1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 #include <linux/io_uring.h>
66 #include <linux/kprobes.h>
67 
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/mmu_context.h>
71 
__unhash_process(struct task_struct * p,bool group_dead)72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 	nr_threads--;
75 	detach_pid(p, PIDTYPE_PID);
76 	if (group_dead) {
77 		detach_pid(p, PIDTYPE_TGID);
78 		detach_pid(p, PIDTYPE_PGID);
79 		detach_pid(p, PIDTYPE_SID);
80 
81 		list_del_rcu(&p->tasks);
82 		list_del_init(&p->sibling);
83 		__this_cpu_dec(process_counts);
84 	}
85 	list_del_rcu(&p->thread_group);
86 	list_del_rcu(&p->thread_node);
87 }
88 
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
__exit_signal(struct task_struct * tsk)92 static void __exit_signal(struct task_struct *tsk)
93 {
94 	struct signal_struct *sig = tsk->signal;
95 	bool group_dead = thread_group_leader(tsk);
96 	struct sighand_struct *sighand;
97 	struct tty_struct *tty;
98 	u64 utime, stime;
99 
100 	sighand = rcu_dereference_check(tsk->sighand,
101 					lockdep_tasklist_lock_is_held());
102 	spin_lock(&sighand->siglock);
103 
104 #ifdef CONFIG_POSIX_TIMERS
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead)
107 		posix_cpu_timers_exit_group(tsk);
108 #endif
109 
110 	if (group_dead) {
111 		tty = sig->tty;
112 		sig->tty = NULL;
113 	} else {
114 		/*
115 		 * If there is any task waiting for the group exit
116 		 * then notify it:
117 		 */
118 		if (sig->notify_count > 0 && !--sig->notify_count)
119 			wake_up_process(sig->group_exit_task);
120 
121 		if (tsk == sig->curr_target)
122 			sig->curr_target = next_thread(tsk);
123 	}
124 
125 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 			      sizeof(unsigned long long));
127 
128 	/*
129 	 * Accumulate here the counters for all threads as they die. We could
130 	 * skip the group leader because it is the last user of signal_struct,
131 	 * but we want to avoid the race with thread_group_cputime() which can
132 	 * see the empty ->thread_head list.
133 	 */
134 	task_cputime(tsk, &utime, &stime);
135 	write_seqlock(&sig->stats_lock);
136 	sig->utime += utime;
137 	sig->stime += stime;
138 	sig->gtime += task_gtime(tsk);
139 	sig->min_flt += tsk->min_flt;
140 	sig->maj_flt += tsk->maj_flt;
141 	sig->nvcsw += tsk->nvcsw;
142 	sig->nivcsw += tsk->nivcsw;
143 	sig->inblock += task_io_get_inblock(tsk);
144 	sig->oublock += task_io_get_oublock(tsk);
145 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 	sig->nr_threads--;
148 	__unhash_process(tsk, group_dead);
149 	write_sequnlock(&sig->stats_lock);
150 
151 	/*
152 	 * Do this under ->siglock, we can race with another thread
153 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 	 */
155 	flush_sigqueue(&tsk->pending);
156 	tsk->sighand = NULL;
157 	spin_unlock(&sighand->siglock);
158 
159 	__cleanup_sighand(sighand);
160 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 	if (group_dead) {
162 		flush_sigqueue(&sig->shared_pending);
163 		tty_kref_put(tty);
164 	}
165 }
166 
delayed_put_task_struct(struct rcu_head * rhp)167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170 
171 	kprobe_flush_task(tsk);
172 	perf_event_delayed_put(tsk);
173 	trace_sched_process_free(tsk);
174 	put_task_struct(tsk);
175 }
176 
put_task_struct_rcu_user(struct task_struct * task)177 void put_task_struct_rcu_user(struct task_struct *task)
178 {
179 	if (refcount_dec_and_test(&task->rcu_users))
180 		call_rcu(&task->rcu, delayed_put_task_struct);
181 }
182 
release_task(struct task_struct * p)183 void release_task(struct task_struct *p)
184 {
185 	struct task_struct *leader;
186 	struct pid *thread_pid;
187 	int zap_leader;
188 repeat:
189 	/* don't need to get the RCU readlock here - the process is dead and
190 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
191 	rcu_read_lock();
192 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
193 	rcu_read_unlock();
194 
195 	cgroup_release(p);
196 
197 	write_lock_irq(&tasklist_lock);
198 	ptrace_release_task(p);
199 	thread_pid = get_pid(p->thread_pid);
200 	__exit_signal(p);
201 
202 	/*
203 	 * If we are the last non-leader member of the thread
204 	 * group, and the leader is zombie, then notify the
205 	 * group leader's parent process. (if it wants notification.)
206 	 */
207 	zap_leader = 0;
208 	leader = p->group_leader;
209 	if (leader != p && thread_group_empty(leader)
210 			&& leader->exit_state == EXIT_ZOMBIE) {
211 		/*
212 		 * If we were the last child thread and the leader has
213 		 * exited already, and the leader's parent ignores SIGCHLD,
214 		 * then we are the one who should release the leader.
215 		 */
216 		zap_leader = do_notify_parent(leader, leader->exit_signal);
217 		if (zap_leader)
218 			leader->exit_state = EXIT_DEAD;
219 	}
220 
221 	write_unlock_irq(&tasklist_lock);
222 	seccomp_filter_release(p);
223 	proc_flush_pid(thread_pid);
224 	put_pid(thread_pid);
225 	release_thread(p);
226 	put_task_struct_rcu_user(p);
227 
228 	p = leader;
229 	if (unlikely(zap_leader))
230 		goto repeat;
231 }
232 
rcuwait_wake_up(struct rcuwait * w)233 int rcuwait_wake_up(struct rcuwait *w)
234 {
235 	int ret = 0;
236 	struct task_struct *task;
237 
238 	rcu_read_lock();
239 
240 	/*
241 	 * Order condition vs @task, such that everything prior to the load
242 	 * of @task is visible. This is the condition as to why the user called
243 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
244 	 * barrier (A) in rcuwait_wait_event().
245 	 *
246 	 *    WAIT                WAKE
247 	 *    [S] tsk = current	  [S] cond = true
248 	 *        MB (A)	      MB (B)
249 	 *    [L] cond		  [L] tsk
250 	 */
251 	smp_mb(); /* (B) */
252 
253 	task = rcu_dereference(w->task);
254 	if (task)
255 		ret = wake_up_process(task);
256 	rcu_read_unlock();
257 
258 	return ret;
259 }
260 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
261 
262 /*
263  * Determine if a process group is "orphaned", according to the POSIX
264  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
265  * by terminal-generated stop signals.  Newly orphaned process groups are
266  * to receive a SIGHUP and a SIGCONT.
267  *
268  * "I ask you, have you ever known what it is to be an orphan?"
