1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 #include <linux/io_uring.h>
66 #include <linux/kprobes.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/mmu_context.h>
71
__unhash_process(struct task_struct * p,bool group_dead)72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 nr_threads--;
75 detach_pid(p, PIDTYPE_PID);
76 if (group_dead) {
77 detach_pid(p, PIDTYPE_TGID);
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
80
81 list_del_rcu(&p->tasks);
82 list_del_init(&p->sibling);
83 __this_cpu_dec(process_counts);
84 }
85 list_del_rcu(&p->thread_group);
86 list_del_rcu(&p->thread_node);
87 }
88
89 /*
90 * This function expects the tasklist_lock write-locked.
91 */
__exit_signal(struct task_struct * tsk)92 static void __exit_signal(struct task_struct *tsk)
93 {
94 struct signal_struct *sig = tsk->signal;
95 bool group_dead = thread_group_leader(tsk);
96 struct sighand_struct *sighand;
97 struct tty_struct *tty;
98 u64 utime, stime;
99
100 sighand = rcu_dereference_check(tsk->sighand,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk);
106 if (group_dead)
107 posix_cpu_timers_exit_group(tsk);
108 #endif
109
110 if (group_dead) {
111 tty = sig->tty;
112 sig->tty = NULL;
113 } else {
114 /*
115 * If there is any task waiting for the group exit
116 * then notify it:
117 */
118 if (sig->notify_count > 0 && !--sig->notify_count)
119 wake_up_process(sig->group_exit_task);
120
121 if (tsk == sig->curr_target)
122 sig->curr_target = next_thread(tsk);
123 }
124
125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 sizeof(unsigned long long));
127
128 /*
129 * Accumulate here the counters for all threads as they die. We could
130 * skip the group leader because it is the last user of signal_struct,
131 * but we want to avoid the race with thread_group_cputime() which can
132 * see the empty ->thread_head list.
133 */
134 task_cputime(tsk, &utime, &stime);
135 write_seqlock(&sig->stats_lock);
136 sig->utime += utime;
137 sig->stime += stime;
138 sig->gtime += task_gtime(tsk);
139 sig->min_flt += tsk->min_flt;
140 sig->maj_flt += tsk->maj_flt;
141 sig->nvcsw += tsk->nvcsw;
142 sig->nivcsw += tsk->nivcsw;
143 sig->inblock += task_io_get_inblock(tsk);
144 sig->oublock += task_io_get_oublock(tsk);
145 task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 sig->nr_threads--;
148 __unhash_process(tsk, group_dead);
149 write_sequnlock(&sig->stats_lock);
150
151 /*
152 * Do this under ->siglock, we can race with another thread
153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 */
155 flush_sigqueue(&tsk->pending);
156 tsk->sighand = NULL;
157 spin_unlock(&sighand->siglock);
158
159 __cleanup_sighand(sighand);
160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 if (group_dead) {
162 flush_sigqueue(&sig->shared_pending);
163 tty_kref_put(tty);
164 }
165 }
166
delayed_put_task_struct(struct rcu_head * rhp)167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170
171 kprobe_flush_task(tsk);
172 perf_event_delayed_put(tsk);
173 trace_sched_process_free(tsk);
174 put_task_struct(tsk);
175 }
176
put_task_struct_rcu_user(struct task_struct * task)177 void put_task_struct_rcu_user(struct task_struct *task)
178 {
179 if (refcount_dec_and_test(&task->rcu_users))
180 call_rcu(&task->rcu, delayed_put_task_struct);
181 }
182
release_task(struct task_struct * p)183 void release_task(struct task_struct *p)
184 {
185 struct task_struct *leader;
186 struct pid *thread_pid;
187 int zap_leader;
188 repeat:
189 /* don't need to get the RCU readlock here - the process is dead and
190 * can't be modifying its own credentials. But shut RCU-lockdep up */
191 rcu_read_lock();
192 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
193 rcu_read_unlock();
194
195 cgroup_release(p);
196
197 write_lock_irq(&tasklist_lock);
198 ptrace_release_task(p);
199 thread_pid = get_pid(p->thread_pid);
200 __exit_signal(p);
201
202 /*
203 * If we are the last non-leader member of the thread
204 * group, and the leader is zombie, then notify the
205 * group leader's parent process. (if it wants notification.)
206 */
207 zap_leader = 0;
208 leader = p->group_leader;
209 if (leader != p && thread_group_empty(leader)
210 && leader->exit_state == EXIT_ZOMBIE) {
211 /*
212 * If we were the last child thread and the leader has
213 * exited already, and the leader's parent ignores SIGCHLD,
214 * then we are the one who should release the leader.
215 */
216 zap_leader = do_notify_parent(leader, leader->exit_signal);
217 if (zap_leader)
218 leader->exit_state = EXIT_DEAD;
219 }
220
221 write_unlock_irq(&tasklist_lock);
222 seccomp_filter_release(p);
223 proc_flush_pid(thread_pid);
224 put_pid(thread_pid);
225 release_thread(p);
226 put_task_struct_rcu_user(p);
227
228 p = leader;
229 if (unlikely(zap_leader))
230 goto repeat;
231 }
232
rcuwait_wake_up(struct rcuwait * w)233 int rcuwait_wake_up(struct rcuwait *w)
234 {
235 int ret = 0;
236 struct task_struct *task;
237
238 rcu_read_lock();
239
240 /*
241 * Order condition vs @task, such that everything prior to the load
242 * of @task is visible. This is the condition as to why the user called
243 * rcuwait_wake() in the first place. Pairs with set_current_state()
244 * barrier (A) in rcuwait_wait_event().
245 *
246 * WAIT WAKE
247 * [S] tsk = current [S] cond = true
248 * MB (A) MB (B)
249 * [L] cond [L] tsk
250 */
251 smp_mb(); /* (B) */
252
253 task = rcu_dereference(w->task);
254 if (task)
255 ret = wake_up_process(task);
256 rcu_read_unlock();
257
258 return ret;
259 }
260 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
261
262 /*
263 * Determine if a process group is "orphaned", according to the POSIX
264 * definition in 2.2.2.52. Orphaned process groups are not to be affected
265 * by terminal-generated stop signals. Newly orphaned process groups are
266 * to receive a SIGHUP and a SIGCONT.
267 *
268 * "I ask you, have you ever known what it is to be an orphan?"
