1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002 Andi Kleen, SuSE Labs.
4 * Thanks to Ben LaHaise for precious feedback.
5 */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
18 #include <linux/libnvdimm.h>
19 #include <linux/vmstat.h>
20 #include <linux/kernel.h>
21 #include <linux/cc_platform.h>
22
23 #include <asm/e820/api.h>
24 #include <asm/processor.h>
25 #include <asm/tlbflush.h>
26 #include <asm/sections.h>
27 #include <asm/setup.h>
28 #include <linux/uaccess.h>
29 #include <asm/pgalloc.h>
30 #include <asm/proto.h>
31 #include <asm/memtype.h>
32 #include <asm/set_memory.h>
33 #include <asm/hyperv-tlfs.h>
34 #include <asm/mshyperv.h>
35
36 #include "../mm_internal.h"
37
38 /*
39 * The current flushing context - we pass it instead of 5 arguments:
40 */
41 struct cpa_data {
42 unsigned long *vaddr;
43 pgd_t *pgd;
44 pgprot_t mask_set;
45 pgprot_t mask_clr;
46 unsigned long numpages;
47 unsigned long curpage;
48 unsigned long pfn;
49 unsigned int flags;
50 unsigned int force_split : 1,
51 force_static_prot : 1,
52 force_flush_all : 1;
53 struct page **pages;
54 };
55
56 enum cpa_warn {
57 CPA_CONFLICT,
58 CPA_PROTECT,
59 CPA_DETECT,
60 };
61
62 static const int cpa_warn_level = CPA_PROTECT;
63
64 /*
65 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
66 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
67 * entries change the page attribute in parallel to some other cpu
68 * splitting a large page entry along with changing the attribute.
69 */
70 static DEFINE_SPINLOCK(cpa_lock);
71
72 #define CPA_FLUSHTLB 1
73 #define CPA_ARRAY 2
74 #define CPA_PAGES_ARRAY 4
75 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
76
cachemode2pgprot(enum page_cache_mode pcm)77 static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
78 {
79 return __pgprot(cachemode2protval(pcm));
80 }
81
82 #ifdef CONFIG_PROC_FS
83 static unsigned long direct_pages_count[PG_LEVEL_NUM];
84
update_page_count(int level,unsigned long pages)85 void update_page_count(int level, unsigned long pages)
86 {
87 /* Protect against CPA */
88 spin_lock(&pgd_lock);
89 direct_pages_count[level] += pages;
90 spin_unlock(&pgd_lock);
91 }
92
split_page_count(int level)93 static void split_page_count(int level)
94 {
95 if (direct_pages_count[level] == 0)
96 return;
97
98 direct_pages_count[level]--;
99 if (system_state == SYSTEM_RUNNING) {
100 if (level == PG_LEVEL_2M)
101 count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
102 else if (level == PG_LEVEL_1G)
103 count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
104 }
105 direct_pages_count[level - 1] += PTRS_PER_PTE;
106 }
107
arch_report_meminfo(struct seq_file * m)108 void arch_report_meminfo(struct seq_file *m)
109 {
110 seq_printf(m, "DirectMap4k: %8lu kB\n",
111 direct_pages_count[PG_LEVEL_4K] << 2);
112 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
113 seq_printf(m, "DirectMap2M: %8lu kB\n",
114 direct_pages_count[PG_LEVEL_2M] << 11);
115 #else
116 seq_printf(m, "DirectMap4M: %8lu kB\n",
117 direct_pages_count[PG_LEVEL_2M] << 12);
118 #endif
119 if (direct_gbpages)
120 seq_printf(m, "DirectMap1G: %8lu kB\n",
121 direct_pages_count[PG_LEVEL_1G] << 20);
122 }
123 #else
split_page_count(int level)124 static inline void split_page_count(int level) { }
125 #endif
126
127 #ifdef CONFIG_X86_CPA_STATISTICS
128
129 static unsigned long cpa_1g_checked;
130 static unsigned long cpa_1g_sameprot;
131 static unsigned long cpa_1g_preserved;
132 static unsigned long cpa_2m_checked;
133 static unsigned long cpa_2m_sameprot;
134 static unsigned long cpa_2m_preserved;
135 static unsigned long cpa_4k_install;
136
cpa_inc_1g_checked(void)137 static inline void cpa_inc_1g_checked(void)
138 {
139 cpa_1g_checked++;
140 }
141
cpa_inc_2m_checked(void)142 static inline void cpa_inc_2m_checked(void)
143 {
144 cpa_2m_checked++;
145 }
146
cpa_inc_4k_install(void)147 static inline void cpa_inc_4k_install(void)
148 {
149 data_race(cpa_4k_install++);
150 }
151
cpa_inc_lp_sameprot(int level)152 static inline void cpa_inc_lp_sameprot(int level)
153 {
154 if (level == PG_LEVEL_1G)
155 cpa_1g_sameprot++;
156 else
157 cpa_2m_sameprot++;
158 }
159
cpa_inc_lp_preserved(int level)160 static inline void cpa_inc_lp_preserved(int level)
161 {
162 if (level == PG_LEVEL_1G)
163 cpa_1g_preserved++;
164 else
165 cpa_2m_preserved++;
166 }
167
cpastats_show(struct seq_file * m,void * p)168 static int cpastats_show(struct seq_file *m, void *p)
169 {
170 seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked);
171 seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot);
172 seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved);
173 seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked);
174 seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot);
175 seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved);
176 seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
177 return 0;
178 }
179
cpastats_open(struct inode * inode,struct file * file)180 static int cpastats_open(struct inode *inode, struct file *file)
181 {
182 return single_open(file, cpastats_show, NULL);
183 }
184
185 static const struct file_operations cpastats_fops = {
186 .open = cpastats_open,
187 .read = seq_read,
188 .llseek = seq_lseek,
189 .release = single_release,
190 };
191
cpa_stats_init(void)192 static int __init cpa_stats_init(void)
193 {
194 debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
195 &cpastats_fops);
196 return 0;
197 }
198 late_initcall(cpa_stats_init);
199 #else
cpa_inc_1g_checked(void)200 static inline void cpa_inc_1g_checked(void) { }
cpa_inc_2m_checked(void)201 static inline void cpa_inc_2m_checked(void) { }
cpa_inc_4k_install(void)202 static inline void cpa_inc_4k_install(void) { }
cpa_inc_lp_sameprot(int level)203 static inline void cpa_inc_lp_sameprot(int level) { }
cpa_inc_lp_preserved(int level)204 static inline void cpa_inc_lp_preserved(int level) { }
205 #endif
206
207
208 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)209 within(unsigned long addr, unsigned long start, unsigned long end)
210 {
211 return addr >= start && addr < end;
212 }
213
214 static inline int
within_inclusive(unsigned long addr,unsigned long start,unsigned long end)215 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
216 {
217 return addr >= start && addr <= end;
218 }
219
220 #ifdef CONFIG_X86_64
221
highmap_start_pfn(void)222 static inline unsigned long highmap_start_pfn(void)
223 {
224 return __pa_symbol(_text) >> PAGE_SHIFT;
225 }
226
highmap_end_pfn(void)227 static inline unsigned long highmap_end_pfn(void)
228 {
229 /* Do not reference physical address outside the kernel. */
230 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
231 }
232
__cpa_pfn_in_highmap(unsigned long pfn)233 static bool __cpa_pfn_in_highmap(unsigned long pfn)
234 {
235 /*
236 * Kernel text has an alias mapping at a high address, known
237 * here as "highmap".
238 */
239 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
240 }
241
242 #else
243
__cpa_pfn_in_highmap(unsigned long pfn)244 static bool __cpa_pfn_in_highmap(unsigned long pfn)
245 {
246 /* There is no highmap on 32-bit */
247 return false;
248 }
249
250 #endif
251
252 /*
253 * See set_mce_nospec().
254 *
255 * Machine check recovery code needs to change cache mode of poisoned pages to
256 * UC to avoid speculative access logging another error. But passing the
257 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
258 * speculative access. So we cheat and flip the top bit of the address. This
259 * works fine for the code that updates the page tables. But at the end of the
260 * process we need to flush the TLB and cache and the non-canonical address
261 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
262 *
263 * But in the common case we already have a canonical address. This code
264 * will fix the top bit if needed and is a no-op otherwise.
