1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/super.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * super.c contains code to handle: - mount structures
8 * - super-block tables
9 * - filesystem drivers list
10 * - mount system call
11 * - umount system call
12 * - ustat system call
13 *
14 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 *
16 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
17 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
18 * Added options to /proc/mounts:
19 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
20 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
21 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
22 */
23
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fscrypt.h>
36 #include <linux/fsnotify.h>
37 #include <linux/lockdep.h>
38 #include <linux/user_namespace.h>
39 #include <linux/fs_context.h>
40 #include <uapi/linux/mount.h>
41 #include "internal.h"
42
43 static int thaw_super_locked(struct super_block *sb);
44
45 static LIST_HEAD(super_blocks);
46 static DEFINE_SPINLOCK(sb_lock);
47
48 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
49 "sb_writers",
50 "sb_pagefaults",
51 "sb_internal",
52 };
53
54 /*
55 * One thing we have to be careful of with a per-sb shrinker is that we don't
56 * drop the last active reference to the superblock from within the shrinker.
57 * If that happens we could trigger unregistering the shrinker from within the
58 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
59 * take a passive reference to the superblock to avoid this from occurring.
60 */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)61 static unsigned long super_cache_scan(struct shrinker *shrink,
62 struct shrink_control *sc)
63 {
64 struct super_block *sb;
65 long fs_objects = 0;
66 long total_objects;
67 long freed = 0;
68 long dentries;
69 long inodes;
70
71 sb = container_of(shrink, struct super_block, s_shrink);
72
73 /*
74 * Deadlock avoidance. We may hold various FS locks, and we don't want
75 * to recurse into the FS that called us in clear_inode() and friends..
76 */
77 if (!(sc->gfp_mask & __GFP_FS))
78 return SHRINK_STOP;
79
80 if (!trylock_super(sb))
81 return SHRINK_STOP;
82
83 if (sb->s_op->nr_cached_objects)
84 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
85
86 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
87 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
88 total_objects = dentries + inodes + fs_objects + 1;
89 if (!total_objects)
90 total_objects = 1;
91
92 /* proportion the scan between the caches */
93 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
94 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
95 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
96
97 /*
98 * prune the dcache first as the icache is pinned by it, then
99 * prune the icache, followed by the filesystem specific caches
100 *
101 * Ensure that we always scan at least one object - memcg kmem
102 * accounting uses this to fully empty the caches.
103 */
104 sc->nr_to_scan = dentries + 1;
105 freed = prune_dcache_sb(sb, sc);
106 sc->nr_to_scan = inodes + 1;
107 freed += prune_icache_sb(sb, sc);
108
109 if (fs_objects) {
110 sc->nr_to_scan = fs_objects + 1;
111 freed += sb->s_op->free_cached_objects(sb, sc);
112 }
113
114 up_read(&sb->s_umount);
115 return freed;
116 }
117
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)118 static unsigned long super_cache_count(struct shrinker *shrink,
119 struct shrink_control *sc)
120 {
121 struct super_block *sb;
122 long total_objects = 0;
123
124 sb = container_of(shrink, struct super_block, s_shrink);
125
126 /*
127 * We don't call trylock_super() here as it is a scalability bottleneck,
128 * so we're exposed to partial setup state. The shrinker rwsem does not
129 * protect filesystem operations backing list_lru_shrink_count() or
130 * s_op->nr_cached_objects(). Counts can change between
131 * super_cache_count and super_cache_scan, so we really don't need locks
132 * here.
133 *
134 * However, if we are currently mounting the superblock, the underlying
135 * filesystem might be in a state of partial construction and hence it
136 * is dangerous to access it. trylock_super() uses a SB_BORN check to
137 * avoid this situation, so do the same here. The memory barrier is
138 * matched with the one in mount_fs() as we don't hold locks here.