269 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)270 static int will_become_orphaned_pgrp(struct pid *pgrp,
271 struct task_struct *ignored_task)
272 {
273 struct task_struct *p;
274
275 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
276 if ((p == ignored_task) ||
277 (p->exit_state && thread_group_empty(p)) ||
278 is_global_init(p->real_parent))
279 continue;
280
281 if (task_pgrp(p->real_parent) != pgrp &&
282 task_session(p->real_parent) == task_session(p))
283 return 0;
284 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
285
286 return 1;
287 }
288
is_current_pgrp_orphaned(void)289 int is_current_pgrp_orphaned(void)
290 {
291 int retval;
292
293 read_lock(&tasklist_lock);
294 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
295 read_unlock(&tasklist_lock);
296
297 return retval;
298 }
299
has_stopped_jobs(struct pid * pgrp)300 static bool has_stopped_jobs(struct pid *pgrp)
301 {
302 struct task_struct *p;
303
304 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
305 if (p->signal->flags & SIGNAL_STOP_STOPPED)
306 return true;
307 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
308
309 return false;
310 }
311
312 /*
313 * Check to see if any process groups have become orphaned as
314 * a result of our exiting, and if they have any stopped jobs,
315 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
316 */
317 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)318 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
319 {
320 struct pid *pgrp = task_pgrp(tsk);
321 struct task_struct *ignored_task = tsk;
322
323 if (!parent)
324 /* exit: our father is in a different pgrp than
325 * we are and we were the only connection outside.
326 */
327 parent = tsk->real_parent;
328 else
329 /* reparent: our child is in a different pgrp than
330 * we are, and it was the only connection outside.
331 */
332 ignored_task = NULL;
333
334 if (task_pgrp(parent) != pgrp &&
335 task_session(parent) == task_session(tsk) &&
336 will_become_orphaned_pgrp(pgrp, ignored_task) &&
337 has_stopped_jobs(pgrp)) {
338 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
339 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
340 }
341 }
342
coredump_task_exit(struct task_struct * tsk)343 static void coredump_task_exit(struct task_struct *tsk)
344 {
345 struct core_state *core_state;
346
347 /*
348 * Serialize with any possible pending coredump.
349 * We must hold siglock around checking core_state
350 * and setting PF_POSTCOREDUMP. The core-inducing thread
351 * will increment ->nr_threads for each thread in the
352 * group without PF_POSTCOREDUMP set.
353 */
354 spin_lock_irq(&tsk->sighand->siglock);
355 tsk->flags |= PF_POSTCOREDUMP;
356 core_state = tsk->signal->core_state;
357 spin_unlock_irq(&tsk->sighand->siglock);
358 if (core_state) {
359 struct core_thread self;
360
361 self.task = current;
362 if (self.task->flags & PF_SIGNALED)
363 self.next = xchg(&core_state->dumper.next, &self);
364 else
365 self.task = NULL;
366 /*
367 * Implies mb(), the result of xchg() must be visible
368 * to core_state->dumper.
369 */
370 if (atomic_dec_and_test(&core_state->nr_threads))
371 complete(&core_state->startup);
372
373 for (;;) {
374 set_current_state(TASK_UNINTERRUPTIBLE);
375 if (!self.task) /* see coredump_finish() */
376 break;
377 freezable_schedule();
378 }
379 __set_current_state(TASK_RUNNING);
380 }
381 }
382
383 #ifdef CONFIG_MEMCG
384 /*
385 * A task is exiting. If it owned this mm, find a new owner for the mm.
386 */
mm_update_next_owner(struct mm_struct * mm)387 void mm_update_next_owner(struct mm_struct *mm)
388 {
389 struct task_struct *c, *g, *p = current;
390
391 retry:
392 /*
393 * If the exiting or execing task is not the owner, it's
394 * someone else's problem.
395 */
396 if (mm->owner != p)
397 return;
398 /*
399 * The current owner is exiting/execing and there are no other
400 * candidates. Do not leave the mm pointing to a possibly
401 * freed task structure.
402 */
403 if (atomic_read(&mm->mm_users) <= 1) {
404 WRITE_ONCE(mm->owner, NULL);
405 return;
406 }
407
408 read_lock(&tasklist_lock);
409 /*
410 * Search in the children
411 */
412 list_for_each_entry(c, &p->children, sibling) {
413 if (c->mm == mm)
414 goto assign_new_owner;
415 }
416
417 /*
418 * Search in the siblings
419 */
420 list_for_each_entry(c, &p->real_parent->children, sibling) {
421 if (c->mm == mm)
422 goto assign_new_owner;
423 }
424
425 /*
426 * Search through everything else, we should not get here often.
427 */
428 for_each_process(g) {
429 if (g->flags & PF_KTHREAD)
430 continue;
431 for_each_thread(g, c) {
432 if (c->mm == mm)
433 goto assign_new_owner;
434 if (c->mm)
435 break;
436 }
437 }
438 read_unlock(&tasklist_lock);
439 /*
440 * We found no owner yet mm_users > 1: this implies that we are
441 * most likely racing with swapoff (try_to_unuse()) or /proc or
442 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
443 */
444 WRITE_ONCE(mm->owner, NULL);
445 return;
446
447 assign_new_owner:
448 BUG_ON(c == p);
449 get_task_struct(c);
450 /*
451 * The task_lock protects c->mm from changing.
452 * We always want mm->owner->mm == mm
453 */
454 task_lock(c);
455 /*
456 * Delay read_unlock() till we have the task_lock()
457 * to ensure that c does not slip away underneath us
458 */
459 read_unlock(&tasklist_lock);
460 if (c->mm != mm) {
461 task_unlock(c);
462 put_task_struct(c);
463 goto retry;
464 }
465 WRITE_ONCE(mm->owner, c);
466 task_unlock(c);
467 put_task_struct(c);
468 }
469 #endif /* CONFIG_MEMCG */
470
471 /*
472 * Turn us into a lazy TLB process if we
473 * aren't already..
474 */
exit_mm(void)475 static void exit_mm(void)
476 {
477 struct mm_struct *mm = current->mm;
478
479 exit_mm_release(current, mm);
480 if (!mm)
481 return;
482 sync_mm_rss(mm);
483 mmap_read_lock(mm);
484 mmgrab(mm);
485 BUG_ON(mm != current->active_mm);
486 /* more a memory barrier than a real lock */
487 task_lock(current);
488 /*
489 * When a thread stops operating on an address space, the loop
490 * in membarrier_private_expedited() may not observe that
491 * tsk->mm, and the loop in membarrier_global_expedited() may
492 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
493 * rq->membarrier_state, so those would not issue an IPI.
494 * Membarrier requires a memory barrier after accessing
495 * user-space memory, before clearing tsk->mm or the
496 * rq->membarrier_state.