265 */
fix_addr(unsigned long addr)266 static inline unsigned long fix_addr(unsigned long addr)
267 {
268 #ifdef CONFIG_X86_64
269 return (long)(addr << 1) >> 1;
270 #else
271 return addr;
272 #endif
273 }
274
__cpa_addr(struct cpa_data * cpa,unsigned long idx)275 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
276 {
277 if (cpa->flags & CPA_PAGES_ARRAY) {
278 struct page *page = cpa->pages[idx];
279
280 if (unlikely(PageHighMem(page)))
281 return 0;
282
283 return (unsigned long)page_address(page);
284 }
285
286 if (cpa->flags & CPA_ARRAY)
287 return cpa->vaddr[idx];
288
289 return *cpa->vaddr + idx * PAGE_SIZE;
290 }
291
292 /*
293 * Flushing functions
294 */
295
clflush_cache_range_opt(void * vaddr,unsigned int size)296 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
297 {
298 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
299 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
300 void *vend = vaddr + size;
301
302 if (p >= vend)
303 return;
304
305 for (; p < vend; p += clflush_size)
306 clflushopt(p);
307 }
308
309 /**
310 * clflush_cache_range - flush a cache range with clflush
311 * @vaddr: virtual start address
312 * @size: number of bytes to flush
313 *
314 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
315 * SFENCE to avoid ordering issues.
316 */
clflush_cache_range(void * vaddr,unsigned int size)317 void clflush_cache_range(void *vaddr, unsigned int size)
318 {
319 mb();
320 clflush_cache_range_opt(vaddr, size);
321 mb();
322 }
323 EXPORT_SYMBOL_GPL(clflush_cache_range);
324
325 #ifdef CONFIG_ARCH_HAS_PMEM_API
arch_invalidate_pmem(void * addr,size_t size)326 void arch_invalidate_pmem(void *addr, size_t size)
327 {
328 clflush_cache_range(addr, size);
329 }
330 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
331 #endif
332
__cpa_flush_all(void * arg)333 static void __cpa_flush_all(void *arg)
334 {
335 unsigned long cache = (unsigned long)arg;
336
337 /*
338 * Flush all to work around Errata in early athlons regarding
339 * large page flushing.
340 */
341 __flush_tlb_all();
342
343 if (cache && boot_cpu_data.x86 >= 4)
344 wbinvd();
345 }
346
cpa_flush_all(unsigned long cache)347 static void cpa_flush_all(unsigned long cache)
348 {
349 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
350
351 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
352 }
353
__cpa_flush_tlb(void * data)354 static void __cpa_flush_tlb(void *data)
355 {
356 struct cpa_data *cpa = data;
357 unsigned int i;
358
359 for (i = 0; i < cpa->numpages; i++)
360 flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
361 }
362
cpa_flush(struct cpa_data * data,int cache)363 static void cpa_flush(struct cpa_data *data, int cache)
364 {
365 struct cpa_data *cpa = data;
366 unsigned int i;
367
368 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
369
370 if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
371 cpa_flush_all(cache);
372 return;
373 }
374
375 if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
376 flush_tlb_all();
377 else
378 on_each_cpu(__cpa_flush_tlb, cpa, 1);
379
380 if (!cache)
381 return;
382
383 mb();
384 for (i = 0; i < cpa->numpages; i++) {
385 unsigned long addr = __cpa_addr(cpa, i);
386 unsigned int level;
387
388 pte_t *pte = lookup_address(addr, &level);
389
390 /*
391 * Only flush present addresses:
392 */
393 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
394 clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
395 }
396 mb();
397 }
398
overlaps(unsigned long r1_start,unsigned long r1_end,unsigned long r2_start,unsigned long r2_end)399 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
400 unsigned long r2_start, unsigned long r2_end)
401 {
402 return (r1_start <= r2_end && r1_end >= r2_start) ||
403 (r2_start <= r1_end && r2_end >= r1_start);
404 }
405
406 #ifdef CONFIG_PCI_BIOS
407 /*
408 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
409 * based config access (CONFIG_PCI_GOBIOS) support.
410 */
411 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN)
412 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1)
413
protect_pci_bios(unsigned long spfn,unsigned long epfn)414 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
415 {
416 if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
417 return _PAGE_NX;
418 return 0;
419 }
420 #else
protect_pci_bios(unsigned long spfn,unsigned long epfn)421 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
422 {
423 return 0;
424 }
425 #endif
426
427 /*
428 * The .rodata section needs to be read-only. Using the pfn catches all
429 * aliases. This also includes __ro_after_init, so do not enforce until
430 * kernel_set_to_readonly is true.
431 */
protect_rodata(unsigned long spfn,unsigned long epfn)432 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
433 {
434 unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
435
436 /*
437 * Note: __end_rodata is at page aligned and not inclusive, so
438 * subtract 1 to get the last enforced PFN in the rodata area.
439 */
440 epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
441
442 if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
443 return _PAGE_RW;
444 return 0;
445 }
446
447 /*
448 * Protect kernel text against becoming non executable by forbidding
449 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext)
450 * out of which the kernel actually executes. Do not protect the low
451 * mapping.
452 *
453 * This does not cover __inittext since that is gone after boot.
454 */
protect_kernel_text(unsigned long start,unsigned long end)455 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
456 {
457 unsigned long t_end = (unsigned long)_etext - 1;
458 unsigned long t_start = (unsigned long)_text;
459
460 if (overlaps(start, end, t_start, t_end))
461 return _PAGE_NX;
462 return 0;
463 }
464
465 #if defined(CONFIG_X86_64)
466 /*
467 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
468 * kernel text mappings for the large page aligned text, rodata sections
469 * will be always read-only. For the kernel identity mappings covering the
470 * holes caused by this alignment can be anything that user asks.
471 *
472 * This will preserve the large page mappings for kernel text/data at no
473 * extra cost.
474 */
protect_kernel_text_ro(unsigned long start,unsigned long end)475 static pgprotval_t protect_kernel_text_ro(unsigned long start,
476 unsigned long end)
477 {
478 unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
479 unsigned long t_start = (unsigned long)_text;
480 unsigned int level;
481
482 if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
483 return 0;
484 /*
485 * Don't enforce the !RW mapping for the kernel text mapping, if
486 * the current mapping is already using small page mapping. No
487 * need to work hard to preserve large page mappings in this case.
488 *
489 * This also fixes the Linux Xen paravirt guest boot failure caused
490 * by unexpected read-only mappings for kernel identity
491 * mappings. In this paravirt guest case, the kernel text mapping
492 * and the kernel identity mapping share the same page-table pages,
493 * so the protections for kernel text and identity mappings have to
494 * be the same.
495 */
496 if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
497 return _PAGE_RW;
498 return 0;
499 }
500 #else
protect_kernel_text_ro(unsigned long start,unsigned long end)501 static pgprotval_t protect_kernel_text_ro(unsigned long start,
502 unsigned long end)
503 {
504 return 0;
505 }
506 #endif
507
conflicts(pgprot_t prot,pgprotval_t val)508 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
509 {
510 return (pgprot_val(prot) & ~val) != pgprot_val(prot);
511 }
512
check_conflict(int warnlvl,pgprot_t prot,pgprotval_t val,unsigned long start,unsigned long end,unsigned long pfn,const char * txt)513 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
514 unsigned long start, unsigned long end,
515 unsigned long pfn, const char *txt)
516 {
517 static const char *lvltxt[] = {
518 [CPA_CONFLICT] = "conflict",
519 [CPA_PROTECT] = "protect",
520 [CPA_DETECT] = "detect",
521 };
522
523 if (warnlvl > cpa_warn_level || !conflicts(prot, val))
524 return;
525
526 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
527 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
528 (unsigned long long)val);
529 }
530
531 /*
532 * Certain areas of memory on x86 require very specific protection flags,
533 * for example the BIOS area or kernel text. Callers don't always get this
534 * right (again, ioremap() on BIOS memory is not uncommon) so this function
535 * checks and fixes these known static required protection bits.
536 */
static_protections(pgprot_t prot,unsigned long start,unsigned long pfn,unsigned long npg,unsigned long lpsize,int warnlvl)537 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
538 unsigned long pfn, unsigned long npg,
539 unsigned long lpsize, int warnlvl)
540 {
541 pgprotval_t forbidden, res;
542 unsigned long end;
543
544 /*
545 * There is no point in checking RW/NX conflicts when the requested
546 * mapping is setting the page !PRESENT.
547 */
548 if (!(pgprot_val(prot) & _PAGE_PRESENT))
549 return prot;
550
551 /* Operate on the virtual address */
552 end = start + npg * PAGE_SIZE - 1;
553
554 res = protect_kernel_text(start, end);
555 check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
556 forbidden = res;
557
558 /*
559 * Special case to preserve a large page. If the change spawns the
560 * full large page mapping then there is no point to split it
561 * up. Happens with ftrace and is going to be removed once ftrace
562 * switched to text_poke().
563 */
564 if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
565 res = protect_kernel_text_ro(start, end);
566 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
567 forbidden |= res;
568 }
569
570 /* Check the PFN directly */
571 res = protect_pci_bios(pfn, pfn + npg - 1);
572 check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
573 forbidden |= res;
574
575 res = protect_rodata(pfn, pfn + npg - 1);
576 check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
577 forbidden |= res;
578
579 return __pgprot(pgprot_val(prot) & ~forbidden);
580 }
581
582 /*
583 * Lookup the page table entry for a virtual address in a specific pgd.
584 * Return a pointer to the entry and the level of the mapping.