139 */
140 if (!(sb->s_flags & SB_BORN))
141 return 0;
142 smp_rmb();
143
144 if (sb->s_op && sb->s_op->nr_cached_objects)
145 total_objects = sb->s_op->nr_cached_objects(sb, sc);
146
147 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
148 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
149
150 if (!total_objects)
151 return SHRINK_EMPTY;
152
153 total_objects = vfs_pressure_ratio(total_objects);
154 return total_objects;
155 }
156
destroy_super_work(struct work_struct * work)157 static void destroy_super_work(struct work_struct *work)
158 {
159 struct super_block *s = container_of(work, struct super_block,
160 destroy_work);
161 int i;
162
163 for (i = 0; i < SB_FREEZE_LEVELS; i++)
164 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
165 kfree(s);
166 }
167
destroy_super_rcu(struct rcu_head * head)168 static void destroy_super_rcu(struct rcu_head *head)
169 {
170 struct super_block *s = container_of(head, struct super_block, rcu);
171 INIT_WORK(&s->destroy_work, destroy_super_work);
172 schedule_work(&s->destroy_work);
173 }
174
175 /* Free a superblock that has never been seen by anyone */
destroy_unused_super(struct super_block * s)176 static void destroy_unused_super(struct super_block *s)
177 {
178 if (!s)
179 return;
180 up_write(&s->s_umount);
181 list_lru_destroy(&s->s_dentry_lru);
182 list_lru_destroy(&s->s_inode_lru);
183 security_sb_free(s);
184 put_user_ns(s->s_user_ns);
185 kfree(s->s_subtype);
186 free_prealloced_shrinker(&s->s_shrink);
187 /* no delays needed */
188 destroy_super_work(&s->destroy_work);
189 }
190
191 /**
192 * alloc_super - create new superblock
193 * @type: filesystem type superblock should belong to
194 * @flags: the mount flags
195 * @user_ns: User namespace for the super_block
196 *
197 * Allocates and initializes a new &struct super_block. alloc_super()
198 * returns a pointer new superblock or %NULL if allocation had failed.
199 */
alloc_super(struct file_system_type * type,int flags,struct user_namespace * user_ns)200 static struct super_block *alloc_super(struct file_system_type *type, int flags,
201 struct user_namespace *user_ns)
202 {
203 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
204 static const struct super_operations default_op;
205 int i;
206
207 if (!s)
208 return NULL;
209
210 INIT_LIST_HEAD(&s->s_mounts);
211 s->s_user_ns = get_user_ns(user_ns);
212 init_rwsem(&s->s_umount);
213 lockdep_set_class(&s->s_umount, &type->s_umount_key);
214 /*
215 * sget() can have s_umount recursion.
216 *
217 * When it cannot find a suitable sb, it allocates a new
218 * one (this one), and tries again to find a suitable old
219 * one.
220 *
221 * In case that succeeds, it will acquire the s_umount
222 * lock of the old one. Since these are clearly distrinct
223 * locks, and this object isn't exposed yet, there's no
224 * risk of deadlocks.
225 *
226 * Annotate this by putting this lock in a different
227 * subclass.
228 */
229 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
230
231 if (security_sb_alloc(s))
232 goto fail;
233
234 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
235 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
236 sb_writers_name[i],
237 &type->s_writers_key[i]))
238 goto fail;
239 }
240 init_waitqueue_head(&s->s_writers.wait_unfrozen);
241 s->s_bdi = &noop_backing_dev_info;
242 s->s_flags = flags;
243 if (s->s_user_ns != &init_user_ns)
244 s->s_iflags |= SB_I_NODEV;
245 INIT_HLIST_NODE(&s->s_instances);
246 INIT_HLIST_BL_HEAD(&s->s_roots);
247 mutex_init(&s->s_sync_lock);
248 INIT_LIST_HEAD(&s->s_inodes);
249 spin_lock_init(&s->s_inode_list_lock);
250 INIT_LIST_HEAD(&s->s_inodes_wb);
251 spin_lock_init(&s->s_inode_wblist_lock);
252
253 s->s_count = 1;
254 atomic_set(&s->s_active, 1);
255 mutex_init(&s->s_vfs_rename_mutex);
256 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
257 init_rwsem(&s->s_dquot.dqio_sem);
258 s->s_maxbytes = MAX_NON_LFS;
259 s->s_op = &default_op;
260 s->s_time_gran = 1000000000;
261 s->s_time_min = TIME64_MIN;
262 s->s_time_max = TIME64_MAX;
263 s->cleancache_poolid = CLEANCACHE_NO_POOL;
264
265 s->s_shrink.seeks = DEFAULT_SEEKS;
266 s->s_shrink.scan_objects = super_cache_scan;
267 s->s_shrink.count_objects = super_cache_count;
268 s->s_shrink.batch = 1024;
269 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
270 if (prealloc_shrinker(&s->s_shrink))
271 goto fail;
272 if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
273 goto fail;
274 if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
275 goto fail;
276 return s;
277
278 fail:
279 destroy_unused_super(s);
280 return NULL;
281 }
282
283 /* Superblock refcounting */
284
285 /*
286 * Drop a superblock's refcount. The caller must hold sb_lock.