497 */
498 smp_mb__after_spinlock();
499 local_irq_disable();
500 current->mm = NULL;
501 membarrier_update_current_mm(NULL);
502 enter_lazy_tlb(mm, current);
503 local_irq_enable();
504 task_unlock(current);
505 mmap_read_unlock(mm);
506 mm_update_next_owner(mm);
507 mmput(mm);
508 if (test_thread_flag(TIF_MEMDIE))
509 exit_oom_victim();
510 }
511
find_alive_thread(struct task_struct * p)512 static struct task_struct *find_alive_thread(struct task_struct *p)
513 {
514 struct task_struct *t;
515
516 for_each_thread(p, t) {
517 if (!(t->flags & PF_EXITING))
518 return t;
519 }
520 return NULL;
521 }
522
find_child_reaper(struct task_struct * father,struct list_head * dead)523 static struct task_struct *find_child_reaper(struct task_struct *father,
524 struct list_head *dead)
525 __releases(&tasklist_lock)
526 __acquires(&tasklist_lock)
527 {
528 struct pid_namespace *pid_ns = task_active_pid_ns(father);
529 struct task_struct *reaper = pid_ns->child_reaper;
530 struct task_struct *p, *n;
531
532 if (likely(reaper != father))
533 return reaper;
534
535 reaper = find_alive_thread(father);
536 if (reaper) {
537 pid_ns->child_reaper = reaper;
538 return reaper;
539 }
540
541 write_unlock_irq(&tasklist_lock);
542
543 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
544 list_del_init(&p->ptrace_entry);
545 release_task(p);
546 }
547
548 zap_pid_ns_processes(pid_ns);
549 write_lock_irq(&tasklist_lock);
550
551 return father;
552 }
553
554 /*
555 * When we die, we re-parent all our children, and try to:
556 * 1. give them to another thread in our thread group, if such a member exists
557 * 2. give it to the first ancestor process which prctl'd itself as a
558 * child_subreaper for its children (like a service manager)
559 * 3. give it to the init process (PID 1) in our pid namespace
560 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)561 static struct task_struct *find_new_reaper(struct task_struct *father,
562 struct task_struct *child_reaper)
563 {
564 struct task_struct *thread, *reaper;
565
566 thread = find_alive_thread(father);
567 if (thread)
568 return thread;
569
570 if (father->signal->has_child_subreaper) {
571 unsigned int ns_level = task_pid(father)->level;
572 /*
573 * Find the first ->is_child_subreaper ancestor in our pid_ns.
574 * We can't check reaper != child_reaper to ensure we do not
575 * cross the namespaces, the exiting parent could be injected
576 * by setns() + fork().
577 * We check pid->level, this is slightly more efficient than
578 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
579 */
580 for (reaper = father->real_parent;
581 task_pid(reaper)->level == ns_level;
582 reaper = reaper->real_parent) {
583 if (reaper == &init_task)
584 break;
585 if (!reaper->signal->is_child_subreaper)
586 continue;
587 thread = find_alive_thread(reaper);
588 if (thread)
589 return thread;
590 }
591 }
592
593 return child_reaper;
594 }
595
596 /*
597 * Any that need to be release_task'd are put on the @dead list.
598 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)599 static void reparent_leader(struct task_struct *father, struct task_struct *p,
600 struct list_head *dead)
601 {
602 if (unlikely(p->exit_state == EXIT_DEAD))
603 return;
604
605 /* We don't want people slaying init. */
606 p->exit_signal = SIGCHLD;
607
608 /* If it has exited notify the new parent about this child's death. */
609 if (!p->ptrace &&
610 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
611 if (do_notify_parent(p, p->exit_signal)) {
612 p->exit_state = EXIT_DEAD;
613 list_add(&p->ptrace_entry, dead);
614 }
615 }
616
617 kill_orphaned_pgrp(p, father);
618 }
619
620 /*
621 * This does two things:
622 *
623 * A. Make init inherit all the child processes
624 * B. Check to see if any process groups have become orphaned
625 * as a result of our exiting, and if they have any stopped
626 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
627 */
forget_original_parent(struct task_struct * father,struct list_head * dead)628 static void forget_original_parent(struct task_struct *father,
629 struct list_head *dead)
630 {
631 struct task_struct *p, *t, *reaper;
632
633 if (unlikely(!list_empty(&father->ptraced)))
634 exit_ptrace(father, dead);
635
636 /* Can drop and reacquire tasklist_lock */
637 reaper = find_child_reaper(father, dead);
638 if (list_empty(&father->children))
639 return;
640
641 reaper = find_new_reaper(father, reaper);
642 list_for_each_entry(p, &father->children, sibling) {
643 for_each_thread(p, t) {
644 RCU_INIT_POINTER(t->real_parent, reaper);
645 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
646 if (likely(!t->ptrace))
647 t->parent = t->real_parent;
648 if (t->pdeath_signal)
649 group_send_sig_info(t->pdeath_signal,
650 SEND_SIG_NOINFO, t,
651 PIDTYPE_TGID);
652 }
653 /*
654 * If this is a threaded reparent there is no need to
655 * notify anyone anything has happened.
656 */
657 if (!same_thread_group(reaper, father))
658 reparent_leader(father, p, dead);
659 }
660 list_splice_tail_init(&father->children, &reaper->children);
661 }
662
663 /*
664 * Send signals to all our closest relatives so that they know
665 * to properly mourn us..
666 */
exit_notify(struct task_struct * tsk,int group_dead)667 static void exit_notify(struct task_struct *tsk, int group_dead)
668 {
669 bool autoreap;
670 struct task_struct *p, *n;
671 LIST_HEAD(dead);
672
673 write_lock_irq(&tasklist_lock);
674 forget_original_parent(tsk, &dead);
675
676 if (group_dead)
677 kill_orphaned_pgrp(tsk->group_leader, NULL);
678
679 tsk->exit_state = EXIT_ZOMBIE;
680 if (unlikely(tsk->ptrace)) {
681 int sig = thread_group_leader(tsk) &&
682 thread_group_empty(tsk) &&
683 !ptrace_reparented(tsk) ?
684 tsk->exit_signal : SIGCHLD;
685 autoreap = do_notify_parent(tsk, sig);
686 } else if (thread_group_leader(tsk)) {
687 autoreap = thread_group_empty(tsk) &&
688 do_notify_parent(tsk, tsk->exit_signal);
689 } else {
690 autoreap = true;
691 }
692
693 if (autoreap) {
694 tsk->exit_state = EXIT_DEAD;
695 list_add(&tsk->ptrace_entry, &dead);
696 }
697
698 /* mt-exec, de_thread() is waiting for group leader */
699 if (unlikely(tsk->signal->notify_count < 0))
700 wake_up_process(tsk->signal->group_exit_task);
701 write_unlock_irq(&tasklist_lock);
702
703 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
704 list_del_init(&p->ptrace_entry);
705 release_task(p);
706 }
707 }
708
709 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)710 static void check_stack_usage(void)
711 {
712 static DEFINE_SPINLOCK(low_water_lock);
713 static int lowest_to_date = THREAD_SIZE;
714 unsigned long free;
715
716 free = stack_not_used(current);
717
718 if (free >= lowest_to_date)
719 return;
720
721 spin_lock(&low_water_lock);
722 if (free < lowest_to_date) {
723 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
724 current->comm, task_pid_nr(current), free);
725 lowest_to_date = free;
726 }
727 spin_unlock(&low_water_lock);
728 }
729 #else
check_stack_usage(void)730 static inline void check_stack_usage(void) {}
731 #endif
732
do_exit(long code)733 void __noreturn do_exit(long code)
734 {
735 struct task_struct *tsk = current;
736 int group_dead;
737
738 /*
739 * We can get here from a kernel oops, sometimes with preemption off.
