfg;
817 
818 	/*
819 	 * Unless the IOMMU driver indicates supersection support by
820 	 * having SZ_16M set in the initial bitmap, they won't be used.
821 	 */
822 	cfg->pgsize_bitmap &= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
823 
824 	/* TCR: T0SZ=0, EAE=0 (if applicable) */
825 	cfg->arm_v7s_cfg.tcr = 0;
826 
827 	/*
828 	 * TEX remap: the indices used map to the closest equivalent types
829 	 * under the non-TEX-remap interpretation of those attribute bits,
830 	 * excepting various implementation-defined aspects of shareability.
831 	 */
832 	cfg->arm_v7s_cfg.prrr = ARM_V7S_PRRR_TR(1, ARM_V7S_PRRR_TYPE_DEVICE) |
833 				ARM_V7S_PRRR_TR(4, ARM_V7S_PRRR_TYPE_NORMAL) |
834 				ARM_V7S_PRRR_TR(7, ARM_V7S_PRRR_TYPE_NORMAL) |
835 				ARM_V7S_PRRR_DS0 | ARM_V7S_PRRR_DS1 |
836 				ARM_V7S_PRRR_NS1 | ARM_V7S_PRRR_NOS(7);
837 	cfg->arm_v7s_cfg.nmrr = ARM_V7S_NMRR_IR(7, ARM_V7S_RGN_WBWA) |
838 				ARM_V7S_NMRR_OR(7, ARM_V7S_RGN_WBWA);
839 
840 	/* Looking good; allocate a pgd */
841 	data->pgd = __arm_v7s_alloc_table(1, GFP_KERNEL, data);
842 	if (!data->pgd)
843 		goto out_free_data;
844 
845 	/* Ensure the empty pgd is visible before any actual TTBR write */
846 	wmb();
847 
848 	/* TTBR */
849 	cfg->arm_v7s_cfg.ttbr = virt_to_phys(data->pgd) | ARM_V7S_TTBR_S |
850 				(cfg->coherent_walk ? (ARM_V7S_TTBR_NOS |
851 				 ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_WBWA) |
852 				 ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_WBWA)) :
853 				(ARM_V7S_TTBR_IRGN_ATTR(ARM_V7S_RGN_NC) |
854 				 ARM_V7S_TTBR_ORGN_ATTR(ARM_V7S_RGN_NC)));
855 	return &data->iop;
856 
857 out_free_data:
858 	kmem_cache_destroy(data->l2_tables);
859 	kfree(data);
860 	return NULL;
861 }
862 
863 struct io_pgtable_init_fns io_pgtable_arm_v7s_init_fns = {
864 	.alloc	= arm_v7s_alloc_pgtable,
865 	.free	= arm_v7s_free_pgtable,
866 };
867 
868 #ifdef CONFIG_IOMMU_IO_PGTABLE_ARMV7S_SELFTEST
869 
870 static struct io_pgtable_cfg *cfg_cookie __initdata;
871 
dummy_tlb_flush_all(void * cookie)872 static void __init dummy_tlb_flush_all(void *cookie)
873 {
874 	WARN_ON(cookie != cfg_cookie);
875 }
876 
dummy_tlb_flush(unsigned long iova,size_t size,size_t granule,void * cookie)877 static void __init dummy_tlb_flush(unsigned long iova, size_t size,
878 				   size_t granule, void *cookie)
879 {
880 	WARN_ON(cookie != cfg_cookie);
881 	WARN_ON(!(size & cfg_cookie->pgsize_bitmap));
882 }
883 
dummy_tlb_add_page(struct iommu_iotlb_gather * gather,unsigned long iova,size_t granule,void * cookie)884 static void __init dummy_tlb_add_page(struct iommu_iotlb_gather *gather,
885 				      unsigned long iova, size_t granule,
886 				      void *cookie)
887 {
888 	dummy_tlb_flush(iova, granule, granule, cookie);
889 }
890 
891 static const struct iommu_flush_ops dummy_tlb_ops __initconst = {
892 	.tlb_flush_all	= dummy_tlb_flush_all,
893 	.tlb_flush_walk	= dummy_tlb_flush,
894 	.tlb_add_page	= dummy_tlb_add_page,
895 };
896 
897 #define __FAIL(ops)	({				\
898 		WARN(1, "selftest: test failed\n");	\
899 		selftest_running = false;		\
900 		-EFAULT;				\
901 })
902 
arm_v7s_do_selftests(void)903 static int __init arm_v7s_do_selftests(void)
904 {
905 	struct io_pgtable_ops *ops;
906 	struct io_pgtable_cfg cfg = {
907 		.tlb = &dummy_tlb_ops,
908 		.oas = 32,
909 		.ias = 32,
910 		.coherent_walk = true,
911 		.quirks = IO_PGTABLE_QUIRK_ARM_NS,
912 		.pgsize_bitmap = SZ_4K | SZ_64K | SZ_1M | SZ_16M,
913 	};
914 	unsigned int iova, size, iova_start;
915 	unsigned int i, loopnr = 0;
916 
917 	selftest_running = true;
918 
919 	cfg_cookie = &cfg;
920 
921 	ops = alloc_io_pgtable_ops(ARM_V7S, &cfg, &cfg);
922 	if (!ops) {
923 		pr_err("selftest: failed to allocate io pgtable ops\n");
924 		return -EINVAL;
925 	}
926 
927 	/*
928 	 * Initial sanity checks.