269  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271 					struct task_struct *ignored_task)
272 {
273 	struct task_struct *p;
274 
275 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276 		if ((p == ignored_task) ||
277 		    (p->exit_state && thread_group_empty(p)) ||
278 		    is_global_init(p->real_parent))
279 			continue;
280 
281 		if (task_pgrp(p->real_parent) != pgrp &&
282 		    task_session(p->real_parent) == task_session(p))
283 			return 0;
284 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285 
286 	return 1;
287 }
288 
is_current_pgrp_orphaned(void)289 int is_current_pgrp_orphaned(void)
290 {
291 	int retval;
292 
293 	read_lock(&tasklist_lock);
294 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295 	read_unlock(&tasklist_lock);
296 
297 	return retval;
298 }
299 
has_stopped_jobs(struct pid * pgrp)300 static bool has_stopped_jobs(struct pid *pgrp)
301 {
302 	struct task_struct *p;
303 
304 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
306 			return true;
307 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
308 
309 	return false;
310 }
311 
312 /*
313  * Check to see if any process groups have become orphaned as
314  * a result of our exiting, and if they have any stopped jobs,
315  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316  */
317 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319 {
320 	struct pid *pgrp = task_pgrp(tsk);
321 	struct task_struct *ignored_task = tsk;
322 
323 	if (!parent)
324 		/* exit: our father is in a different pgrp than
325 		 * we are and we were the only connection outside.
326 		 */
327 		parent = tsk->real_parent;
328 	else
329 		/* reparent: our child is in a different pgrp than
330 		 * we are, and it was the only connection outside.
331 		 */
332 		ignored_task = NULL;
333 
334 	if (task_pgrp(parent) != pgrp &&
335 	    task_session(parent) == task_session(tsk) &&
336 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
337 	    has_stopped_jobs(pgrp)) {
338 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340 	}
341 }
342 
coredump_task_exit(struct task_struct * tsk)343 static void coredump_task_exit(struct task_struct *tsk)
344 {
345 	struct core_state *core_state;
346 
347 	/*
348 	 * Serialize with any possible pending coredump.
349 	 * We must hold siglock around checking core_state
350 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
351 	 * will increment ->nr_threads for each thread in the
352 	 * group without PF_POSTCOREDUMP set.
353 	 */
354 	spin_lock_irq(&tsk->sighand->siglock);
355 	tsk->flags |= PF_POSTCOREDUMP;
356 	core_state = tsk->signal->core_state;
357 	spin_unlock_irq(&tsk->sighand->siglock);
358 	if (core_state) {
359 		struct core_thread self;
360 
361 		self.task = current;
362 		if (self.task->flags & PF_SIGNALED)
363 			self.next = xchg(&core_state->dumper.next, &self);
364 		else
365 			self.task = NULL;
366 		/*
367 		 * Implies mb(), the result of xchg() must be visible
368 		 * to core_state->dumper.
369 		 */
370 		if (atomic_dec_and_test(&core_state->nr_threads))
371 			complete(&core_state->startup);
372 
373 		for (;;) {
374 			set_current_state(TASK_UNINTERRUPTIBLE);
375 			if (!self.task) /* see coredump_finish() */
376 				break;
377 			freezable_schedule();
378 		}
379 		__set_current_state(TASK_RUNNING);
380 	}
381 }
382 
383 #ifdef CONFIG_MEMCG
384 /*
385  * A task is exiting.   If it owned this mm, find a new owner for the mm.
386  */
mm_update_next_owner(struct mm_struct * mm)387 void mm_update_next_owner(struct mm_struct *mm)
388 {
389 	struct task_struct *c, *g, *p = current;
390 
391 retry:
392 	/*
393 	 * If the exiting or execing task is not the owner, it's
394 	 * someone else's problem.
395 	 */
396 	if (mm->owner != p)
397 		return;
398 	/*
399 	 * The current owner is exiting/execing and there are no other
400 	 * candidates.  Do not leave the mm pointing to a possibly
401 	 * freed task structure.
402 	 */
403 	if (atomic_read(&mm->mm_users) <= 1) {
404 		WRITE_ONCE(mm->owner, NULL);
405 		return;
406 	}
407 
408 	read_lock(&tasklist_lock);
409 	/*
410 	 * Search in the children
411 	 */
412 	list_for_each_entry(c, &p->children, sibling) {
413 		if (c->mm == mm)
414 			goto assign_new_owner;
415 	}
416 
417 	/*
418 	 * Search in the siblings
419 	 */
420 	list_for_each_entry(c, &p->real_parent->children, sibling) {
421 		if (c->mm == mm)
422 			goto assign_new_owner;
423 	}
424 
425 	/*
426 	 * Search through everything else, we should not get here often.
427 	 */
428 	for_each_process(g) {
429 		if (g->flags & PF_KTHREAD)
430 			continue;
431 		for_each_thread(g, c) {
432 			if (c->mm == mm)
433 				goto assign_new_owner;
434 			if (c->mm)
435 				break;
436 		}
437 	}
438 	read_unlock(&tasklist_lock);
439 	/*
440 	 * We found no owner yet mm_users > 1: this implies that we are
441 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
442 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
443 	 */
444 	WRITE_ONCE(mm->owner, NULL);
445 	return;
446 
447 assign_new_owner:
448 	BUG_ON(c == p);
449 	get_task_struct(c);
450 	/*
451 	 * The task_lock protects c->mm from changing.
452 	 * We always want mm->owner->mm == mm
453 	 */
454 	task_lock(c);
455 	/*
456 	 * Delay read_unlock() till we have the task_lock()
457 	 * to ensure that c does not slip away underneath us
458 	 */
459 	read_unlock(&tasklist_lock);
460 	if (c->mm != mm) {
461 		task_unlock(c);
462 		put_task_struct(c);
463 		goto retry;
464 	}
465 	WRITE_ONCE(mm->owner, c);
466 	task_unlock(c);
467 	put_task_struct(c);
468 }
469 #endif /* CONFIG_MEMCG */
470 
471 /*
472  * Turn us into a lazy TLB process if we
473  * aren't already..
474  */
exit_mm(void)475 static void exit_mm(void)
476 {
477 	struct mm_struct *mm = current->mm;
478 
479 	exit_mm_release(current, mm);
480 	if (!mm)
481 		return;
482 	sync_mm_rss(mm);
483 	mmap_read_lock(mm);
484 	mmgrab(mm);
485 	BUG_ON(mm != current->active_mm);
486 	/* more a memory barrier than a real lock */
487 	task_lock(current);
488 	/*
489 	 * When a thread stops operating on an address space, the loop
490 	 * in membarrier_private_expedited() may not observe that
491 	 * tsk->mm, and the loop in membarrier_global_expedited() may
492 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
493 	 * rq->membarrier_state, so those would not issue an IPI.
494 	 * Membarrier requires a memory barrier after accessing
495 	 * user-space memory, before clearing tsk->mm or the
496 	 * rq->membarrier_state.