740 * Start by checking for critical errors.
741 * Then fix up important state like USER_DS and preemption.
742 * Then do everything else.
743 */
744
745 WARN_ON(blk_needs_flush_plug(tsk));
746
747 if (unlikely(in_interrupt()))
748 panic("Aiee, killing interrupt handler!");
749 if (unlikely(!tsk->pid))
750 panic("Attempted to kill the idle task!");
751
752 /*
753 * If do_exit is called because this processes oopsed, it's possible
754 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
755 * continuing. Amongst other possible reasons, this is to prevent
756 * mm_release()->clear_child_tid() from writing to a user-controlled
757 * kernel address.
758 */
759 force_uaccess_begin();
760
761 if (unlikely(in_atomic())) {
762 pr_info("note: %s[%d] exited with preempt_count %d\n",
763 current->comm, task_pid_nr(current),
764 preempt_count());
765 preempt_count_set(PREEMPT_ENABLED);
766 }
767
768 profile_task_exit(tsk);
769 kcov_task_exit(tsk);
770
771 coredump_task_exit(tsk);
772 ptrace_event(PTRACE_EVENT_EXIT, code);
773
774 validate_creds_for_do_exit(tsk);
775
776 /*
777 * We're taking recursive faults here in do_exit. Safest is to just
778 * leave this task alone and wait for reboot.
779 */
780 if (unlikely(tsk->flags & PF_EXITING)) {
781 pr_alert("Fixing recursive fault but reboot is needed!\n");
782 futex_exit_recursive(tsk);
783 set_current_state(TASK_UNINTERRUPTIBLE);
784 schedule();
785 }
786
787 io_uring_files_cancel();
788 exit_signals(tsk); /* sets PF_EXITING */
789
790 /* sync mm's RSS info before statistics gathering */
791 if (tsk->mm)
792 sync_mm_rss(tsk->mm);
793 acct_update_integrals(tsk);
794 group_dead = atomic_dec_and_test(&tsk->signal->live);
795 if (group_dead) {
796 /*
797 * If the last thread of global init has exited, panic
798 * immediately to get a useable coredump.
799 */
800 if (unlikely(is_global_init(tsk)))
801 panic("Attempted to kill init! exitcode=0x%08x\n",
802 tsk->signal->group_exit_code ?: (int)code);
803
804 #ifdef CONFIG_POSIX_TIMERS
805 hrtimer_cancel(&tsk->signal->real_timer);
806 exit_itimers(tsk->signal);
807 #endif
808 if (tsk->mm)
809 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
810 }
811 acct_collect(code, group_dead);
812 if (group_dead)
813 tty_audit_exit();
814 audit_free(tsk);
815
816 tsk->exit_code = code;
817 taskstats_exit(tsk, group_dead);
818
819 exit_mm();
820
821 if (group_dead)
822 acct_process();
823 trace_sched_process_exit(tsk);
824
825 exit_sem(tsk);
826 exit_shm(tsk);
827 exit_files(tsk);
828 exit_fs(tsk);
829 if (group_dead)
830 disassociate_ctty(1);
831 exit_task_namespaces(tsk);
832 exit_task_work(tsk);
833 exit_thread(tsk);
834
835 /*
836 * Flush inherited counters to the parent - before the parent
837 * gets woken up by child-exit notifications.
838 *
839 * because of cgroup mode, must be called before cgroup_exit()
840 */
841 perf_event_exit_task(tsk);
842
843 sched_autogroup_exit_task(tsk);
844 cgroup_exit(tsk);
845
846 /*
847 * FIXME: do that only when needed, using sched_exit tracepoint
848 */
849 flush_ptrace_hw_breakpoint(tsk);
850
851 exit_tasks_rcu_start();
852 exit_notify(tsk, group_dead);
853 proc_exit_connector(tsk);
854 mpol_put_task_policy(tsk);
855 #ifdef CONFIG_FUTEX
856 if (unlikely(current->pi_state_cache))
857 kfree(current->pi_state_cache);
858 #endif
859 /*
860 * Make sure we are holding no locks:
861 */
862 debug_check_no_locks_held();
863
864 if (tsk->io_context)
865 exit_io_context(tsk);
866
867 if (tsk->splice_pipe)
868 free_pipe_info(tsk->splice_pipe);
869
870 if (tsk->task_frag.page)
871 put_page(tsk->task_frag.page);
872
873 validate_creds_for_do_exit(tsk);
874
875 check_stack_usage();
876 preempt_disable();
877 if (tsk->nr_dirtied)
878 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
879 exit_rcu();
880 exit_tasks_rcu_finish();
881
882 lockdep_free_task(tsk);
883 do_task_dead();
884 }
885 EXPORT_SYMBOL_GPL(do_exit);
886
complete_and_exit(struct completion * comp,long code)887 void complete_and_exit(struct completion *comp, long code)
888 {
889 if (comp)
890 complete(comp);
891
892 do_exit(code);
893 }
894 EXPORT_SYMBOL(complete_and_exit);
895
SYSCALL_DEFINE1(exit,int,error_code)896 SYSCALL_DEFINE1(exit, int, error_code)
897 {
898 do_exit((error_code&0xff)<<8);
899 }
900
901 /*
902 * Take down every thread in the group. This is called by fatal signals
903 * as well as by sys_exit_group (below).
904 */
905 void
do_group_exit(int exit_code)906 do_group_exit(int exit_code)
907 {
908 struct signal_struct *sig = current->signal;
909
910 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
911
912 if (signal_group_exit(sig))
913 exit_code = sig->group_exit_code;
914 else if (!thread_group_empty(current)) {
915 struct sighand_struct *const sighand = current->sighand;
916
917 spin_lock_irq(&sighand->siglock);
918 if (signal_group_exit(sig))
919 /* Another thread got here before we took the lock. */
920 exit_code = sig->group_exit_code;
921 else {
922 sig->group_exit_code = exit_code;
923 sig->flags = SIGNAL_GROUP_EXIT;
924 zap_other_threads(current);
925 }
926 spin_unlock_irq(&sighand->siglock);
927 }
928
929 do_exit(exit_code);
930 /* NOTREACHED */
931 }
932
933 /*
934 * this kills every thread in the thread group. Note that any externally
935 * wait4()-ing process will get the correct exit code - even if this
936 * thread is not the thread group leader.