585 */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)586 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
587 unsigned int *level)
588 {
589 p4d_t *p4d;
590 pud_t *pud;
591 pmd_t *pmd;
592
593 *level = PG_LEVEL_NONE;
594
595 if (pgd_none(*pgd))
596 return NULL;
597
598 p4d = p4d_offset(pgd, address);
599 if (p4d_none(*p4d))
600 return NULL;
601
602 *level = PG_LEVEL_512G;
603 if (p4d_large(*p4d) || !p4d_present(*p4d))
604 return (pte_t *)p4d;
605
606 pud = pud_offset(p4d, address);
607 if (pud_none(*pud))
608 return NULL;
609
610 *level = PG_LEVEL_1G;
611 if (pud_large(*pud) || !pud_present(*pud))
612 return (pte_t *)pud;
613
614 pmd = pmd_offset(pud, address);
615 if (pmd_none(*pmd))
616 return NULL;
617
618 *level = PG_LEVEL_2M;
619 if (pmd_large(*pmd) || !pmd_present(*pmd))
620 return (pte_t *)pmd;
621
622 *level = PG_LEVEL_4K;
623
624 return pte_offset_kernel(pmd, address);
625 }
626
627 /*
628 * Lookup the page table entry for a virtual address. Return a pointer
629 * to the entry and the level of the mapping.
630 *
631 * Note: We return pud and pmd either when the entry is marked large
632 * or when the present bit is not set. Otherwise we would return a
633 * pointer to a nonexisting mapping.
634 */
lookup_address(unsigned long address,unsigned int * level)635 pte_t *lookup_address(unsigned long address, unsigned int *level)
636 {
637 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
638 }
639 EXPORT_SYMBOL_GPL(lookup_address);
640
641 /*
642 * Lookup the page table entry for a virtual address in a given mm. Return a
643 * pointer to the entry and the level of the mapping.
644 */
lookup_address_in_mm(struct mm_struct * mm,unsigned long address,unsigned int * level)645 pte_t *lookup_address_in_mm(struct mm_struct *mm, unsigned long address,
646 unsigned int *level)
647 {
648 return lookup_address_in_pgd(pgd_offset(mm, address), address, level);
649 }
650 EXPORT_SYMBOL_GPL(lookup_address_in_mm);
651
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level)652 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
653 unsigned int *level)
654 {
655 if (cpa->pgd)
656 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
657 address, level);
658
659 return lookup_address(address, level);
660 }
661
662 /*
663 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
664 * or NULL if not present.
665 */
lookup_pmd_address(unsigned long address)666 pmd_t *lookup_pmd_address(unsigned long address)
667 {
668 pgd_t *pgd;
669 p4d_t *p4d;
670 pud_t *pud;
671
672 pgd = pgd_offset_k(address);
673 if (pgd_none(*pgd))
674 return NULL;
675
676 p4d = p4d_offset(pgd, address);
677 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
678 return NULL;
679
680 pud = pud_offset(p4d, address);
681 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
682 return NULL;
683
684 return pmd_offset(pud, address);
685 }
686
687 /*
688 * This is necessary because __pa() does not work on some
689 * kinds of memory, like vmalloc() or the alloc_remap()
690 * areas on 32-bit NUMA systems. The percpu areas can
691 * end up in this kind of memory, for instance.
692 *
693 * This could be optimized, but it is only intended to be
694 * used at initialization time, and keeping it
695 * unoptimized should increase the testing coverage for
696 * the more obscure platforms.
697 */
slow_virt_to_phys(void * __virt_addr)698 phys_addr_t slow_virt_to_phys(void *__virt_addr)
699 {
700 unsigned long virt_addr = (unsigned long)__virt_addr;
701 phys_addr_t phys_addr;
702 unsigned long offset;
703 enum pg_level level;
704 pte_t *pte;
705
706 pte = lookup_address(virt_addr, &level);
707 BUG_ON(!pte);
708
709 /*
710 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
711 * before being left-shifted PAGE_SHIFT bits -- this trick is to
712 * make 32-PAE kernel work correctly.
713 */
714 switch (level) {
715 case PG_LEVEL_1G:
716 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
717 offset = virt_addr & ~PUD_PAGE_MASK;
718 break;
719 case PG_LEVEL_2M:
720 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
721 offset = virt_addr & ~PMD_PAGE_MASK;
722 break;
723 default:
724 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
725 offset = virt_addr & ~PAGE_MASK;
726 }
727
728 return (phys_addr_t)(phys_addr | offset);
729 }
730 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
731
732 /*
733 * Set the new pmd in all the pgds we know about:
734 */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)735 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
736 {
737 /* change init_mm */
738 set_pte_atomic(kpte, pte);
739 #ifdef CONFIG_X86_32
740 if (!SHARED_KERNEL_PMD) {
741 struct page *page;
742
743 list_for_each_entry(page, &pgd_list, lru) {
744 pgd_t *pgd;
745 p4d_t *p4d;
746 pud_t *pud;
747 pmd_t *pmd;
748
749 pgd = (pgd_t *)page_address(page) + pgd_index(address);
750 p4d = p4d_offset(pgd, address);
751 pud = pud_offset(p4d, address);
752 pmd = pmd_offset(pud, address);
753 set_pte_atomic((pte_t *)pmd, pte);
754 }
755 }
756 #endif
757 }
758
pgprot_clear_protnone_bits(pgprot_t prot)759 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
760 {
761 /*
762 * _PAGE_GLOBAL means "global page" for present PTEs.
763 * But, it is also used to indicate _PAGE_PROTNONE
764 * for non-present PTEs.
765 *
766 * This ensures that a _PAGE_GLOBAL PTE going from
767 * present to non-present is not confused as
768 * _PAGE_PROTNONE.
769 */
770 if (!(pgprot_val(prot) & _PAGE_PRESENT))
771 pgprot_val(prot) &= ~_PAGE_GLOBAL;
772
773 return prot;
774 }
775
__should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)776 static int __should_split_large_page(pte_t *kpte, unsigned long address,
777 struct cpa_data *cpa)
778 {
779 unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
780 pgprot_t old_prot, new_prot, req_prot, chk_prot;
781 pte_t new_pte, *tmp;
782 enum pg_level level;
783
784 /*
785 * Check for races, another CPU might have split this page
786 * up already:
787 */
788 tmp = _lookup_address_cpa(cpa, address, &level);
789 if (tmp != kpte)
790 return 1;
791
792 switch (level) {
793 case PG_LEVEL_2M:
794 old_prot = pmd_pgprot(*(pmd_t *)kpte);
795 old_pfn = pmd_pfn(*(pmd_t *)kpte);
796 cpa_inc_2m_checked();
797 break;
798 case PG_LEVEL_1G:
799 old_prot = pud_pgprot(*(pud_t *)kpte);
800 old_pfn = pud_pfn(*(pud_t *)kpte);
801 cpa_inc_1g_checked();
802 break;
803 default:
804 return -EINVAL;
805 }
806
807 psize = page_level_size(level);
808 pmask = page_level_mask(level);
809
810 /*
811 * Calculate the number of pages, which fit into this large
812 * page starting at address:
813 */
814 lpaddr = (address + psize) & pmask;
815 numpages = (lpaddr - address) >> PAGE_SHIFT;
816 if (numpages < cpa->numpages)
817 cpa->numpages = numpages;
818
819 /*
820 * We are safe now. Check whether the new pgprot is the same:
821 * Convert protection attributes to 4k-format, as cpa->mask* are set
822 * up accordingly.
823 */
824
825 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
826 req_prot = pgprot_large_2_4k(old_prot);
827
828 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
829 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
830
831 /*
832 * req_prot is in format of 4k pages. It must be converted to large
833 * page format: the caching mode includes the PAT bit located at
834 * different bit positions in the two formats.
835 */
836 req_prot = pgprot_4k_2_large(req_prot);
837 req_prot = pgprot_clear_protnone_bits(req_prot);
838 if (pgprot_val(req_prot) & _PAGE_PRESENT)
839 pgprot_val(req_prot) |= _PAGE_PSE;
840
841 /*
842 * old_pfn points to the large page base pfn. So we need to add the
843 * offset of the virtual address:
844 */
845 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
846 cpa->pfn = pfn;
847
848 /*
849 * Calculate the large page base address and the number of 4K pages
850 * in the large page
851 */
852 lpaddr = address & pmask;
853 numpages = psize >> PAGE_SHIFT;
854
855 /*
856 * Sanity check that the existing mapping is correct versus the static
857 * protections. static_protections() guards against !PRESENT, so no
858 * extra conditional required here.
859 */
860 chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
861 psize, CPA_CONFLICT);
862
863 if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
864 /*
865 * Split the large page and tell the split code to
866 * enforce static protections.
867 */
868 cpa->force_static_prot = 1;
869 return 1;
870 }
871
872 /*
873 * Optimization: If the requested pgprot is the same as the current
874 * pgprot, then the large page can be preserved and no updates are
875 * required independent of alignment and length of the requested
876 * range. The above already established that the current pgprot is
877 * correct, which in consequence makes the requested pgprot correct
878 * as well if it is the same. The static protection scan below will
879 * not come to a different conclusion.