497 	 */
498 	smp_mb__after_spinlock();
499 	local_irq_disable();
500 	current->mm = NULL;
501 	membarrier_update_current_mm(NULL);
502 	enter_lazy_tlb(mm, current);
503 	local_irq_enable();
504 	task_unlock(current);
505 	mmap_read_unlock(mm);
506 	mm_update_next_owner(mm);
507 	mmput(mm);
508 	if (test_thread_flag(TIF_MEMDIE))
509 		exit_oom_victim();
510 }
511 
find_alive_thread(struct task_struct * p)512 static struct task_struct *find_alive_thread(struct task_struct *p)
513 {
514 	struct task_struct *t;
515 
516 	for_each_thread(p, t) {
517 		if (!(t->flags & PF_EXITING))
518 			return t;
519 	}
520 	return NULL;
521 }
522 
find_child_reaper(struct task_struct * father,struct list_head * dead)523 static struct task_struct *find_child_reaper(struct task_struct *father,
524 						struct list_head *dead)
525 	__releases(&tasklist_lock)
526 	__acquires(&tasklist_lock)
527 {
528 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
529 	struct task_struct *reaper = pid_ns->child_reaper;
530 	struct task_struct *p, *n;
531 
532 	if (likely(reaper != father))
533 		return reaper;
534 
535 	reaper = find_alive_thread(father);
536 	if (reaper) {
537 		pid_ns->child_reaper = reaper;
538 		return reaper;
539 	}
540 
541 	write_unlock_irq(&tasklist_lock);
542 
543 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
544 		list_del_init(&p->ptrace_entry);
545 		release_task(p);
546 	}
547 
548 	zap_pid_ns_processes(pid_ns);
549 	write_lock_irq(&tasklist_lock);
550 
551 	return father;
552 }
553 
554 /*
555  * When we die, we re-parent all our children, and try to:
556  * 1. give them to another thread in our thread group, if such a member exists
557  * 2. give it to the first ancestor process which prctl'd itself as a
558  *    child_subreaper for its children (like a service manager)
559  * 3. give it to the init process (PID 1) in our pid namespace
560  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)561 static struct task_struct *find_new_reaper(struct task_struct *father,
562 					   struct task_struct *child_reaper)
563 {
564 	struct task_struct *thread, *reaper;
565 
566 	thread = find_alive_thread(father);
567 	if (thread)
568 		return thread;
569 
570 	if (father->signal->has_child_subreaper) {
571 		unsigned int ns_level = task_pid(father)->level;
572 		/*
573 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
574 		 * We can't check reaper != child_reaper to ensure we do not
575 		 * cross the namespaces, the exiting parent could be injected
576 		 * by setns() + fork().
577 		 * We check pid->level, this is slightly more efficient than
578 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
579 		 */
580 		for (reaper = father->real_parent;
581 		     task_pid(reaper)->level == ns_level;
582 		     reaper = reaper->real_parent) {
583 			if (reaper == &init_task)
584 				break;
585 			if (!reaper->signal->is_child_subreaper)
586 				continue;
587 			thread = find_alive_thread(reaper);
588 			if (thread)
589 				return thread;
590 		}
591 	}
592 
593 	return child_reaper;
594 }
595 
596 /*
597 * Any that need to be release_task'd are put on the @dead list.
598  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)599 static void reparent_leader(struct task_struct *father, struct task_struct *p,
600 				struct list_head *dead)
601 {
602 	if (unlikely(p->exit_state == EXIT_DEAD))
603 		return;
604 
605 	/* We don't want people slaying init. */
606 	p->exit_signal = SIGCHLD;
607 
608 	/* If it has exited notify the new parent about this child's death. */
609 	if (!p->ptrace &&
610 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
611 		if (do_notify_parent(p, p->exit_signal)) {
612 			p->exit_state = EXIT_DEAD;
613 			list_add(&p->ptrace_entry, dead);
614 		}
615 	}
616 
617 	kill_orphaned_pgrp(p, father);
618 }
619 
620 /*
621  * This does two things:
622  *
623  * A.  Make init inherit all the child processes
624  * B.  Check to see if any process groups have become orphaned
625  *	as a result of our exiting, and if they have any stopped
626  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
627  */
forget_original_parent(struct task_struct * father,struct list_head * dead)628 static void forget_original_parent(struct task_struct *father,
629 					struct list_head *dead)
630 {
631 	struct task_struct *p, *t, *reaper;
632 
633 	if (unlikely(!list_empty(&father->ptraced)))
634 		exit_ptrace(father, dead);
635 
636 	/* Can drop and reacquire tasklist_lock */
637 	reaper = find_child_reaper(father, dead);
638 	if (list_empty(&father->children))
639 		return;
640 
641 	reaper = find_new_reaper(father, reaper);
642 	list_for_each_entry(p, &father->children, sibling) {
643 		for_each_thread(p, t) {
644 			RCU_INIT_POINTER(t->real_parent, reaper);
645 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
646 			if (likely(!t->ptrace))
647 				t->parent = t->real_parent;
648 			if (t->pdeath_signal)
649 				group_send_sig_info(t->pdeath_signal,
650 						    SEND_SIG_NOINFO, t,
651 						    PIDTYPE_TGID);
652 		}
653 		/*
654 		 * If this is a threaded reparent there is no need to
655 		 * notify anyone anything has happened.
656 		 */
657 		if (!same_thread_group(reaper, father))
658 			reparent_leader(father, p, dead);
659 	}
660 	list_splice_tail_init(&father->children, &reaper->children);
661 }
662 
663 /*
664  * Send signals to all our closest relatives so that they know
665  * to properly mourn us..
666  */
exit_notify(struct task_struct * tsk,int group_dead)667 static void exit_notify(struct task_struct *tsk, int group_dead)
668 {
669 	bool autoreap;
670 	struct task_struct *p, *n;
671 	LIST_HEAD(dead);
672 
673 	write_lock_irq(&tasklist_lock);
674 	forget_original_parent(tsk, &dead);
675 
676 	if (group_dead)
677 		kill_orphaned_pgrp(tsk->group_leader, NULL);
678 
679 	tsk->exit_state = EXIT_ZOMBIE;
680 	if (unlikely(tsk->ptrace)) {
681 		int sig = thread_group_leader(tsk) &&
682 				thread_group_empty(tsk) &&
683 				!ptrace_reparented(tsk) ?
684 			tsk->exit_signal : SIGCHLD;
685 		autoreap = do_notify_parent(tsk, sig);
686 	} else if (thread_group_leader(tsk)) {
687 		autoreap = thread_group_empty(tsk) &&
688 			do_notify_parent(tsk, tsk->exit_signal);
689 	} else {
690 		autoreap = true;
691 	}
692 
693 	if (autoreap) {
694 		tsk->exit_state = EXIT_DEAD;
695 		list_add(&tsk->ptrace_entry, &dead);
696 	}
697 
698 	/* mt-exec, de_thread() is waiting for group leader */
699 	if (unlikely(tsk->signal->notify_count < 0))
700 		wake_up_process(tsk->signal->group_exit_task);
701 	write_unlock_irq(&tasklist_lock);
702 
703 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
704 		list_del_init(&p->ptrace_entry);
705 		release_task(p);
706 	}
707 }
708 
709 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)710 static void check_stack_usage(void)
711 {
712 	static DEFINE_SPINLOCK(low_water_lock);
713 	static int lowest_to_date = THREAD_SIZE;
714 	unsigned long free;
715 
716 	free = stack_not_used(current);
717 
718 	if (free >= lowest_to_date)
719 		return;
720 
721 	spin_lock(&low_water_lock);
722 	if (free < lowest_to_date) {
723 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
724 			current->comm, task_pid_nr(current), free);
725 		lowest_to_date = free;
726 	}
727 	spin_unlock(&low_water_lock);
728 }
729 #else
check_stack_usage(void)730 static inline void check_stack_usage(void) {}
731 #endif
732 
do_exit(long code)733 void __noreturn do_exit(long code)
734 {
735 	struct task_struct *tsk = current;
736 	int group_dead;
737 
738 	/*
739 	 * We can get here from a kernel oops, sometimes with preemption off.