937 */
SYSCALL_DEFINE1(exit_group,int,error_code)938 SYSCALL_DEFINE1(exit_group, int, error_code)
939 {
940 do_group_exit((error_code & 0xff) << 8);
941 /* NOTREACHED */
942 return 0;
943 }
944
945 struct waitid_info {
946 pid_t pid;
947 uid_t uid;
948 int status;
949 int cause;
950 };
951
952 struct wait_opts {
953 enum pid_type wo_type;
954 int wo_flags;
955 struct pid *wo_pid;
956
957 struct waitid_info *wo_info;
958 int wo_stat;
959 struct rusage *wo_rusage;
960
961 wait_queue_entry_t child_wait;
962 int notask_error;
963 };
964
eligible_pid(struct wait_opts * wo,struct task_struct * p)965 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
966 {
967 return wo->wo_type == PIDTYPE_MAX ||
968 task_pid_type(p, wo->wo_type) == wo->wo_pid;
969 }
970
971 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)972 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
973 {
974 if (!eligible_pid(wo, p))
975 return 0;
976
977 /*
978 * Wait for all children (clone and not) if __WALL is set or
979 * if it is traced by us.
980 */
981 if (ptrace || (wo->wo_flags & __WALL))
982 return 1;
983
984 /*
985 * Otherwise, wait for clone children *only* if __WCLONE is set;
986 * otherwise, wait for non-clone children *only*.
987 *
988 * Note: a "clone" child here is one that reports to its parent
989 * using a signal other than SIGCHLD, or a non-leader thread which
990 * we can only see if it is traced by us.
991 */
992 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
993 return 0;
994
995 return 1;
996 }
997
998 /*
999 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1000 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1001 * the lock and this task is uninteresting. If we return nonzero, we have
1002 * released the lock and the system call should return.
1003 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1004 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1005 {
1006 int state, status;
1007 pid_t pid = task_pid_vnr(p);
1008 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1009 struct waitid_info *infop;
1010
1011 if (!likely(wo->wo_flags & WEXITED))
1012 return 0;
1013
1014 if (unlikely(wo->wo_flags & WNOWAIT)) {
1015 status = p->exit_code;
1016 get_task_struct(p);
1017 read_unlock(&tasklist_lock);
1018 sched_annotate_sleep();
1019 if (wo->wo_rusage)
1020 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1021 put_task_struct(p);
1022 goto out_info;
1023 }
1024 /*
1025 * Move the task's state to DEAD/TRACE, only one thread can do this.
1026 */
1027 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1028 EXIT_TRACE : EXIT_DEAD;
1029 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1030 return 0;
1031 /*
1032 * We own this thread, nobody else can reap it.
1033 */
1034 read_unlock(&tasklist_lock);
1035 sched_annotate_sleep();
1036
1037 /*
1038 * Check thread_group_leader() to exclude the traced sub-threads.
1039 */
1040 if (state == EXIT_DEAD && thread_group_leader(p)) {
1041 struct signal_struct *sig = p->signal;
1042 struct signal_struct *psig = current->signal;
1043 unsigned long maxrss;
1044 u64 tgutime, tgstime;
1045
1046 /*
1047 * The resource counters for the group leader are in its
1048 * own task_struct. Those for dead threads in the group
1049 * are in its signal_struct, as are those for the child
1050 * processes it has previously reaped. All these
1051 * accumulate in the parent's signal_struct c* fields.
1052 *
1053 * We don't bother to take a lock here to protect these
1054 * p->signal fields because the whole thread group is dead
1055 * and nobody can change them.
1056 *
1057 * psig->stats_lock also protects us from our sub-theads
1058 * which can reap other children at the same time. Until
1059 * we change k_getrusage()-like users to rely on this lock
1060 * we have to take ->siglock as well.
1061 *
1062 * We use thread_group_cputime_adjusted() to get times for
1063 * the thread group, which consolidates times for all threads
1064 * in the group including the group leader.
1065 */
1066 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1067 spin_lock_irq(¤t->sighand->siglock);
1068 write_seqlock(&psig->stats_lock);
1069 psig->cutime += tgutime + sig->cutime;
1070 psig->cstime += tgstime + sig->cstime;
1071 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1072 psig->cmin_flt +=
1073 p->min_flt + sig->min_flt + sig->cmin_flt;
1074 psig->cmaj_flt +=
1075 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1076 psig->cnvcsw +=
1077 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1078 psig->cnivcsw +=
1079 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1080 psig->cinblock +=
1081 task_io_get_inblock(p) +
1082 sig->inblock + sig->cinblock;
1083 psig->coublock +=
1084 task_io_get_oublock(p) +
1085 sig->oublock + sig->coublock;
1086 maxrss = max(sig->maxrss, sig->cmaxrss);
1087 if (psig->cmaxrss < maxrss)
1088 psig->cmaxrss = maxrss;
1089 task_io_accounting_add(&psig->ioac, &p->ioac);
1090 task_io_accounting_add(&psig->ioac, &sig->ioac);
1091 write_sequnlock(&psig->stats_lock);
1092 spin_unlock_irq(¤t->sighand->siglock);
1093 }
1094
1095 if (wo->wo_rusage)
1096 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1097 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1098 ? p->signal->group_exit_code : p->exit_code;
1099 wo->wo_stat = status;
1100
1101 if (state == EXIT_TRACE) {
1102 write_lock_irq(&tasklist_lock);
1103 /* We dropped tasklist, ptracer could die and untrace */
1104 ptrace_unlink(p);
1105
1106 /* If parent wants a zombie, don't release it now */
1107 state = EXIT_ZOMBIE;
1108 if (do_notify_parent(p, p->exit_signal))
1109 state = EXIT_DEAD;
1110 p->exit_state = state;
1111 write_unlock_irq(&tasklist_lock);
1112 }
1113 if (state == EXIT_DEAD)
1114 release_task(p);
1115
1116 out_info:
1117 infop = wo->wo_info;
1118 if (infop) {
1119 if ((status & 0x7f) == 0) {
1120 infop->cause = CLD_EXITED;
1121 infop->status = status >> 8;
1122 } else {
1123 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1124 infop->status = status & 0x7f;
1125 }
1126 infop->pid = pid;
1127 infop->uid = uid;
1128 }
1129
1130 return pid;
1131 }
1132
task_stopped_code(struct task_struct * p,bool ptrace)1133 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1134 {
1135 if (ptrace) {
1136 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1137 return &p->exit_code;
1138 } else {
1139 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1140 return &p->signal->group_exit_code;
1141 }
1142 return NULL;
1143 }
1144
1145 /**
1146 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1147 * @wo: wait options
1148 * @ptrace: is the wait for ptrace
1149 * @p: task to wait for
1150 *
1151 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1152 *
1153 * CONTEXT:
1154 * read_lock(&tasklist_lock), which is released if return value is
1155 * non-zero. Also, grabs and releases @p->sighand->siglock.