880 */
881 if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
882 cpa_inc_lp_sameprot(level);
883 return 0;
884 }
885
886 /*
887 * If the requested range does not cover the full page, split it up
888 */
889 if (address != lpaddr || cpa->numpages != numpages)
890 return 1;
891
892 /*
893 * Check whether the requested pgprot is conflicting with a static
894 * protection requirement in the large page.
895 */
896 new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
897 psize, CPA_DETECT);
898
899 /*
900 * If there is a conflict, split the large page.
901 *
902 * There used to be a 4k wise evaluation trying really hard to
903 * preserve the large pages, but experimentation has shown, that this
904 * does not help at all. There might be corner cases which would
905 * preserve one large page occasionally, but it's really not worth the
906 * extra code and cycles for the common case.
907 */
908 if (pgprot_val(req_prot) != pgprot_val(new_prot))
909 return 1;
910
911 /* All checks passed. Update the large page mapping. */
912 new_pte = pfn_pte(old_pfn, new_prot);
913 __set_pmd_pte(kpte, address, new_pte);
914 cpa->flags |= CPA_FLUSHTLB;
915 cpa_inc_lp_preserved(level);
916 return 0;
917 }
918
should_split_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)919 static int should_split_large_page(pte_t *kpte, unsigned long address,
920 struct cpa_data *cpa)
921 {
922 int do_split;
923
924 if (cpa->force_split)
925 return 1;
926
927 spin_lock(&pgd_lock);
928 do_split = __should_split_large_page(kpte, address, cpa);
929 spin_unlock(&pgd_lock);
930
931 return do_split;
932 }
933
split_set_pte(struct cpa_data * cpa,pte_t * pte,unsigned long pfn,pgprot_t ref_prot,unsigned long address,unsigned long size)934 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
935 pgprot_t ref_prot, unsigned long address,
936 unsigned long size)
937 {
938 unsigned int npg = PFN_DOWN(size);
939 pgprot_t prot;
940
941 /*
942 * If should_split_large_page() discovered an inconsistent mapping,
943 * remove the invalid protection in the split mapping.
944 */
945 if (!cpa->force_static_prot)
946 goto set;
947
948 /* Hand in lpsize = 0 to enforce the protection mechanism */
949 prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
950
951 if (pgprot_val(prot) == pgprot_val(ref_prot))
952 goto set;
953
954 /*
955 * If this is splitting a PMD, fix it up. PUD splits cannot be
956 * fixed trivially as that would require to rescan the newly
957 * installed PMD mappings after returning from split_large_page()
958 * so an eventual further split can allocate the necessary PTE
959 * pages. Warn for now and revisit it in case this actually
960 * happens.
961 */
962 if (size == PAGE_SIZE)
963 ref_prot = prot;
964 else
965 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
966 set:
967 set_pte(pte, pfn_pte(pfn, ref_prot));
968 }
969
970 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)971 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
972 struct page *base)
973 {
974 unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
975 pte_t *pbase = (pte_t *)page_address(base);
976 unsigned int i, level;
977 pgprot_t ref_prot;
978 pte_t *tmp;
979
980 spin_lock(&pgd_lock);
981 /*
982 * Check for races, another CPU might have split this page
983 * up for us already:
984 */
985 tmp = _lookup_address_cpa(cpa, address, &level);
986 if (tmp != kpte) {
987 spin_unlock(&pgd_lock);
988 return 1;
989 }
990
991 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
992
993 switch (level) {
994 case PG_LEVEL_2M:
995 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
996 /*
997 * Clear PSE (aka _PAGE_PAT) and move
998 * PAT bit to correct position.
999 */
1000 ref_prot = pgprot_large_2_4k(ref_prot);
1001 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1002 lpaddr = address & PMD_MASK;
1003 lpinc = PAGE_SIZE;
1004 break;
1005
1006 case PG_LEVEL_1G:
1007 ref_prot = pud_pgprot(*(pud_t *)kpte);
1008 ref_pfn = pud_pfn(*(pud_t *)kpte);
1009 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
1010 lpaddr = address & PUD_MASK;
1011 lpinc = PMD_SIZE;
1012 /*
1013 * Clear the PSE flags if the PRESENT flag is not set
1014 * otherwise pmd_present/pmd_huge will return true
1015 * even on a non present pmd.
1016 */
1017 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1018 pgprot_val(ref_prot) &= ~_PAGE_PSE;
1019 break;
1020
1021 default:
1022 spin_unlock(&pgd_lock);
1023 return 1;
1024 }
1025
1026 ref_prot = pgprot_clear_protnone_bits(ref_prot);
1027
1028 /*
1029 * Get the target pfn from the original entry:
1030 */
1031 pfn = ref_pfn;
1032 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1033 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1034
1035 if (virt_addr_valid(address)) {
1036 unsigned long pfn = PFN_DOWN(__pa(address));
1037
1038 if (pfn_range_is_mapped(pfn, pfn + 1))
1039 split_page_count(level);
1040 }
1041
1042 /*
1043 * Install the new, split up pagetable.
1044 *
1045 * We use the standard kernel pagetable protections for the new
1046 * pagetable protections, the actual ptes set above control the
1047 * primary protection behavior:
1048 */
1049 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1050
1051 /*
1052 * Do a global flush tlb after splitting the large page
1053 * and before we do the actual change page attribute in the PTE.
1054 *
1055 * Without this, we violate the TLB application note, that says:
1056 * "The TLBs may contain both ordinary and large-page
1057 * translations for a 4-KByte range of linear addresses. This
1058 * may occur if software modifies the paging structures so that
1059 * the page size used for the address range changes. If the two
1060 * translations differ with respect to page frame or attributes
1061 * (e.g., permissions), processor behavior is undefined and may
1062 * be implementation-specific."
1063 *
1064 * We do this global tlb flush inside the cpa_lock, so that we
1065 * don't allow any other cpu, with stale tlb entries change the
1066 * page attribute in parallel, that also falls into the
1067 * just split large page entry.
1068 */
1069 flush_tlb_all();
1070 spin_unlock(&pgd_lock);
1071
1072 return 0;
1073 }
1074
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)1075 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1076 unsigned long address)
1077 {
1078 struct page *base;
1079
1080 if (!debug_pagealloc_enabled())
1081 spin_unlock(&cpa_lock);
1082 base = alloc_pages(GFP_KERNEL, 0);
1083 if (!debug_pagealloc_enabled())
1084 spin_lock(&cpa_lock);
1085 if (!base)
1086 return -ENOMEM;
1087
1088 if (__split_large_page(cpa, kpte, address, base))
1089 __free_page(base);
1090
1091 return 0;
1092 }
1093
try_to_free_pte_page(pte_t * pte)1094 static bool try_to_free_pte_page(pte_t *pte)
1095 {
1096 int i;
1097
1098 for (i = 0; i < PTRS_PER_PTE; i++)
1099 if (!pte_none(pte[i]))
1100 return false;
1101
1102 free_page((unsigned long)pte);
1103 return true;
1104 }
1105
try_to_free_pmd_page(pmd_t * pmd)1106 static bool try_to_free_pmd_page(pmd_t *pmd)
1107 {
1108 int i;
1109
1110 for (i = 0; i < PTRS_PER_PMD; i++)
1111 if (!pmd_none(pmd[i]))
1112 return false;
1113
1114 free_page((unsigned long)pmd);
1115 return true;
1116 }
1117
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)1118 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1119 {
1120 pte_t *pte = pte_offset_kernel(pmd, start);
1121
1122 while (start < end) {
1123 set_pte(pte, __pte(0));
1124
1125 start += PAGE_SIZE;
1126 pte++;
1127 }
1128
1129 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1130 pmd_clear(pmd);
1131 return true;
1132 }
1133 return false;
1134 }
1135
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)1136 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1137 unsigned long start, unsigned long end)
1138 {
1139 if (unmap_pte_range(pmd, start, end))
1140 if (try_to_free_pmd_page(pud_pgtable(*pud)))
1141 pud_clear(pud);
1142 }
1143
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)1144 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1145 {
1146 pmd_t *pmd = pmd_offset(pud, start);
1147
1148 /*
1149 * Not on a 2MB page boundary?
1150 */
1151 if (start & (PMD_SIZE - 1)) {
1152 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1153 unsigned long pre_end = min_t(unsigned long, end, next_page);
1154
1155 __unmap_pmd_range(pud, pmd, start, pre_end);
1156
1157 start = pre_end;
1158 pmd++;
1159 }
1160
1161 /*
1162 * Try to unmap in 2M chunks.
1163 */
1164 while (end - start >= PMD_SIZE) {
1165 if (pmd_large(*pmd))
1166 pmd_clear(pmd);
1167 else
1168 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1169
1170 start += PMD_SIZE;
1171 pmd++;
1172 }
1173
1174 /*
1175 * 4K leftovers?