740 	 * Start by checking for critical errors.
741 	 * Then fix up important state like USER_DS and preemption.
742 	 * Then do everything else.
743 	 */
744 
745 	WARN_ON(blk_needs_flush_plug(tsk));
746 
747 	if (unlikely(in_interrupt()))
748 		panic("Aiee, killing interrupt handler!");
749 	if (unlikely(!tsk->pid))
750 		panic("Attempted to kill the idle task!");
751 
752 	/*
753 	 * If do_exit is called because this processes oopsed, it's possible
754 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
755 	 * continuing. Amongst other possible reasons, this is to prevent
756 	 * mm_release()->clear_child_tid() from writing to a user-controlled
757 	 * kernel address.
758 	 */
759 	force_uaccess_begin();
760 
761 	if (unlikely(in_atomic())) {
762 		pr_info("note: %s[%d] exited with preempt_count %d\n",
763 			current->comm, task_pid_nr(current),
764 			preempt_count());
765 		preempt_count_set(PREEMPT_ENABLED);
766 	}
767 
768 	profile_task_exit(tsk);
769 	kcov_task_exit(tsk);
770 
771 	coredump_task_exit(tsk);
772 	ptrace_event(PTRACE_EVENT_EXIT, code);
773 
774 	validate_creds_for_do_exit(tsk);
775 
776 	/*
777 	 * We're taking recursive faults here in do_exit. Safest is to just
778 	 * leave this task alone and wait for reboot.
779 	 */
780 	if (unlikely(tsk->flags & PF_EXITING)) {
781 		pr_alert("Fixing recursive fault but reboot is needed!\n");
782 		futex_exit_recursive(tsk);
783 		set_current_state(TASK_UNINTERRUPTIBLE);
784 		schedule();
785 	}
786 
787 	io_uring_files_cancel();
788 	exit_signals(tsk);  /* sets PF_EXITING */
789 
790 	/* sync mm's RSS info before statistics gathering */
791 	if (tsk->mm)
792 		sync_mm_rss(tsk->mm);
793 	acct_update_integrals(tsk);
794 	group_dead = atomic_dec_and_test(&tsk->signal->live);
795 	if (group_dead) {
796 		/*
797 		 * If the last thread of global init has exited, panic
798 		 * immediately to get a useable coredump.
799 		 */
800 		if (unlikely(is_global_init(tsk)))
801 			panic("Attempted to kill init! exitcode=0x%08x\n",
802 				tsk->signal->group_exit_code ?: (int)code);
803 
804 #ifdef CONFIG_POSIX_TIMERS
805 		hrtimer_cancel(&tsk->signal->real_timer);
806 		exit_itimers(tsk->signal);
807 #endif
808 		if (tsk->mm)
809 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
810 	}
811 	acct_collect(code, group_dead);
812 	if (group_dead)
813 		tty_audit_exit();
814 	audit_free(tsk);
815 
816 	tsk->exit_code = code;
817 	taskstats_exit(tsk, group_dead);
818 
819 	exit_mm();
820 
821 	if (group_dead)
822 		acct_process();
823 	trace_sched_process_exit(tsk);
824 
825 	exit_sem(tsk);
826 	exit_shm(tsk);
827 	exit_files(tsk);
828 	exit_fs(tsk);
829 	if (group_dead)
830 		disassociate_ctty(1);
831 	exit_task_namespaces(tsk);
832 	exit_task_work(tsk);
833 	exit_thread(tsk);
834 
835 	/*
836 	 * Flush inherited counters to the parent - before the parent
837 	 * gets woken up by child-exit notifications.
838 	 *
839 	 * because of cgroup mode, must be called before cgroup_exit()
840 	 */
841 	perf_event_exit_task(tsk);
842 
843 	sched_autogroup_exit_task(tsk);
844 	cgroup_exit(tsk);
845 
846 	/*
847 	 * FIXME: do that only when needed, using sched_exit tracepoint
848 	 */
849 	flush_ptrace_hw_breakpoint(tsk);
850 
851 	exit_tasks_rcu_start();
852 	exit_notify(tsk, group_dead);
853 	proc_exit_connector(tsk);
854 	mpol_put_task_policy(tsk);
855 #ifdef CONFIG_FUTEX
856 	if (unlikely(current->pi_state_cache))
857 		kfree(current->pi_state_cache);
858 #endif
859 	/*
860 	 * Make sure we are holding no locks:
861 	 */
862 	debug_check_no_locks_held();
863 
864 	if (tsk->io_context)
865 		exit_io_context(tsk);
866 
867 	if (tsk->splice_pipe)
868 		free_pipe_info(tsk->splice_pipe);
869 
870 	if (tsk->task_frag.page)
871 		put_page(tsk->task_frag.page);
872 
873 	validate_creds_for_do_exit(tsk);
874 
875 	check_stack_usage();
876 	preempt_disable();
877 	if (tsk->nr_dirtied)
878 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
879 	exit_rcu();
880 	exit_tasks_rcu_finish();
881 
882 	lockdep_free_task(tsk);
883 	do_task_dead();
884 }
885 EXPORT_SYMBOL_GPL(do_exit);
886 
complete_and_exit(struct completion * comp,long code)887 void complete_and_exit(struct completion *comp, long code)
888 {
889 	if (comp)
890 		complete(comp);
891 
892 	do_exit(code);
893 }
894 EXPORT_SYMBOL(complete_and_exit);
895 
SYSCALL_DEFINE1(exit,int,error_code)896 SYSCALL_DEFINE1(exit, int, error_code)
897 {
898 	do_exit((error_code&0xff)<<8);
899 }
900 
901 /*
902  * Take down every thread in the group.  This is called by fatal signals
903  * as well as by sys_exit_group (below).
904  */
905 void
do_group_exit(int exit_code)906 do_group_exit(int exit_code)
907 {
908 	struct signal_struct *sig = current->signal;
909 
910 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
911 
912 	if (signal_group_exit(sig))
913 		exit_code = sig->group_exit_code;
914 	else if (!thread_group_empty(current)) {
915 		struct sighand_struct *const sighand = current->sighand;
916 
917 		spin_lock_irq(&sighand->siglock);
918 		if (signal_group_exit(sig))
919 			/* Another thread got here before we took the lock.  */
920 			exit_code = sig->group_exit_code;
921 		else {
922 			sig->group_exit_code = exit_code;
923 			sig->flags = SIGNAL_GROUP_EXIT;
924 			zap_other_threads(current);
925 		}
926 		spin_unlock_irq(&sighand->siglock);
927 	}
928 
929 	do_exit(exit_code);
930 	/* NOTREACHED */
931 }
932 
933 /*
934  * this kills every thread in the thread group. Note that any externally
935  * wait4()-ing process will get the correct exit code - even if this
936  * thread is not the thread group leader.