1156 *
1157 * RETURNS:
1158 * 0 if wait condition didn't exist and search for other wait conditions
1159 * should continue. Non-zero return, -errno on failure and @p's pid on
1160 * success, implies that tasklist_lock is released and wait condition
1161 * search should terminate.
1162 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1163 static int wait_task_stopped(struct wait_opts *wo,
1164 int ptrace, struct task_struct *p)
1165 {
1166 struct waitid_info *infop;
1167 int exit_code, *p_code, why;
1168 uid_t uid = 0; /* unneeded, required by compiler */
1169 pid_t pid;
1170
1171 /*
1172 * Traditionally we see ptrace'd stopped tasks regardless of options.
1173 */
1174 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1175 return 0;
1176
1177 if (!task_stopped_code(p, ptrace))
1178 return 0;
1179
1180 exit_code = 0;
1181 spin_lock_irq(&p->sighand->siglock);
1182
1183 p_code = task_stopped_code(p, ptrace);
1184 if (unlikely(!p_code))
1185 goto unlock_sig;
1186
1187 exit_code = *p_code;
1188 if (!exit_code)
1189 goto unlock_sig;
1190
1191 if (!unlikely(wo->wo_flags & WNOWAIT))
1192 *p_code = 0;
1193
1194 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1195 unlock_sig:
1196 spin_unlock_irq(&p->sighand->siglock);
1197 if (!exit_code)
1198 return 0;
1199
1200 /*
1201 * Now we are pretty sure this task is interesting.
1202 * Make sure it doesn't get reaped out from under us while we
1203 * give up the lock and then examine it below. We don't want to
1204 * keep holding onto the tasklist_lock while we call getrusage and
1205 * possibly take page faults for user memory.
1206 */
1207 get_task_struct(p);
1208 pid = task_pid_vnr(p);
1209 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1210 read_unlock(&tasklist_lock);
1211 sched_annotate_sleep();
1212 if (wo->wo_rusage)
1213 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1214 put_task_struct(p);
1215
1216 if (likely(!(wo->wo_flags & WNOWAIT)))
1217 wo->wo_stat = (exit_code << 8) | 0x7f;
1218
1219 infop = wo->wo_info;
1220 if (infop) {
1221 infop->cause = why;
1222 infop->status = exit_code;
1223 infop->pid = pid;
1224 infop->uid = uid;
1225 }
1226 return pid;
1227 }
1228
1229 /*
1230 * Handle do_wait work for one task in a live, non-stopped state.
1231 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1232 * the lock and this task is uninteresting. If we return nonzero, we have
1233 * released the lock and the system call should return.
1234 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1235 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1236 {
1237 struct waitid_info *infop;
1238 pid_t pid;
1239 uid_t uid;
1240
1241 if (!unlikely(wo->wo_flags & WCONTINUED))
1242 return 0;
1243
1244 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1245 return 0;
1246
1247 spin_lock_irq(&p->sighand->siglock);
1248 /* Re-check with the lock held. */
1249 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1250 spin_unlock_irq(&p->sighand->siglock);
1251 return 0;
1252 }
1253 if (!unlikely(wo->wo_flags & WNOWAIT))
1254 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1255 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1256 spin_unlock_irq(&p->sighand->siglock);
1257
1258 pid = task_pid_vnr(p);
1259 get_task_struct(p);
1260 read_unlock(&tasklist_lock);
1261 sched_annotate_sleep();
1262 if (wo->wo_rusage)
1263 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1264 put_task_struct(p);
1265
1266 infop = wo->wo_info;
1267 if (!infop) {
1268 wo->wo_stat = 0xffff;
1269 } else {
1270 infop->cause = CLD_CONTINUED;
1271 infop->pid = pid;
1272 infop->uid = uid;
1273 infop->status = SIGCONT;
1274 }
1275 return pid;
1276 }
1277
1278 /*
1279 * Consider @p for a wait by @parent.
1280 *
1281 * -ECHILD should be in ->notask_error before the first call.
1282 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1283 * Returns zero if the search for a child should continue;
1284 * then ->notask_error is 0 if @p is an eligible child,
1285 * or still -ECHILD.
1286 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1287 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1288 struct task_struct *p)
1289 {
1290 /*
1291 * We can race with wait_task_zombie() from another thread.
1292 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1293 * can't confuse the checks below.
1294 */
1295 int exit_state = READ_ONCE(p->exit_state);
1296 int ret;
1297
1298 if (unlikely(exit_state == EXIT_DEAD))
1299 return 0;
1300
1301 ret = eligible_child(wo, ptrace, p);
1302 if (!ret)
1303 return ret;
1304
1305 if (unlikely(exit_state == EXIT_TRACE)) {
1306 /*
1307 * ptrace == 0 means we are the natural parent. In this case
1308 * we should clear notask_error, debugger will notify us.
1309 */
1310 if (likely(!ptrace))
1311 wo->notask_error = 0;
1312 return 0;
1313 }
1314
1315 if (likely(!ptrace) && unlikely(p->ptrace)) {
1316 /*
1317 * If it is traced by its real parent's group, just pretend
1318 * the caller is ptrace_do_wait() and reap this child if it
1319 * is zombie.
1320 *
1321 * This also hides group stop state from real parent; otherwise
1322 * a single stop can be reported twice as group and ptrace stop.
1323 * If a ptracer wants to distinguish these two events for its
1324 * own children it should create a separate process which takes
1325 * the role of real parent.
1326 */
1327 if (!ptrace_reparented(p))
1328 ptrace = 1;
1329 }
1330
1331 /* slay zombie? */
1332 if (exit_state == EXIT_ZOMBIE) {
1333 /* we don't reap group leaders with subthreads */
1334 if (!delay_group_leader(p)) {
1335 /*
1336 * A zombie ptracee is only visible to its ptracer.
1337 * Notification and reaping will be cascaded to the
1338 * real parent when the ptracer detaches.
1339 */
1340 if (unlikely(ptrace) || likely(!p->ptrace))
1341 return wait_task_zombie(wo, p);
1342 }
1343
1344 /*
1345 * Allow access to stopped/continued state via zombie by
1346 * falling through. Clearing of notask_error is complex.
1347 *
1348 * When !@ptrace:
1349 *
1350 * If WEXITED is set, notask_error should naturally be
1351 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1352 * so, if there are live subthreads, there are events to
1353 * wait for. If all subthreads are dead, it's still safe
1354 * to clear - this function will be called again in finite
1355 * amount time once all the subthreads are released and
1356 * will then return without clearing.