929 	 * Empty page tables shouldn't provide any translations.
930 	 */
931 	if (ops->iova_to_phys(ops, 42))
932 		return __FAIL(ops);
933 
934 	if (ops->iova_to_phys(ops, SZ_1G + 42))
935 		return __FAIL(ops);
936 
937 	if (ops->iova_to_phys(ops, SZ_2G + 42))
938 		return __FAIL(ops);
939 
940 	/*
941 	 * Distinct mappings of different granule sizes.
942 	 */
943 	iova = 0;
944 	for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
945 		size = 1UL << i;
946 		if (ops->map(ops, iova, iova, size, IOMMU_READ |
947 						    IOMMU_WRITE |
948 						    IOMMU_NOEXEC |
949 						    IOMMU_CACHE, GFP_KERNEL))
950 			return __FAIL(ops);
951 
952 		/* Overlapping mappings */
953 		if (!ops->map(ops, iova, iova + size, size,
954 			      IOMMU_READ | IOMMU_NOEXEC, GFP_KERNEL))
955 			return __FAIL(ops);
956 
957 		if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
958 			return __FAIL(ops);
959 
960 		iova += SZ_16M;
961 		loopnr++;
962 	}
963 
964 	/* Partial unmap */
965 	i = 1;
966 	size = 1UL << __ffs(cfg.pgsize_bitmap);
967 	while (i < loopnr) {
968 		iova_start = i * SZ_16M;
969 		if (ops->unmap(ops, iova_start + size, size, NULL) != size)
970 			return __FAIL(ops);
971 
972 		/* Remap of partial unmap */
973 		if (ops->map(ops, iova_start + size, size, size, IOMMU_READ, GFP_KERNEL))
974 			return __FAIL(ops);
975 
976 		if (ops->iova_to_phys(ops, iova_start + size + 42)
977 		    != (size + 42))
978 			return __FAIL(ops);
979 		i++;
980 	}
981 
982 	/* Full unmap */
983 	iova = 0;
984 	for_each_set_bit(i, &cfg.pgsize_bitmap, BITS_PER_LONG) {
985 		size = 1UL << i;
986 
987 		if (ops->unmap(ops, iova, size, NULL) != size)
988 			return __FAIL(ops);
989 
990 		if (ops->iova_to_phys(ops, iova + 42))
991 			return __FAIL(ops);
992 
993 		/* Remap full block */
994 		if (ops->map(ops, iova, iova, size, IOMMU_WRITE, GFP_KERNEL))
995 			return __FAIL(ops);
996 
997 		if (ops->iova_to_phys(ops, iova + 42) != (iova + 42))
998 			return __FAIL(ops);
999 
1000 		iova += SZ_16M;
1001 	}
1002 
1003 	free_io_pgtable_ops(ops);
1004 
1005 	selftest_running = false;
1006 
1007 	pr_info("self test ok\n");
1008 	return 0;
1009 }
1010 subsys_initcall(arm_v7s_do_selftests);
1011 #endif
1012