937  */
SYSCALL_DEFINE1(exit_group,int,error_code)938 SYSCALL_DEFINE1(exit_group, int, error_code)
939 {
940 	do_group_exit((error_code & 0xff) << 8);
941 	/* NOTREACHED */
942 	return 0;
943 }
944 
945 struct waitid_info {
946 	pid_t pid;
947 	uid_t uid;
948 	int status;
949 	int cause;
950 };
951 
952 struct wait_opts {
953 	enum pid_type		wo_type;
954 	int			wo_flags;
955 	struct pid		*wo_pid;
956 
957 	struct waitid_info	*wo_info;
958 	int			wo_stat;
959 	struct rusage		*wo_rusage;
960 
961 	wait_queue_entry_t		child_wait;
962 	int			notask_error;
963 };
964 
eligible_pid(struct wait_opts * wo,struct task_struct * p)965 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
966 {
967 	return	wo->wo_type == PIDTYPE_MAX ||
968 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
969 }
970 
971 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)972 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
973 {
974 	if (!eligible_pid(wo, p))
975 		return 0;
976 
977 	/*
978 	 * Wait for all children (clone and not) if __WALL is set or
979 	 * if it is traced by us.
980 	 */
981 	if (ptrace || (wo->wo_flags & __WALL))
982 		return 1;
983 
984 	/*
985 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
986 	 * otherwise, wait for non-clone children *only*.
987 	 *
988 	 * Note: a "clone" child here is one that reports to its parent
989 	 * using a signal other than SIGCHLD, or a non-leader thread which
990 	 * we can only see if it is traced by us.
991 	 */
992 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
993 		return 0;
994 
995 	return 1;
996 }
997 
998 /*
999  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1000  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1001  * the lock and this task is uninteresting.  If we return nonzero, we have
1002  * released the lock and the system call should return.
1003  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1004 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1005 {
1006 	int state, status;
1007 	pid_t pid = task_pid_vnr(p);
1008 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1009 	struct waitid_info *infop;
1010 
1011 	if (!likely(wo->wo_flags & WEXITED))
1012 		return 0;
1013 
1014 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1015 		status = p->exit_code;
1016 		get_task_struct(p);
1017 		read_unlock(&tasklist_lock);
1018 		sched_annotate_sleep();
1019 		if (wo->wo_rusage)
1020 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1021 		put_task_struct(p);
1022 		goto out_info;
1023 	}
1024 	/*
1025 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1026 	 */
1027 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1028 		EXIT_TRACE : EXIT_DEAD;
1029 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1030 		return 0;
1031 	/*
1032 	 * We own this thread, nobody else can reap it.
1033 	 */
1034 	read_unlock(&tasklist_lock);
1035 	sched_annotate_sleep();
1036 
1037 	/*
1038 	 * Check thread_group_leader() to exclude the traced sub-threads.
1039 	 */
1040 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1041 		struct signal_struct *sig = p->signal;
1042 		struct signal_struct *psig = current->signal;
1043 		unsigned long maxrss;
1044 		u64 tgutime, tgstime;
1045 
1046 		/*
1047 		 * The resource counters for the group leader are in its
1048 		 * own task_struct.  Those for dead threads in the group
1049 		 * are in its signal_struct, as are those for the child
1050 		 * processes it has previously reaped.  All these
1051 		 * accumulate in the parent's signal_struct c* fields.
1052 		 *
1053 		 * We don't bother to take a lock here to protect these
1054 		 * p->signal fields because the whole thread group is dead
1055 		 * and nobody can change them.
1056 		 *
1057 		 * psig->stats_lock also protects us from our sub-theads
1058 		 * which can reap other children at the same time. Until
1059 		 * we change k_getrusage()-like users to rely on this lock
1060 		 * we have to take ->siglock as well.
1061 		 *
1062 		 * We use thread_group_cputime_adjusted() to get times for
1063 		 * the thread group, which consolidates times for all threads
1064 		 * in the group including the group leader.
1065 		 */
1066 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1067 		spin_lock_irq(&current->sighand->siglock);
1068 		write_seqlock(&psig->stats_lock);
1069 		psig->cutime += tgutime + sig->cutime;
1070 		psig->cstime += tgstime + sig->cstime;
1071 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1072 		psig->cmin_flt +=
1073 			p->min_flt + sig->min_flt + sig->cmin_flt;
1074 		psig->cmaj_flt +=
1075 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1076 		psig->cnvcsw +=
1077 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1078 		psig->cnivcsw +=
1079 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1080 		psig->cinblock +=
1081 			task_io_get_inblock(p) +
1082 			sig->inblock + sig->cinblock;
1083 		psig->coublock +=
1084 			task_io_get_oublock(p) +
1085 			sig->oublock + sig->coublock;
1086 		maxrss = max(sig->maxrss, sig->cmaxrss);
1087 		if (psig->cmaxrss < maxrss)
1088 			psig->cmaxrss = maxrss;
1089 		task_io_accounting_add(&psig->ioac, &p->ioac);
1090 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1091 		write_sequnlock(&psig->stats_lock);
1092 		spin_unlock_irq(&current->sighand->siglock);
1093 	}
1094 
1095 	if (wo->wo_rusage)
1096 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1097 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1098 		? p->signal->group_exit_code : p->exit_code;
1099 	wo->wo_stat = status;
1100 
1101 	if (state == EXIT_TRACE) {
1102 		write_lock_irq(&tasklist_lock);
1103 		/* We dropped tasklist, ptracer could die and untrace */
1104 		ptrace_unlink(p);
1105 
1106 		/* If parent wants a zombie, don't release it now */
1107 		state = EXIT_ZOMBIE;
1108 		if (do_notify_parent(p, p->exit_signal))
1109 			state = EXIT_DEAD;
1110 		p->exit_state = state;
1111 		write_unlock_irq(&tasklist_lock);
1112 	}
1113 	if (state == EXIT_DEAD)
1114 		release_task(p);
1115 
1116 out_info:
1117 	infop = wo->wo_info;
1118 	if (infop) {
1119 		if ((status & 0x7f) == 0) {
1120 			infop->cause = CLD_EXITED;
1121 			infop->status = status >> 8;
1122 		} else {
1123 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1124 			infop->status = status & 0x7f;
1125 		}
1126 		infop->pid = pid;
1127 		infop->uid = uid;
1128 	}
1129 
1130 	return pid;
1131 }
1132 
task_stopped_code(struct task_struct * p,bool ptrace)1133 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1134 {
1135 	if (ptrace) {
1136 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1137 			return &p->exit_code;
1138 	} else {
1139 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1140 			return &p->signal->group_exit_code;
1141 	}
1142 	return NULL;
1143 }
1144 
1145 /**
1146  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1147  * @wo: wait options
1148  * @ptrace: is the wait for ptrace
1149  * @p: task to wait for
1150  *
1151  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1152  *
1153  * CONTEXT:
1154  * read_lock(&tasklist_lock), which is released if return value is
1155  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1156  *
1157  * RETURNS:
1158  * 0 if wait condition didn't exist and search for other wait conditions
1159  * should continue.  Non-zero return, -errno on failure and @p's pid on
1160  * success, implies that tasklist_lock is released and wait condition
1161  * search should terminate.