1357 *
1358 * When @ptrace:
1359 *
1360 * Stopped state is per-task and thus can't change once the
1361 * target task dies. Only continued and exited can happen.
1362 * Clear notask_error if WCONTINUED | WEXITED.
1363 */
1364 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1365 wo->notask_error = 0;
1366 } else {
1367 /*
1368 * @p is alive and it's gonna stop, continue or exit, so
1369 * there always is something to wait for.
1370 */
1371 wo->notask_error = 0;
1372 }
1373
1374 /*
1375 * Wait for stopped. Depending on @ptrace, different stopped state
1376 * is used and the two don't interact with each other.
1377 */
1378 ret = wait_task_stopped(wo, ptrace, p);
1379 if (ret)
1380 return ret;
1381
1382 /*
1383 * Wait for continued. There's only one continued state and the
1384 * ptracer can consume it which can confuse the real parent. Don't
1385 * use WCONTINUED from ptracer. You don't need or want it.
1386 */
1387 return wait_task_continued(wo, p);
1388 }
1389
1390 /*
1391 * Do the work of do_wait() for one thread in the group, @tsk.
1392 *
1393 * -ECHILD should be in ->notask_error before the first call.
1394 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1395 * Returns zero if the search for a child should continue; then
1396 * ->notask_error is 0 if there were any eligible children,
1397 * or still -ECHILD.
1398 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1399 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1400 {
1401 struct task_struct *p;
1402
1403 list_for_each_entry(p, &tsk->children, sibling) {
1404 int ret = wait_consider_task(wo, 0, p);
1405
1406 if (ret)
1407 return ret;
1408 }
1409
1410 return 0;
1411 }
1412
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1413 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1414 {
1415 struct task_struct *p;
1416
1417 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1418 int ret = wait_consider_task(wo, 1, p);
1419
1420 if (ret)
1421 return ret;
1422 }
1423
1424 return 0;
1425 }
1426
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1427 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1428 int sync, void *key)
1429 {
1430 struct wait_opts *wo = container_of(wait, struct wait_opts,
1431 child_wait);
1432 struct task_struct *p = key;
1433
1434 if (!eligible_pid(wo, p))
1435 return 0;
1436
1437 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1438 return 0;
1439
1440 return default_wake_function(wait, mode, sync, key);
1441 }
1442
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1443 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1444 {
1445 __wake_up_sync_key(&parent->signal->wait_chldexit,
1446 TASK_INTERRUPTIBLE, p);
1447 }
1448
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1449 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1450 struct task_struct *target)
1451 {
1452 struct task_struct *parent =
1453 !ptrace ? target->real_parent : target->parent;
1454
1455 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1456 same_thread_group(current, parent));
1457 }
1458
1459 /*
1460 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1461 * and tracee lists to find the target task.
1462 */
do_wait_pid(struct wait_opts * wo)1463 static int do_wait_pid(struct wait_opts *wo)
1464 {
1465 bool ptrace;
1466 struct task_struct *target;
1467 int retval;
1468
1469 ptrace = false;
1470 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1471 if (target && is_effectively_child(wo, ptrace, target)) {
1472 retval = wait_consider_task(wo, ptrace, target);
1473 if (retval)
1474 return retval;
1475 }
1476
1477 ptrace = true;
1478 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1479 if (target && target->ptrace &&
1480 is_effectively_child(wo, ptrace, target)) {
1481 retval = wait_consider_task(wo, ptrace, target);
1482 if (retval)
1483 return retval;
1484 }
1485
1486 return 0;
1487 }
1488
do_wait(struct wait_opts * wo)1489 static long do_wait(struct wait_opts *wo)
1490 {
1491 int retval;
1492
1493 trace_sched_process_wait(wo->wo_pid);
1494
1495 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1496 wo->child_wait.private = current;
1497 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1498 repeat:
1499 /*
1500 * If there is nothing that can match our criteria, just get out.
1501 * We will clear ->notask_error to zero if we see any child that
1502 * might later match our criteria, even if we are not able to reap
1503 * it yet.
1504 */
1505 wo->notask_error = -ECHILD;
1506 if ((wo->wo_type < PIDTYPE_MAX) &&
1507 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1508 goto notask;
1509
1510 set_current_state(TASK_INTERRUPTIBLE);
1511 read_lock(&tasklist_lock);
1512
1513 if (wo->wo_type == PIDTYPE_PID) {
1514 retval = do_wait_pid(wo);
1515 if (retval)
1516 goto end;
1517 } else {
1518 struct task_struct *tsk = current;
1519
1520 do {
1521 retval = do_wait_thread(wo, tsk);
1522 if (retval)
1523 goto end;
1524
1525 retval = ptrace_do_wait(wo, tsk);
1526 if (retval)
1527 goto end;
1528
1529 if (wo->wo_flags & __WNOTHREAD)
1530 break;
1531 } while_each_thread(current, tsk);
1532 }
1533 read_unlock(&tasklist_lock);
1534
1535 notask:
1536 retval = wo->notask_error;
1537 if (!retval && !(wo->wo_flags & WNOHANG)) {
1538 retval = -ERESTARTSYS;
1539 if (!signal_pending(current)) {
1540 schedule();
1541 goto repeat;
1542 }
1543 }
1544 end:
1545 __set_current_state(TASK_RUNNING);
1546 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1547 return retval;
1548 }
1549
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1550 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1551 int options, struct rusage *ru)
1552 {
1553 struct wait_opts wo;
1554 struct pid *pid = NULL;
1555 enum pid_type type;
1556 long ret;
1557 unsigned int f_flags = 0;
1558
1559 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1560 __WNOTHREAD|__WCLONE|__WALL))
1561 return -EINVAL;
1562 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1563 return -EINVAL;
1564
1565 switch (which) {
1566 case P_ALL:
1567 type = PIDTYPE_MAX;
1568 break;
1569 case P_PID:
1570 type = PIDTYPE_PID;
1571 if (upid <= 0)
1572 return -EINVAL;
1573
1574 pid = find_get_pid(upid);
1575 break;
1576 case P_PGID:
1577 type = PIDTYPE_PGID;
1578 if (upid < 0)
1579 return -EINVAL;
1580
1581 if (upid)
1582 pid = find_get_pid(upid);
1583 else
1584 pid = get_task_pid(current, PIDTYPE_PGID);
1585 break;
1586 case P_PIDFD:
1587 type = PIDTYPE_PID;
1588 if (upid < 0)