1176 */
1177 if (start < end)
1178 return __unmap_pmd_range(pud, pmd, start, end);
1179
1180 /*
1181 * Try again to free the PMD page if haven't succeeded above.
1182 */
1183 if (!pud_none(*pud))
1184 if (try_to_free_pmd_page(pud_pgtable(*pud)))
1185 pud_clear(pud);
1186 }
1187
unmap_pud_range(p4d_t * p4d,unsigned long start,unsigned long end)1188 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1189 {
1190 pud_t *pud = pud_offset(p4d, start);
1191
1192 /*
1193 * Not on a GB page boundary?
1194 */
1195 if (start & (PUD_SIZE - 1)) {
1196 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1197 unsigned long pre_end = min_t(unsigned long, end, next_page);
1198
1199 unmap_pmd_range(pud, start, pre_end);
1200
1201 start = pre_end;
1202 pud++;
1203 }
1204
1205 /*
1206 * Try to unmap in 1G chunks?
1207 */
1208 while (end - start >= PUD_SIZE) {
1209
1210 if (pud_large(*pud))
1211 pud_clear(pud);
1212 else
1213 unmap_pmd_range(pud, start, start + PUD_SIZE);
1214
1215 start += PUD_SIZE;
1216 pud++;
1217 }
1218
1219 /*
1220 * 2M leftovers?
1221 */
1222 if (start < end)
1223 unmap_pmd_range(pud, start, end);
1224
1225 /*
1226 * No need to try to free the PUD page because we'll free it in
1227 * populate_pgd's error path
1228 */
1229 }
1230
alloc_pte_page(pmd_t * pmd)1231 static int alloc_pte_page(pmd_t *pmd)
1232 {
1233 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1234 if (!pte)
1235 return -1;
1236
1237 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1238 return 0;
1239 }
1240
alloc_pmd_page(pud_t * pud)1241 static int alloc_pmd_page(pud_t *pud)
1242 {
1243 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1244 if (!pmd)
1245 return -1;
1246
1247 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1248 return 0;
1249 }
1250
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)1251 static void populate_pte(struct cpa_data *cpa,
1252 unsigned long start, unsigned long end,
1253 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1254 {
1255 pte_t *pte;
1256
1257 pte = pte_offset_kernel(pmd, start);
1258
1259 pgprot = pgprot_clear_protnone_bits(pgprot);
1260
1261 while (num_pages-- && start < end) {
1262 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1263
1264 start += PAGE_SIZE;
1265 cpa->pfn++;
1266 pte++;
1267 }
1268 }
1269
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)1270 static long populate_pmd(struct cpa_data *cpa,
1271 unsigned long start, unsigned long end,
1272 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1273 {
1274 long cur_pages = 0;
1275 pmd_t *pmd;
1276 pgprot_t pmd_pgprot;
1277
1278 /*
1279 * Not on a 2M boundary?
1280 */
1281 if (start & (PMD_SIZE - 1)) {
1282 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1283 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1284
1285 pre_end = min_t(unsigned long, pre_end, next_page);
1286 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1287 cur_pages = min_t(unsigned int, num_pages, cur_pages);
1288
1289 /*
1290 * Need a PTE page?
1291 */
1292 pmd = pmd_offset(pud, start);
1293 if (pmd_none(*pmd))
1294 if (alloc_pte_page(pmd))
1295 return -1;
1296
1297 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1298
1299 start = pre_end;
1300 }
1301
1302 /*
1303 * We mapped them all?
1304 */
1305 if (num_pages == cur_pages)
1306 return cur_pages;
1307
1308 pmd_pgprot = pgprot_4k_2_large(pgprot);
1309
1310 while (end - start >= PMD_SIZE) {
1311
1312 /*
1313 * We cannot use a 1G page so allocate a PMD page if needed.
1314 */
1315 if (pud_none(*pud))
1316 if (alloc_pmd_page(pud))
1317 return -1;
1318
1319 pmd = pmd_offset(pud, start);
1320
1321 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1322 canon_pgprot(pmd_pgprot))));
1323
1324 start += PMD_SIZE;
1325 cpa->pfn += PMD_SIZE >> PAGE_SHIFT;
1326 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1327 }
1328
1329 /*
1330 * Map trailing 4K pages.
1331 */
1332 if (start < end) {
1333 pmd = pmd_offset(pud, start);
1334 if (pmd_none(*pmd))
1335 if (alloc_pte_page(pmd))
1336 return -1;
1337
1338 populate_pte(cpa, start, end, num_pages - cur_pages,
1339 pmd, pgprot);
1340 }
1341 return num_pages;
1342 }
1343
populate_pud(struct cpa_data * cpa,unsigned long start,p4d_t * p4d,pgprot_t pgprot)1344 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1345 pgprot_t pgprot)
1346 {
1347 pud_t *pud;
1348 unsigned long end;
1349 long cur_pages = 0;
1350 pgprot_t pud_pgprot;
1351
1352 end = start + (cpa->numpages << PAGE_SHIFT);
1353
1354 /*
1355 * Not on a Gb page boundary? => map everything up to it with
1356 * smaller pages.
1357 */
1358 if (start & (PUD_SIZE - 1)) {
1359 unsigned long pre_end;
1360 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1361
1362 pre_end = min_t(unsigned long, end, next_page);
1363 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1364 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1365
1366 pud = pud_offset(p4d, start);
1367
1368 /*
1369 * Need a PMD page?
1370 */
1371 if (pud_none(*pud))
1372 if (alloc_pmd_page(pud))
1373 return -1;
1374
1375 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1376 pud, pgprot);
1377 if (cur_pages < 0)
1378 return cur_pages;
1379
1380 start = pre_end;
1381 }
1382
1383 /* We mapped them all? */
1384 if (cpa->numpages == cur_pages)
1385 return cur_pages;
1386
1387 pud = pud_offset(p4d, start);
1388 pud_pgprot = pgprot_4k_2_large(pgprot);
1389
1390 /*
1391 * Map everything starting from the Gb boundary, possibly with 1G pages
1392 */
1393 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1394 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1395 canon_pgprot(pud_pgprot))));
1396
1397 start += PUD_SIZE;
1398 cpa->pfn += PUD_SIZE >> PAGE_SHIFT;
1399 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1400 pud++;
1401 }
1402
1403 /* Map trailing leftover */
1404 if (start < end) {
1405 long tmp;
1406
1407 pud = pud_offset(p4d, start);
1408 if (pud_none(*pud))
1409 if (alloc_pmd_page(pud))
1410 return -1;
1411
1412 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1413 pud, pgprot);
1414 if (tmp < 0)
1415 return cur_pages;
1416
1417 cur_pages += tmp;
1418 }
1419 return cur_pages;
1420 }
1421
1422 /*
1423 * Restrictions for kernel page table do not necessarily apply when mapping in
1424 * an alternate PGD.
1425 */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1426 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1427 {
1428 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1429 pud_t *pud = NULL; /* shut up gcc */
1430 p4d_t *p4d;
1431 pgd_t *pgd_entry;
1432 long ret;
1433
1434 pgd_entry = cpa->pgd + pgd_index(addr);
1435
1436 if (pgd_none(*pgd_entry)) {
1437 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1438 if (!p4d)
1439 return -1;
1440
1441 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1442 }
1443
1444 /*
1445 * Allocate a PUD page and hand it down for mapping.
1446 */
1447 p4d = p4d_offset(pgd_entry, addr);
1448 if (p4d_none(*p4d)) {
1449 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1450 if (!pud)
1451 return -1;
1452
1453 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1454 }
1455
1456 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1457 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1458
1459 ret = populate_pud(cpa, addr, p4d, pgprot);
1460 if (ret < 0) {
1461 /*
1462 * Leave the PUD page in place in case some other CPU or thread
1463 * already found it, but remove any useless entries we just
1464 * added to it.
1465 */
1466 unmap_pud_range(p4d, addr,
1467 addr + (cpa->numpages << PAGE_SHIFT));
1468 return ret;
1469 }
1470
1471 cpa->numpages = ret;
1472 return 0;
1473 }
1474
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1475 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1476 int primary)
1477 {
1478 if (cpa->pgd) {
1479 /*
1480 * Right now, we only execute this code path when mapping
1481 * the EFI virtual memory map regions, no other users
1482 * provide a ->pgd value. This may change in the future.
1483 */
1484 return populate_pgd(cpa, vaddr);
1485 }
1486
1487 /*
1488 * Ignore all non primary paths.
1489 */
1490 if (!primary) {
1491 cpa->numpages = 1;
1492 return 0;
1493 }
1494
1495 /*
1496 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1497 * to have holes.
1498 * Also set numpages to '1' indicating that we processed cpa req for
1499 * one virtual address page and its pfn. TBD: numpages can be set based
1500 * on the initial value and the level returned by lookup_address().