1162  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1163 static int wait_task_stopped(struct wait_opts *wo,
1164 				int ptrace, struct task_struct *p)
1165 {
1166 	struct waitid_info *infop;
1167 	int exit_code, *p_code, why;
1168 	uid_t uid = 0; /* unneeded, required by compiler */
1169 	pid_t pid;
1170 
1171 	/*
1172 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1173 	 */
1174 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1175 		return 0;
1176 
1177 	if (!task_stopped_code(p, ptrace))
1178 		return 0;
1179 
1180 	exit_code = 0;
1181 	spin_lock_irq(&p->sighand->siglock);
1182 
1183 	p_code = task_stopped_code(p, ptrace);
1184 	if (unlikely(!p_code))
1185 		goto unlock_sig;
1186 
1187 	exit_code = *p_code;
1188 	if (!exit_code)
1189 		goto unlock_sig;
1190 
1191 	if (!unlikely(wo->wo_flags & WNOWAIT))
1192 		*p_code = 0;
1193 
1194 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1195 unlock_sig:
1196 	spin_unlock_irq(&p->sighand->siglock);
1197 	if (!exit_code)
1198 		return 0;
1199 
1200 	/*
1201 	 * Now we are pretty sure this task is interesting.
1202 	 * Make sure it doesn't get reaped out from under us while we
1203 	 * give up the lock and then examine it below.  We don't want to
1204 	 * keep holding onto the tasklist_lock while we call getrusage and
1205 	 * possibly take page faults for user memory.
1206 	 */
1207 	get_task_struct(p);
1208 	pid = task_pid_vnr(p);
1209 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1210 	read_unlock(&tasklist_lock);
1211 	sched_annotate_sleep();
1212 	if (wo->wo_rusage)
1213 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1214 	put_task_struct(p);
1215 
1216 	if (likely(!(wo->wo_flags & WNOWAIT)))
1217 		wo->wo_stat = (exit_code << 8) | 0x7f;
1218 
1219 	infop = wo->wo_info;
1220 	if (infop) {
1221 		infop->cause = why;
1222 		infop->status = exit_code;
1223 		infop->pid = pid;
1224 		infop->uid = uid;
1225 	}
1226 	return pid;
1227 }
1228 
1229 /*
1230  * Handle do_wait work for one task in a live, non-stopped state.
1231  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1232  * the lock and this task is uninteresting.  If we return nonzero, we have
1233  * released the lock and the system call should return.
1234  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1235 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1236 {
1237 	struct waitid_info *infop;
1238 	pid_t pid;
1239 	uid_t uid;
1240 
1241 	if (!unlikely(wo->wo_flags & WCONTINUED))
1242 		return 0;
1243 
1244 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1245 		return 0;
1246 
1247 	spin_lock_irq(&p->sighand->siglock);
1248 	/* Re-check with the lock held.  */
1249 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1250 		spin_unlock_irq(&p->sighand->siglock);
1251 		return 0;
1252 	}
1253 	if (!unlikely(wo->wo_flags & WNOWAIT))
1254 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1255 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1256 	spin_unlock_irq(&p->sighand->siglock);
1257 
1258 	pid = task_pid_vnr(p);
1259 	get_task_struct(p);
1260 	read_unlock(&tasklist_lock);
1261 	sched_annotate_sleep();
1262 	if (wo->wo_rusage)
1263 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1264 	put_task_struct(p);
1265 
1266 	infop = wo->wo_info;
1267 	if (!infop) {
1268 		wo->wo_stat = 0xffff;
1269 	} else {
1270 		infop->cause = CLD_CONTINUED;
1271 		infop->pid = pid;
1272 		infop->uid = uid;
1273 		infop->status = SIGCONT;
1274 	}
1275 	return pid;
1276 }
1277 
1278 /*
1279  * Consider @p for a wait by @parent.
1280  *
1281  * -ECHILD should be in ->notask_error before the first call.
1282  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1283  * Returns zero if the search for a child should continue;
1284  * then ->notask_error is 0 if @p is an eligible child,
1285  * or still -ECHILD.
1286  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1287 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1288 				struct task_struct *p)
1289 {
1290 	/*
1291 	 * We can race with wait_task_zombie() from another thread.
1292 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1293 	 * can't confuse the checks below.
1294 	 */
1295 	int exit_state = READ_ONCE(p->exit_state);
1296 	int ret;
1297 
1298 	if (unlikely(exit_state == EXIT_DEAD))
1299 		return 0;
1300 
1301 	ret = eligible_child(wo, ptrace, p);
1302 	if (!ret)
1303 		return ret;
1304 
1305 	if (unlikely(exit_state == EXIT_TRACE)) {
1306 		/*
1307 		 * ptrace == 0 means we are the natural parent. In this case
1308 		 * we should clear notask_error, debugger will notify us.
1309 		 */
1310 		if (likely(!ptrace))
1311 			wo->notask_error = 0;
1312 		return 0;
1313 	}
1314 
1315 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1316 		/*
1317 		 * If it is traced by its real parent's group, just pretend
1318 		 * the caller is ptrace_do_wait() and reap this child if it
1319 		 * is zombie.
1320 		 *
1321 		 * This also hides group stop state from real parent; otherwise
1322 		 * a single stop can be reported twice as group and ptrace stop.
1323 		 * If a ptracer wants to distinguish these two events for its
1324 		 * own children it should create a separate process which takes
1325 		 * the role of real parent.
1326 		 */
1327 		if (!ptrace_reparented(p))
1328 			ptrace = 1;
1329 	}
1330 
1331 	/* slay zombie? */
1332 	if (exit_state == EXIT_ZOMBIE) {
1333 		/* we don't reap group leaders with subthreads */
1334 		if (!delay_group_leader(p)) {
1335 			/*
1336 			 * A zombie ptracee is only visible to its ptracer.
1337 			 * Notification and reaping will be cascaded to the
1338 			 * real parent when the ptracer detaches.
1339 			 */
1340 			if (unlikely(ptrace) || likely(!p->ptrace))
1341 				return wait_task_zombie(wo, p);
1342 		}
1343 
1344 		/*
1345 		 * Allow access to stopped/continued state via zombie by
1346 		 * falling through.  Clearing of notask_error is complex.
1347 		 *
1348 		 * When !@ptrace:
1349 		 *
1350 		 * If WEXITED is set, notask_error should naturally be
1351 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1352 		 * so, if there are live subthreads, there are events to
1353 		 * wait for.  If all subthreads are dead, it's still safe
1354 		 * to clear - this function will be called again in finite
1355 		 * amount time once all the subthreads are released and
1356 		 * will then return without clearing.