1589 return -EINVAL;
1590
1591 pid = pidfd_get_pid(upid, &f_flags);
1592 if (IS_ERR(pid))
1593 return PTR_ERR(pid);
1594
1595 break;
1596 default:
1597 return -EINVAL;
1598 }
1599
1600 wo.wo_type = type;
1601 wo.wo_pid = pid;
1602 wo.wo_flags = options;
1603 wo.wo_info = infop;
1604 wo.wo_rusage = ru;
1605 if (f_flags & O_NONBLOCK)
1606 wo.wo_flags |= WNOHANG;
1607
1608 ret = do_wait(&wo);
1609 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1610 ret = -EAGAIN;
1611
1612 put_pid(pid);
1613 return ret;
1614 }
1615
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1616 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1617 infop, int, options, struct rusage __user *, ru)
1618 {
1619 struct rusage r;
1620 struct waitid_info info = {.status = 0};
1621 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1622 int signo = 0;
1623
1624 if (err > 0) {
1625 signo = SIGCHLD;
1626 err = 0;
1627 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1628 return -EFAULT;
1629 }
1630 if (!infop)
1631 return err;
1632
1633 if (!user_write_access_begin(infop, sizeof(*infop)))
1634 return -EFAULT;
1635
1636 unsafe_put_user(signo, &infop->si_signo, Efault);
1637 unsafe_put_user(0, &infop->si_errno, Efault);
1638 unsafe_put_user(info.cause, &infop->si_code, Efault);
1639 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1640 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1641 unsafe_put_user(info.status, &infop->si_status, Efault);
1642 user_write_access_end();
1643 return err;
1644 Efault:
1645 user_write_access_end();
1646 return -EFAULT;
1647 }
1648
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1649 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1650 struct rusage *ru)
1651 {
1652 struct wait_opts wo;
1653 struct pid *pid = NULL;
1654 enum pid_type type;
1655 long ret;
1656
1657 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1658 __WNOTHREAD|__WCLONE|__WALL))
1659 return -EINVAL;
1660
1661 /* -INT_MIN is not defined */
1662 if (upid == INT_MIN)
1663 return -ESRCH;
1664
1665 if (upid == -1)
1666 type = PIDTYPE_MAX;
1667 else if (upid < 0) {
1668 type = PIDTYPE_PGID;
1669 pid = find_get_pid(-upid);
1670 } else if (upid == 0) {
1671 type = PIDTYPE_PGID;
1672 pid = get_task_pid(current, PIDTYPE_PGID);
1673 } else /* upid > 0 */ {
1674 type = PIDTYPE_PID;
1675 pid = find_get_pid(upid);
1676 }
1677
1678 wo.wo_type = type;
1679 wo.wo_pid = pid;
1680 wo.wo_flags = options | WEXITED;
1681 wo.wo_info = NULL;
1682 wo.wo_stat = 0;
1683 wo.wo_rusage = ru;
1684 ret = do_wait(&wo);
1685 put_pid(pid);
1686 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1687 ret = -EFAULT;
1688
1689 return ret;
1690 }
1691
kernel_wait(pid_t pid,int * stat)1692 int kernel_wait(pid_t pid, int *stat)
1693 {
1694 struct wait_opts wo = {
1695 .wo_type = PIDTYPE_PID,
1696 .wo_pid = find_get_pid(pid),
1697 .wo_flags = WEXITED,
1698 };
1699 int ret;
1700
1701 ret = do_wait(&wo);
1702 if (ret > 0 && wo.wo_stat)
1703 *stat = wo.wo_stat;
1704 put_pid(wo.wo_pid);
1705 return ret;
1706 }
1707
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1708 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1709 int, options, struct rusage __user *, ru)
1710 {
1711 struct rusage r;
1712 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1713
1714 if (err > 0) {
1715 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1716 return -EFAULT;
1717 }
1718 return err;
1719 }
1720
1721 #ifdef __ARCH_WANT_SYS_WAITPID
1722
1723 /*
1724 * sys_waitpid() remains for compatibility. waitpid() should be
1725 * implemented by calling sys_wait4() from libc.a.
1726 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1727 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1728 {
1729 return kernel_wait4(pid, stat_addr, options, NULL);
1730 }
1731
1732 #endif
1733
1734 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1735 COMPAT_SYSCALL_DEFINE4(wait4,
1736 compat_pid_t, pid,
1737 compat_uint_t __user *, stat_addr,
1738 int, options,
1739 struct compat_rusage __user *, ru)
1740 {
1741 struct rusage r;
1742 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1743 if (err > 0) {
1744 if (ru && put_compat_rusage(&r, ru))
1745 return -EFAULT;
1746 }
1747 return err;
1748 }
1749
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1750 COMPAT_SYSCALL_DEFINE5(waitid,
1751 int, which, compat_pid_t, pid,
1752 struct compat_siginfo __user *, infop, int, options,
1753 struct compat_rusage __user *, uru)
1754 {
1755 struct rusage ru;
1756 struct waitid_info info = {.status = 0};
1757 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1758 int signo = 0;
1759 if (err > 0) {
1760 signo = SIGCHLD;
1761 err = 0;
1762 if (uru) {
1763 /* kernel_waitid() overwrites everything in ru */
1764 if (COMPAT_USE_64BIT_TIME)
1765 err = copy_to_user(uru, &ru, sizeof(ru));
1766 else
1767 err = put_compat_rusage(&ru, uru);
1768 if (err)
1769 return -EFAULT;
1770 }
1771 }
1772
1773 if (!infop)
1774 return err;
1775
1776 if (!user_write_access_begin(infop, sizeof(*infop)))
1777 return -EFAULT;
1778
1779 unsafe_put_user(signo, &infop->si_signo, Efault);
1780 unsafe_put_user(0, &infop->si_errno, Efault);
1781 unsafe_put_user(info.cause, &infop->si_code, Efault);
1782 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1783 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1784 unsafe_put_user(info.status, &infop->si_status, Efault);
1785 user_write_access_end();
1786 return err;
1787 Efault:
1788 user_write_access_end();
1789 return -EFAULT;
1790 }
1791 #endif
1792
1793 /**
1794 * thread_group_exited - check that a thread group has exited
1795 * @pid: tgid of thread group to be checked.
1796 *
1797 * Test if the thread group represented by tgid has exited (all
1798 * threads are zombies, dead or completely gone).
1799 *
1800 * Return: true if the thread group has exited. false otherwise.
1801 */
thread_group_exited(struct pid * pid)1802 bool thread_group_exited(struct pid *pid)
1803 {
1804 struct task_struct *task;
1805 bool exited;
1806
1807 rcu_read_lock();
1808 task = pid_task(pid, PIDTYPE_PID);
1809 exited = !task ||
1810 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1811 rcu_read_unlock();
1812
1813 return exited;
1814 }
1815 EXPORT_SYMBOL(thread_group_exited);
1816
abort(void)1817 __weak void abort(void)
1818 {
1819 BUG();
1820
1821 /* if that doesn't kill us, halt */
1822 panic("Oops failed to kill thread");
1823 }
1824 EXPORT_SYMBOL(abort);
1825