1501 */
1502 if (within(vaddr, PAGE_OFFSET,
1503 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1504 cpa->numpages = 1;
1505 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1506 return 0;
1507
1508 } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1509 /* Faults in the highmap are OK, so do not warn: */
1510 return -EFAULT;
1511 } else {
1512 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1513 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1514 *cpa->vaddr);
1515
1516 return -EFAULT;
1517 }
1518 }
1519
__change_page_attr(struct cpa_data * cpa,int primary)1520 static int __change_page_attr(struct cpa_data *cpa, int primary)
1521 {
1522 unsigned long address;
1523 int do_split, err;
1524 unsigned int level;
1525 pte_t *kpte, old_pte;
1526
1527 address = __cpa_addr(cpa, cpa->curpage);
1528 repeat:
1529 kpte = _lookup_address_cpa(cpa, address, &level);
1530 if (!kpte)
1531 return __cpa_process_fault(cpa, address, primary);
1532
1533 old_pte = *kpte;
1534 if (pte_none(old_pte))
1535 return __cpa_process_fault(cpa, address, primary);
1536
1537 if (level == PG_LEVEL_4K) {
1538 pte_t new_pte;
1539 pgprot_t new_prot = pte_pgprot(old_pte);
1540 unsigned long pfn = pte_pfn(old_pte);
1541
1542 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1543 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1544
1545 cpa_inc_4k_install();
1546 /* Hand in lpsize = 0 to enforce the protection mechanism */
1547 new_prot = static_protections(new_prot, address, pfn, 1, 0,
1548 CPA_PROTECT);
1549
1550 new_prot = pgprot_clear_protnone_bits(new_prot);
1551
1552 /*
1553 * We need to keep the pfn from the existing PTE,
1554 * after all we're only going to change it's attributes
1555 * not the memory it points to
1556 */
1557 new_pte = pfn_pte(pfn, new_prot);
1558 cpa->pfn = pfn;
1559 /*
1560 * Do we really change anything ?
1561 */
1562 if (pte_val(old_pte) != pte_val(new_pte)) {
1563 set_pte_atomic(kpte, new_pte);
1564 cpa->flags |= CPA_FLUSHTLB;
1565 }
1566 cpa->numpages = 1;
1567 return 0;
1568 }
1569
1570 /*
1571 * Check, whether we can keep the large page intact
1572 * and just change the pte:
1573 */
1574 do_split = should_split_large_page(kpte, address, cpa);
1575 /*
1576 * When the range fits into the existing large page,
1577 * return. cp->numpages and cpa->tlbflush have been updated in
1578 * try_large_page:
1579 */
1580 if (do_split <= 0)
1581 return do_split;
1582
1583 /*
1584 * We have to split the large page:
1585 */
1586 err = split_large_page(cpa, kpte, address);
1587 if (!err)
1588 goto repeat;
1589
1590 return err;
1591 }
1592
1593 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1594
cpa_process_alias(struct cpa_data * cpa)1595 static int cpa_process_alias(struct cpa_data *cpa)
1596 {
1597 struct cpa_data alias_cpa;
1598 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1599 unsigned long vaddr;
1600 int ret;
1601
1602 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1603 return 0;
1604
1605 /*
1606 * No need to redo, when the primary call touched the direct
1607 * mapping already:
1608 */
1609 vaddr = __cpa_addr(cpa, cpa->curpage);
1610 if (!(within(vaddr, PAGE_OFFSET,
1611 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1612
1613 alias_cpa = *cpa;
1614 alias_cpa.vaddr = &laddr;
1615 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1616 alias_cpa.curpage = 0;
1617
1618 cpa->force_flush_all = 1;
1619
1620 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1621 if (ret)
1622 return ret;
1623 }
1624
1625 #ifdef CONFIG_X86_64
1626 /*
1627 * If the primary call didn't touch the high mapping already
1628 * and the physical address is inside the kernel map, we need
1629 * to touch the high mapped kernel as well:
1630 */
1631 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1632 __cpa_pfn_in_highmap(cpa->pfn)) {
1633 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1634 __START_KERNEL_map - phys_base;
1635 alias_cpa = *cpa;
1636 alias_cpa.vaddr = &temp_cpa_vaddr;
1637 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1638 alias_cpa.curpage = 0;
1639
1640 cpa->force_flush_all = 1;
1641 /*
1642 * The high mapping range is imprecise, so ignore the
1643 * return value.
1644 */
1645 __change_page_attr_set_clr(&alias_cpa, 0);
1646 }
1647 #endif
1648
1649 return 0;
1650 }
1651
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)1652 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1653 {
1654 unsigned long numpages = cpa->numpages;
1655 unsigned long rempages = numpages;
1656 int ret = 0;
1657
1658 while (rempages) {
1659 /*
1660 * Store the remaining nr of pages for the large page
1661 * preservation check.
1662 */
1663 cpa->numpages = rempages;
1664 /* for array changes, we can't use large page */
1665 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1666 cpa->numpages = 1;
1667
1668 if (!debug_pagealloc_enabled())
1669 spin_lock(&cpa_lock);
1670 ret = __change_page_attr(cpa, checkalias);
1671 if (!debug_pagealloc_enabled())
1672 spin_unlock(&cpa_lock);
1673 if (ret)
1674 goto out;
1675
1676 if (checkalias) {
1677 ret = cpa_process_alias(cpa);
1678 if (ret)
1679 goto out;
1680 }
1681
1682 /*
1683 * Adjust the number of pages with the result of the
1684 * CPA operation. Either a large page has been
1685 * preserved or a single page update happened.
1686 */
1687 BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1688 rempages -= cpa->numpages;
1689 cpa->curpage += cpa->numpages;
1690 }
1691
1692 out:
1693 /* Restore the original numpages */
1694 cpa->numpages = numpages;
1695 return ret;
1696 }
1697
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1698 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1699 pgprot_t mask_set, pgprot_t mask_clr,
1700 int force_split, int in_flag,
1701 struct page **pages)
1702 {
1703 struct cpa_data cpa;
1704 int ret, cache, checkalias;
1705
1706 memset(&cpa, 0, sizeof(cpa));
1707
1708 /*
1709 * Check, if we are requested to set a not supported
1710 * feature. Clearing non-supported features is OK.
1711 */
1712 mask_set = canon_pgprot(mask_set);
1713
1714 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1715 return 0;
1716
1717 /* Ensure we are PAGE_SIZE aligned */
1718 if (in_flag & CPA_ARRAY) {
1719 int i;
1720 for (i = 0; i < numpages; i++) {
1721 if (addr[i] & ~PAGE_MASK) {
1722 addr[i] &= PAGE_MASK;
1723 WARN_ON_ONCE(1);
1724 }
1725 }
1726 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1727 /*
1728 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1729 * No need to check in that case
1730 */
1731 if (*addr & ~PAGE_MASK) {
1732 *addr &= PAGE_MASK;
1733 /*
1734 * People should not be passing in unaligned addresses:
1735 */
1736 WARN_ON_ONCE(1);
1737 }
1738 }
1739
1740 /* Must avoid aliasing mappings in the highmem code */
1741 kmap_flush_unused();
1742
1743 vm_unmap_aliases();
1744
1745 cpa.vaddr = addr;
1746 cpa.pages = pages;
1747 cpa.numpages = numpages;
1748 cpa.mask_set = mask_set;
1749 cpa.mask_clr = mask_clr;
1750 cpa.flags = 0;
1751 cpa.curpage = 0;
1752 cpa.force_split = force_split;
1753
1754 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1755 cpa.flags |= in_flag;
1756
1757 /* No alias checking for _NX bit modifications */
1758 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1759 /* Has caller explicitly disabled alias checking? */
1760 if (in_flag & CPA_NO_CHECK_ALIAS)
1761 checkalias = 0;
1762
1763 ret = __change_page_attr_set_clr(&cpa, checkalias);
1764
1765 /*
1766 * Check whether we really changed something:
1767 */
1768 if (!(cpa.flags & CPA_FLUSHTLB))
1769 goto out;
1770
1771 /*
1772 * No need to flush, when we did not set any of the caching
1773 * attributes:
1774 */
1775 cache = !!pgprot2cachemode(mask_set);
1776
1777 /*
1778 * On error; flush everything to be sure.
1779 */
1780 if (ret) {
1781 cpa_flush_all(cache);
1782 goto out;
1783 }
1784
1785 cpa_flush(&cpa, cache);
1786 out:
1787 return ret;
1788 }
1789
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1790 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1791 pgprot_t mask, int array)
1792 {
1793 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1794 (array ? CPA_ARRAY : 0), NULL);
1795 }
1796
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1797 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1798 pgprot_t mask, int array)
1799 {
1800 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1801 (array ? CPA_ARRAY : 0), NULL);
1802 }
1803
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1804 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1805 pgprot_t mask)
1806 {
1807 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1808 CPA_PAGES_ARRAY, pages);
1809 }
1810
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1811 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1812 pgprot_t mask)
1813 {
1814 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1815 CPA_PAGES_ARRAY, pages);
1816 }
1817
1818 /*
1819 * _set_memory_prot is an internal helper for callers that have been passed
1820 * a pgprot_t value from upper layers and a reservation has already been taken.