1357 		 *
1358 		 * When @ptrace:
1359 		 *
1360 		 * Stopped state is per-task and thus can't change once the
1361 		 * target task dies.  Only continued and exited can happen.
1362 		 * Clear notask_error if WCONTINUED | WEXITED.
1363 		 */
1364 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1365 			wo->notask_error = 0;
1366 	} else {
1367 		/*
1368 		 * @p is alive and it's gonna stop, continue or exit, so
1369 		 * there always is something to wait for.
1370 		 */
1371 		wo->notask_error = 0;
1372 	}
1373 
1374 	/*
1375 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1376 	 * is used and the two don't interact with each other.
1377 	 */
1378 	ret = wait_task_stopped(wo, ptrace, p);
1379 	if (ret)
1380 		return ret;
1381 
1382 	/*
1383 	 * Wait for continued.  There's only one continued state and the
1384 	 * ptracer can consume it which can confuse the real parent.  Don't
1385 	 * use WCONTINUED from ptracer.  You don't need or want it.
1386 	 */
1387 	return wait_task_continued(wo, p);
1388 }
1389 
1390 /*
1391  * Do the work of do_wait() for one thread in the group, @tsk.
1392  *
1393  * -ECHILD should be in ->notask_error before the first call.
1394  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1395  * Returns zero if the search for a child should continue; then
1396  * ->notask_error is 0 if there were any eligible children,
1397  * or still -ECHILD.
1398  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1399 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1400 {
1401 	struct task_struct *p;
1402 
1403 	list_for_each_entry(p, &tsk->children, sibling) {
1404 		int ret = wait_consider_task(wo, 0, p);
1405 
1406 		if (ret)
1407 			return ret;
1408 	}
1409 
1410 	return 0;
1411 }
1412 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1413 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1414 {
1415 	struct task_struct *p;
1416 
1417 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1418 		int ret = wait_consider_task(wo, 1, p);
1419 
1420 		if (ret)
1421 			return ret;
1422 	}
1423 
1424 	return 0;
1425 }
1426 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1427 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1428 				int sync, void *key)
1429 {
1430 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1431 						child_wait);
1432 	struct task_struct *p = key;
1433 
1434 	if (!eligible_pid(wo, p))
1435 		return 0;
1436 
1437 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1438 		return 0;
1439 
1440 	return default_wake_function(wait, mode, sync, key);
1441 }
1442 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1443 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1444 {
1445 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1446 			   TASK_INTERRUPTIBLE, p);
1447 }
1448 
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1449 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1450 				 struct task_struct *target)
1451 {
1452 	struct task_struct *parent =
1453 		!ptrace ? target->real_parent : target->parent;
1454 
1455 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1456 				     same_thread_group(current, parent));
1457 }
1458 
1459 /*
1460  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1461  * and tracee lists to find the target task.
1462  */
do_wait_pid(struct wait_opts * wo)1463 static int do_wait_pid(struct wait_opts *wo)
1464 {
1465 	bool ptrace;
1466 	struct task_struct *target;
1467 	int retval;
1468 
1469 	ptrace = false;
1470 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1471 	if (target && is_effectively_child(wo, ptrace, target)) {
1472 		retval = wait_consider_task(wo, ptrace, target);
1473 		if (retval)
1474 			return retval;
1475 	}
1476 
1477 	ptrace = true;
1478 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1479 	if (target && target->ptrace &&
1480 	    is_effectively_child(wo, ptrace, target)) {
1481 		retval = wait_consider_task(wo, ptrace, target);
1482 		if (retval)
1483 			return retval;
1484 	}
1485 
1486 	return 0;
1487 }
1488 
do_wait(struct wait_opts * wo)1489 static long do_wait(struct wait_opts *wo)
1490 {
1491 	int retval;
1492 
1493 	trace_sched_process_wait(wo->wo_pid);
1494 
1495 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1496 	wo->child_wait.private = current;
1497 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1498 repeat:
1499 	/*
1500 	 * If there is nothing that can match our criteria, just get out.
1501 	 * We will clear ->notask_error to zero if we see any child that
1502 	 * might later match our criteria, even if we are not able to reap
1503 	 * it yet.
1504 	 */
1505 	wo->notask_error = -ECHILD;
1506 	if ((wo->wo_type < PIDTYPE_MAX) &&
1507 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1508 		goto notask;
1509 
1510 	set_current_state(TASK_INTERRUPTIBLE);
1511 	read_lock(&tasklist_lock);
1512 
1513 	if (wo->wo_type == PIDTYPE_PID) {
1514 		retval = do_wait_pid(wo);
1515 		if (retval)
1516 			goto end;
1517 	} else {
1518 		struct task_struct *tsk = current;
1519 
1520 		do {
1521 			retval = do_wait_thread(wo, tsk);
1522 			if (retval)
1523 				goto end;
1524 
1525 			retval = ptrace_do_wait(wo, tsk);
1526 			if (retval)
1527 				goto end;
1528 
1529 			if (wo->wo_flags & __WNOTHREAD)
1530 				break;
1531 		} while_each_thread(current, tsk);
1532 	}
1533 	read_unlock(&tasklist_lock);
1534 
1535 notask:
1536 	retval = wo->notask_error;
1537 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1538 		retval = -ERESTARTSYS;
1539 		if (!signal_pending(current)) {
1540 			schedule();
1541 			goto repeat;
1542 		}
1543 	}
1544 end:
1545 	__set_current_state(TASK_RUNNING);
1546 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1547 	return retval;
1548 }
1549 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1550 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1551 			  int options, struct rusage *ru)
1552 {
1553 	struct wait_opts wo;
1554 	struct pid *pid = NULL;
1555 	enum pid_type type;
1556 	long ret;
1557 	unsigned int f_flags = 0;
1558 
1559 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1560 			__WNOTHREAD|__WCLONE|__WALL))
1561 		return -EINVAL;
1562 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1563 		return -EINVAL;
1564 
1565 	switch (which) {
1566 	case P_ALL:
1567 		type = PIDTYPE_MAX;
1568 		break;
1569 	case P_PID:
1570 		type = PIDTYPE_PID;
1571 		if (upid <= 0)
1572 			return -EINVAL;
1573 
1574 		pid = find_get_pid(upid);
1575 		break;
1576 	case P_PGID:
1577 		type = PIDTYPE_PGID;
1578 		if (upid < 0)
1579 			return -EINVAL;
1580 
1581 		if (upid)
1582 			pid = find_get_pid(upid);
1583 		else
1584 			pid = get_task_pid(current, PIDTYPE_PGID);
1585 		break;
1586 	case P_PIDFD:
1587 		type = PIDTYPE_PID;
1588 		if (upid < 0)
1589 			return -EINVAL;
1590 
1591 		pid = pidfd_get_pid(upid, &f_flags);
1592 		if (IS_ERR(pid))
1593 			return PTR_ERR(pid);
1594 
1595 		break;
1596 	default:
1597 		return -EINVAL;
1598 	}
1599 
1600 	wo.wo_type	= type;
1601 	wo.wo_pid	= pid;
1602 	wo.wo_flags	= options;
1603 	wo.wo_info	= infop;
1604 	wo.wo_rusage	= ru;
1605 	if (f_flags & O_NONBLOCK)
1606 		wo.wo_flags |= WNOHANG;
1607 
1608 	ret = do_wait(&wo);
1609 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1610 		ret = -EAGAIN;
1611 
1612 	put_pid(pid);
1613 	return ret;
1614 }
1615 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1616 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1617 		infop, int, options, struct rusage __user *, ru)
1618 {
1619 	struct rusage r;
1620 	struct waitid_info info = {.status = 0};
1621 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1622 	int signo = 0;
1623 
1624 	if (err > 0) {
1625 		signo = SIGCHLD;
1626 		err = 0;
1627 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1628 			return -EFAULT;
1629 	}
1630 	if (!infop)
1631 		return err;
1632 
1633 	if (!user_write_access_begin(infop, sizeof(*infop)))
1634 		return -EFAULT;
1635 
1636 	unsafe_put_user(signo, &infop->si_signo, Efault);
1637 	unsafe_put_user(0, &infop->si_errno, Efault);
1638 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1639 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1640 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1641 	unsafe_put_user(info.status, &infop->si_status, Efault);
1642 	user_write_access_end();
1643 	return err;
1644 Efault:
1645 	user_write_access_end();
1646 	return -EFAULT;
1647 }
1648 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1649 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1650 		  struct rusage *ru)
1651 {
1652 	struct wait_opts wo;
1653 	struct pid *pid = NULL;
1654 	enum pid_type type;
1655 	long ret;
1656 
1657 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1658 			__WNOTHREAD|__WCLONE|__WALL))
1659 		return -EINVAL;
1660 
1661 	/* -INT_MIN is not defined */
1662 	if (upid == INT_MIN)
1663 		return -ESRCH;
1664 
1665 	if (upid == -1)
1666 		type = PIDTYPE_MAX;
1667 	else if (upid < 0) {
1668 		type = PIDTYPE_PGID;
1669 		pid = find_get_pid(-upid);
1670 	} else if (upid == 0) {
1671 		type = PIDTYPE_PGID;
1672 		pid = get_task_pid(current, PIDTYPE_PGID);
1673 	} else /* upid > 0 */ {
1674 		type = PIDTYPE_PID;
1675 		pid = find_get_pid(upid);
1676 	}
1677 
1678 	wo.wo_type	= type;
1679 	wo.wo_pid	= pid;
1680 	wo.wo_flags	= options | WEXITED;
1681 	wo.wo_info	= NULL;
1682 	wo.wo_stat	= 0;
1683 	wo.wo_rusage	= ru;
1684 	ret = do_wait(&wo);
1685 	put_pid(pid);
1686 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1687 		ret = -EFAULT;
1688 
1689 	return ret;
1690 }
1691 
kernel_wait(pid_t pid,int * stat)1692 int kernel_wait(pid_t pid, int *stat)
1693 {
1694 	struct wait_opts wo = {
1695 		.wo_type	= PIDTYPE_PID,
1696 		.wo_pid		= find_get_pid(pid),
1697 		.wo_flags	= WEXITED,
1698 	};
1699 	int ret;
1700 
1701 	ret = do_wait(&wo);
1702 	if (ret > 0 && wo.wo_stat)
1703 		*stat = wo.wo_stat;
1704 	put_pid(wo.wo_pid);
1705 	return ret;
1706 }
1707 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1708 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1709 		int, options, struct rusage __user *, ru)
1710 {
1711 	struct rusage r;
1712 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1713 
1714 	if (err > 0) {
1715 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1716 			return -EFAULT;
1717 	}
1718 	return err;
1719 }
1720 
1721 #ifdef __ARCH_WANT_SYS_WAITPID
1722 
1723 /*
1724  * sys_waitpid() remains for compatibility. waitpid() should be
1725  * implemented by calling sys_wait4() from libc.a.
1726  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1727 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1728 {
1729 	return kernel_wait4(pid, stat_addr, options, NULL);
1730 }
1731 
1732 #endif
1733 
1734 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1735 COMPAT_SYSCALL_DEFINE4(wait4,
1736 	compat_pid_t, pid,
1737 	compat_uint_t __user *, stat_addr,
1738 	int, options,
1739 	struct compat_rusage __user *, ru)
1740 {
1741 	struct rusage r;
1742 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1743 	if (err > 0) {
1744 		if (ru && put_compat_rusage(&r, ru))
1745 			return -EFAULT;
1746 	}
1747 	return err;
1748 }
1749 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1750 COMPAT_SYSCALL_DEFINE5(waitid,
1751 		int, which, compat_pid_t, pid,
1752 		struct compat_siginfo __user *, infop, int, options,
1753 		struct compat_rusage __user *, uru)
1754 {
1755 	struct rusage ru;
1756 	struct waitid_info info = {.status = 0};
1757 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1758 	int signo = 0;
1759 	if (err > 0) {
1760 		signo = SIGCHLD;
1761 		err = 0;
1762 		if (uru) {
1763 			/* kernel_waitid() overwrites everything in ru */
1764 			if (COMPAT_USE_64BIT_TIME)
1765 				err = copy_to_user(uru, &ru, sizeof(ru));
1766 			else
1767 				err = put_compat_rusage(&ru, uru);
1768 			if (err)
1769 				return -EFAULT;
1770 		}
1771 	}
1772 
1773 	if (!infop)
1774 		return err;
1775 
1776 	if (!user_write_access_begin(infop, sizeof(*infop)))
1777 		return -EFAULT;
1778 
1779 	unsafe_put_user(signo, &infop->si_signo, Efault);
1780 	unsafe_put_user(0, &infop->si_errno, Efault);
1781 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1782 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1783 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1784 	unsafe_put_user(info.status, &infop->si_status, Efault);
1785 	user_write_access_end();
1786 	return err;
1787 Efault:
1788 	user_write_access_end();
1789 	return -EFAULT;
1790 }
1791 #endif
1792 
1793 /**
1794  * thread_group_exited - check that a thread group has exited
1795  * @pid: tgid of thread group to be checked.
1796  *
1797  * Test if the thread group represented by tgid has exited (all
1798  * threads are zombies, dead or completely gone).
1799  *
1800  * Return: true if the thread group has exited. false otherwise.
1801  */
thread_group_exited(struct pid * pid)1802 bool thread_group_exited(struct pid *pid)
1803 {
1804 	struct task_struct *task;
1805 	bool exited;
1806 
1807 	rcu_read_lock();
1808 	task = pid_task(pid, PIDTYPE_PID);
1809 	exited = !task ||
1810 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1811 	rcu_read_unlock();
1812 
1813 	return exited;
1814 }
1815 EXPORT_SYMBOL(thread_group_exited);
1816 
abort(void)1817 __weak void abort(void)
1818 {
1819 	BUG();
1820 
1821 	/* if that doesn't kill us, halt */
1822 	panic("Oops failed to kill thread");
1823 }
1824 EXPORT_SYMBOL(abort);
1825