1821 * If you want to set the pgprot to a specific page protocol, use the
1822 * set_memory_xx() functions.
1823 */
__set_memory_prot(unsigned long addr,int numpages,pgprot_t prot)1824 int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1825 {
1826 return change_page_attr_set_clr(&addr, numpages, prot,
1827 __pgprot(~pgprot_val(prot)), 0, 0,
1828 NULL);
1829 }
1830
_set_memory_uc(unsigned long addr,int numpages)1831 int _set_memory_uc(unsigned long addr, int numpages)
1832 {
1833 /*
1834 * for now UC MINUS. see comments in ioremap()
1835 * If you really need strong UC use ioremap_uc(), but note
1836 * that you cannot override IO areas with set_memory_*() as
1837 * these helpers cannot work with IO memory.
1838 */
1839 return change_page_attr_set(&addr, numpages,
1840 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1841 0);
1842 }
1843
set_memory_uc(unsigned long addr,int numpages)1844 int set_memory_uc(unsigned long addr, int numpages)
1845 {
1846 int ret;
1847
1848 /*
1849 * for now UC MINUS. see comments in ioremap()
1850 */
1851 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1852 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1853 if (ret)
1854 goto out_err;
1855
1856 ret = _set_memory_uc(addr, numpages);
1857 if (ret)
1858 goto out_free;
1859
1860 return 0;
1861
1862 out_free:
1863 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1864 out_err:
1865 return ret;
1866 }
1867 EXPORT_SYMBOL(set_memory_uc);
1868
_set_memory_wc(unsigned long addr,int numpages)1869 int _set_memory_wc(unsigned long addr, int numpages)
1870 {
1871 int ret;
1872
1873 ret = change_page_attr_set(&addr, numpages,
1874 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1875 0);
1876 if (!ret) {
1877 ret = change_page_attr_set_clr(&addr, numpages,
1878 cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1879 __pgprot(_PAGE_CACHE_MASK),
1880 0, 0, NULL);
1881 }
1882 return ret;
1883 }
1884
set_memory_wc(unsigned long addr,int numpages)1885 int set_memory_wc(unsigned long addr, int numpages)
1886 {
1887 int ret;
1888
1889 ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1890 _PAGE_CACHE_MODE_WC, NULL);
1891 if (ret)
1892 return ret;
1893
1894 ret = _set_memory_wc(addr, numpages);
1895 if (ret)
1896 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1897
1898 return ret;
1899 }
1900 EXPORT_SYMBOL(set_memory_wc);
1901
_set_memory_wt(unsigned long addr,int numpages)1902 int _set_memory_wt(unsigned long addr, int numpages)
1903 {
1904 return change_page_attr_set(&addr, numpages,
1905 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1906 }
1907
_set_memory_wb(unsigned long addr,int numpages)1908 int _set_memory_wb(unsigned long addr, int numpages)
1909 {
1910 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1911 return change_page_attr_clear(&addr, numpages,
1912 __pgprot(_PAGE_CACHE_MASK), 0);
1913 }
1914
set_memory_wb(unsigned long addr,int numpages)1915 int set_memory_wb(unsigned long addr, int numpages)
1916 {
1917 int ret;
1918
1919 ret = _set_memory_wb(addr, numpages);
1920 if (ret)
1921 return ret;
1922
1923 memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1924 return 0;
1925 }
1926 EXPORT_SYMBOL(set_memory_wb);
1927
set_memory_x(unsigned long addr,int numpages)1928 int set_memory_x(unsigned long addr, int numpages)
1929 {
1930 if (!(__supported_pte_mask & _PAGE_NX))
1931 return 0;
1932
1933 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1934 }
1935
set_memory_nx(unsigned long addr,int numpages)1936 int set_memory_nx(unsigned long addr, int numpages)
1937 {
1938 if (!(__supported_pte_mask & _PAGE_NX))
1939 return 0;
1940
1941 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1942 }
1943
set_memory_ro(unsigned long addr,int numpages)1944 int set_memory_ro(unsigned long addr, int numpages)
1945 {
1946 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1947 }
1948
set_memory_rw(unsigned long addr,int numpages)1949 int set_memory_rw(unsigned long addr, int numpages)
1950 {
1951 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1952 }
1953
set_memory_np(unsigned long addr,int numpages)1954 int set_memory_np(unsigned long addr, int numpages)
1955 {
1956 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1957 }
1958
set_memory_np_noalias(unsigned long addr,int numpages)1959 int set_memory_np_noalias(unsigned long addr, int numpages)
1960 {
1961 int cpa_flags = CPA_NO_CHECK_ALIAS;
1962
1963 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1964 __pgprot(_PAGE_PRESENT), 0,
1965 cpa_flags, NULL);
1966 }
1967
set_memory_4k(unsigned long addr,int numpages)1968 int set_memory_4k(unsigned long addr, int numpages)
1969 {
1970 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1971 __pgprot(0), 1, 0, NULL);
1972 }
1973
set_memory_nonglobal(unsigned long addr,int numpages)1974 int set_memory_nonglobal(unsigned long addr, int numpages)
1975 {
1976 return change_page_attr_clear(&addr, numpages,
1977 __pgprot(_PAGE_GLOBAL), 0);
1978 }
1979
set_memory_global(unsigned long addr,int numpages)1980 int set_memory_global(unsigned long addr, int numpages)
1981 {
1982 return change_page_attr_set(&addr, numpages,
1983 __pgprot(_PAGE_GLOBAL), 0);
1984 }
1985
1986 /*
1987 * __set_memory_enc_pgtable() is used for the hypervisors that get
1988 * informed about "encryption" status via page tables.
1989 */
__set_memory_enc_pgtable(unsigned long addr,int numpages,bool enc)1990 static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
1991 {
1992 struct cpa_data cpa;
1993 int ret;
1994
1995 /* Should not be working on unaligned addresses */
1996 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1997 addr &= PAGE_MASK;
1998
1999 memset(&cpa, 0, sizeof(cpa));
2000 cpa.vaddr = &addr;
2001 cpa.numpages = numpages;
2002 cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
2003 cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
2004 cpa.pgd = init_mm.pgd;
2005
2006 /* Must avoid aliasing mappings in the highmem code */
2007 kmap_flush_unused();
2008 vm_unmap_aliases();
2009
2010 /*
2011 * Before changing the encryption attribute, we need to flush caches.
2012 */
2013 cpa_flush(&cpa, !this_cpu_has(X86_FEATURE_SME_COHERENT));
2014
2015 ret = __change_page_attr_set_clr(&cpa, 1);
2016
2017 /*
2018 * After changing the encryption attribute, we need to flush TLBs again
2019 * in case any speculative TLB caching occurred (but no need to flush
2020 * caches again). We could just use cpa_flush_all(), but in case TLB
2021 * flushing gets optimized in the cpa_flush() path use the same logic
2022 * as above.
2023 */
2024 cpa_flush(&cpa, 0);
2025
2026 /*
2027 * Notify hypervisor that a given memory range is mapped encrypted
2028 * or decrypted.
2029 */
2030 notify_range_enc_status_changed(addr, numpages, enc);
2031
2032 return ret;
2033 }
2034
__set_memory_enc_dec(unsigned long addr,int numpages,bool enc)2035 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2036 {
2037 if (hv_is_isolation_supported())
2038 return hv_set_mem_host_visibility(addr, numpages, !enc);
2039
2040 if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
2041 return __set_memory_enc_pgtable(addr, numpages, enc);
2042
2043 return 0;
2044 }
2045
set_memory_encrypted(unsigned long addr,int numpages)2046 int set_memory_encrypted(unsigned long addr, int numpages)
2047 {
2048 return __set_memory_enc_dec(addr, numpages, true);
2049 }
2050 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2051
set_memory_decrypted(unsigned long addr,int numpages)2052 int set_memory_decrypted(unsigned long addr, int numpages)
2053 {
2054 return __set_memory_enc_dec(addr, numpages, false);
2055 }
2056 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2057
set_pages_uc(struct page * page,int numpages)2058 int set_pages_uc(struct page *page, int numpages)
2059 {
2060 unsigned long addr = (unsigned long)page_address(page);
2061
2062 return set_memory_uc(addr, numpages);
2063 }
2064 EXPORT_SYMBOL(set_pages_uc);
2065
_set_pages_array(struct page ** pages,int numpages,enum page_cache_mode new_type)2066 static int _set_pages_array(struct page **pages, int numpages,
2067 enum page_cache_mode new_type)
2068 {
2069 unsigned long start;
2070 unsigned long end;
2071 enum page_cache_mode set_type;
2072 int i;
2073 int free_idx;
2074 int ret;
2075
2076 for (i = 0; i < numpages; i++) {
2077 if (PageHighMem(pages[i]))
2078 continue;
2079 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2080 end = start + PAGE_SIZE;
2081 if (memtype_reserve(start, end, new_type, NULL))
2082 goto err_out;
2083 }
2084
2085 /* If WC, set to UC- first and then WC */
2086 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2087 _PAGE_CACHE_MODE_UC_MINUS : new_type;
2088
2089 ret = cpa_set_pages_array(pages, numpages,
2090 cachemode2pgprot(set_type));
2091 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2092 ret = change_page_attr_set_clr(NULL, numpages,
2093 cachemode2pgprot(
2094 _PAGE_CACHE_MODE_WC),
2095 __pgprot(_PAGE_CACHE_MASK),
2096 0, CPA_PAGES_ARRAY, pages);
2097 if (ret)
2098 goto err_out;
2099 return 0; /* Success */
2100 err_out:
2101 free_idx = i;
2102 for (i = 0; i < free_idx; i++) {
2103 if (PageHighMem(pages[i]))
2104 continue;
2105 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2106 end = start + PAGE_SIZE;
2107 memtype_free(start, end);
2108 }
2109 return -EINVAL;
2110 }
2111
set_pages_array_uc(struct page ** pages,int numpages)2112 int set_pages_array_uc(struct page **pages, int numpages)
2113 {
2114 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2115 }
2116 EXPORT_SYMBOL(set_pages_array_uc);
2117
set_pages_array_wc(struct page ** pages,int numpages)2118 int set_pages_array_wc(struct page **pages, int numpages)
2119 {
2120 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2121 }
2122 EXPORT_SYMBOL(set_pages_array_wc);
2123
set_pages_array_wt(struct page ** pages,int numpages)2124 int set_pages_array_wt(struct page **pages, int numpages)
2125 {
2126 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2127 }
2128 EXPORT_SYMBOL_GPL(set_pages_array_wt);
2129
set_pages_wb(struct page * page,int numpages)2130 int set_pages_wb(struct page *page, int numpages)
2131 {
2132 unsigned long addr = (unsigned long)page_address(page);
2133
2134 return set_memory_wb(addr, numpages);
2135 }
2136 EXPORT_SYMBOL(set_pages_wb);
2137
set_pages_array_wb(struct page ** pages,int numpages)2138 int set_pages_array_wb(struct page **pages, int numpages)
2139 {
2140 int retval;
2141 unsigned long start;
2142 unsigned long end;
2143 int i;
2144
2145 /* WB cache mode is hard wired to all cache attribute bits being 0 */
2146 retval = cpa_clear_pages_array(pages, numpages,
2147 __pgprot(_PAGE_CACHE_MASK));
2148 if (retval)
2149 return retval;
2150
2151 for (i = 0; i < numpages; i++) {
2152 if (PageHighMem(pages[i]))
2153 continue;
2154 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2155 end = start + PAGE_SIZE;
2156 memtype_free(start, end);
2157 }
2158
2159 return 0;
2160 }
2161 EXPORT_SYMBOL(set_pages_array_wb);
2162
set_pages_ro(struct page * page,int numpages)2163 int set_pages_ro(struct page *page, int numpages)
2164 {
2165 unsigned long addr = (unsigned long)page_address(page);
2166
2167 return set_memory_ro(addr, numpages);
2168 }
2169
set_pages_rw(struct page * page,int numpages)2170 int set_pages_rw(struct page *page, int numpages)
2171 {
2172 unsigned long addr = (unsigned long)page_address(page);
2173
2174 return set_memory_rw(addr, numpages);
2175 }
2176
__set_pages_p(struct page * page,int numpages)2177 static int __set_pages_p(struct page *page, int numpages)
2178 {
2179 unsigned long tempaddr = (unsigned long) page_address(page);
2180 struct cpa_data cpa = { .vaddr = &tempaddr,
2181 .pgd = NULL,
2182 .numpages = numpages,
2183 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2184 .mask_clr = __pgprot(0),
2185 .flags = 0};
2186
2187 /*
2188 * No alias checking needed for setting present flag. otherwise,
2189 * we may need to break large pages for 64-bit kernel text
2190 * mappings (this adds to complexity if we want to do this from
2191 * atomic context especially). Let's keep it simple!
2192 */
2193 return __change_page_attr_set_clr(&cpa, 0);
2194 }
2195
__set_pages_np(struct page * page,int numpages)2196 static int __set_pages_np(struct page *page, int numpages)
2197 {
2198 unsigned long tempaddr = (unsigned long) page_address(page);
2199 struct cpa_data cpa = { .vaddr = &tempaddr,
2200 .pgd = NULL,
2201 .numpages = numpages,
2202 .mask_set = __pgprot(0),
2203 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2204 .flags = 0};
2205
2206 /*
2207 * No alias checking needed for setting not present flag. otherwise,
2208 * we may need to break large pages for 64-bit kernel text
2209 * mappings (this adds to complexity if we want to do this from
2210 * atomic context especially). Let's keep it simple!
2211 */
2212 return __change_page_attr_set_clr(&cpa, 0);
2213 }
2214
set_direct_map_invalid_noflush(struct page * page)2215 int set_direct_map_invalid_noflush(struct page *page)
2216 {
2217 return __set_pages_np(page, 1);
2218 }
2219
set_direct_map_default_noflush(struct page * page)2220 int set_direct_map_default_noflush(struct page *page)
2221 {
2222 return __set_pages_p(page, 1);
2223 }
2224
2225 #ifdef CONFIG_DEBUG_PAGEALLOC
__kernel_map_pages(struct page * page,int numpages,int enable)2226 void __kernel_map_pages(struct page *page, int numpages, int enable)
2227 {
2228 if (PageHighMem(page))
2229 return;
2230 if (!enable) {
2231 debug_check_no_locks_freed(page_address(page),
2232 numpages * PAGE_SIZE);
2233 }
2234
2235 /*
2236 * The return value is ignored as the calls cannot fail.
2237 * Large pages for identity mappings are not used at boot time
2238 * and hence no memory allocations during large page split.
2239 */
2240 if (enable)
2241 __set_pages_p(page, numpages);
2242 else
2243 __set_pages_np(page, numpages);
2244
2245 /*
2246 * We should perform an IPI and flush all tlbs,
2247 * but that can deadlock->flush only current cpu.
2248 * Preemption needs to be disabled around __flush_tlb_all() due to
2249 * CR3 reload in __native_flush_tlb().
2250 */
2251 preempt_disable();
2252 __flush_tlb_all();
2253 preempt_enable();
2254
2255 arch_flush_lazy_mmu_mode();
2256 }
2257 #endif /* CONFIG_DEBUG_PAGEALLOC */
2258
kernel_page_present(struct page * page)2259 bool kernel_page_present(struct page *page)
2260 {
2261 unsigned int level;
2262 pte_t *pte;
2263
2264 if (PageHighMem(page))
2265 return false;
2266
2267 pte = lookup_address((unsigned long)page_address(page), &level);
2268 return (pte_val(*pte) & _PAGE_PRESENT);
2269 }
2270
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)2271 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2272 unsigned numpages, unsigned long page_flags)
2273 {
2274 int retval = -EINVAL;
2275
2276 struct cpa_data cpa = {
2277 .vaddr = &address,
2278 .pfn = pfn,
2279 .pgd = pgd,
2280 .numpages = numpages,
2281 .mask_set = __pgprot(0),
2282 .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2283 .flags = 0,
2284 };
2285
2286 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2287
2288 if (!(__supported_pte_mask & _PAGE_NX))
2289 goto out;
2290
2291 if (!(page_flags & _PAGE_ENC))
2292 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2293
2294 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2295
2296 retval = __change_page_attr_set_clr(&cpa, 0);
2297 __flush_tlb_all();
2298
2299 out:
2300 return retval;
2301 }
2302
2303 /*
2304 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2305 * function shouldn't be used in an SMP environment. Presently, it's used only
2306 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2307 */
kernel_unmap_pages_in_pgd(pgd_t * pgd,unsigned long address,unsigned long numpages)2308 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2309 unsigned long numpages)
2310 {
2311 int retval;
2312
2313 /*
2314 * The typical sequence for unmapping is to find a pte through
2315 * lookup_address_in_pgd() (ideally, it should never return NULL because
2316 * the address is already mapped) and change it's protections. As pfn is
2317 * the *target* of a mapping, it's not useful while unmapping.
2318 */
2319 struct cpa_data cpa = {
2320 .vaddr = &address,
2321 .pfn = 0,
2322 .pgd = pgd,
2323 .numpages = numpages,
2324 .mask_set = __pgprot(0),
2325 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2326 .flags = 0,
2327 };
2328
2329 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2330
2331 retval = __change_page_attr_set_clr(&cpa, 0);
2332 __flush_tlb_all();
2333
2334 return retval;
2335 }
2336
2337 /*
2338 * The testcases use internal knowledge of the implementation that shouldn't
2339 * be exposed to the rest of the kernel. Include these directly here.
2340 */
2341 #ifdef CONFIG_CPA_DEBUG
2342 #include "cpa-test.c"
2343 #endif
2344