287 */
__put_super(struct super_block * s)288 static void __put_super(struct super_block *s)
289 {
290 if (!--s->s_count) {
291 list_del_init(&s->s_list);
292 WARN_ON(s->s_dentry_lru.node);
293 WARN_ON(s->s_inode_lru.node);
294 WARN_ON(!list_empty(&s->s_mounts));
295 security_sb_free(s);
296 fscrypt_sb_free(s);
297 put_user_ns(s->s_user_ns);
298 kfree(s->s_subtype);
299 call_rcu(&s->rcu, destroy_super_rcu);
300 }
301 }
302
303 /**
304 * put_super - drop a temporary reference to superblock
305 * @sb: superblock in question
306 *
307 * Drops a temporary reference, frees superblock if there's no
308 * references left.
309 */
put_super(struct super_block * sb)310 void put_super(struct super_block *sb)
311 {
312 spin_lock(&sb_lock);
313 __put_super(sb);
314 spin_unlock(&sb_lock);
315 }
316
317
318 /**
319 * deactivate_locked_super - drop an active reference to superblock
320 * @s: superblock to deactivate
321 *
322 * Drops an active reference to superblock, converting it into a temporary
323 * one if there is no other active references left. In that case we
324 * tell fs driver to shut it down and drop the temporary reference we
325 * had just acquired.
326 *
327 * Caller holds exclusive lock on superblock; that lock is released.
328 */
deactivate_locked_super(struct super_block * s)329 void deactivate_locked_super(struct super_block *s)
330 {
331 struct file_system_type *fs = s->s_type;
332 if (atomic_dec_and_test(&s->s_active)) {
333 cleancache_invalidate_fs(s);
334 unregister_shrinker(&s->s_shrink);
335 fs->kill_sb(s);
336
337 /*
338 * Since list_lru_destroy() may sleep, we cannot call it from
339 * put_super(), where we hold the sb_lock. Therefore we destroy
340 * the lru lists right now.
341 */
342 list_lru_destroy(&s->s_dentry_lru);
343 list_lru_destroy(&s->s_inode_lru);
344
345 put_filesystem(fs);
346 put_super(s);
347 } else {
348 up_write(&s->s_umount);
349 }
350 }
351
352 EXPORT_SYMBOL(deactivate_locked_super);
353
354 /**
355 * deactivate_super - drop an active reference to superblock
356 * @s: superblock to deactivate
357 *
358 * Variant of deactivate_locked_super(), except that superblock is *not*
359 * locked by caller. If we are going to drop the final active reference,
360 * lock will be acquired prior to that.
361 */
deactivate_super(struct super_block * s)362 void deactivate_super(struct super_block *s)
363 {
364 if (!atomic_add_unless(&s->s_active, -1, 1)) {
365 down_write(&s->s_umount);
366 deactivate_locked_super(s);
367 }
368 }
369
370 EXPORT_SYMBOL(deactivate_super);
371
372 /**
373 * grab_super - acquire an active reference
374 * @s: reference we are trying to make active
375 *
376 * Tries to acquire an active reference. grab_super() is used when we
377 * had just found a superblock in super_blocks or fs_type->fs_supers
378 * and want to turn it into a full-blown active reference. grab_super()
379 * is called with sb_lock held and drops it. Returns 1 in case of
380 * success, 0 if we had failed (superblock contents was already dead or
381 * dying when grab_super() had been called). Note that this is only
382 * called for superblocks not in rundown mode (== ones still on ->fs_supers
383 * of their type), so increment of ->s_count is OK here.
384 */
grab_super(struct super_block * s)385 static int grab_super(struct super_block *s) __releases(sb_lock)
386 {
387 s->s_count++;
388 spin_unlock(&sb_lock);
389 down_write(&s->s_umount);
390 if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
391 put_super(s);
392 return 1;
393 }
394 up_write(&s->s_umount);
395 put_super(s);
396 return 0;
397 }
398
399 /*
400 * trylock_super - try to grab ->s_umount shared
401 * @sb: reference we are trying to grab
402 *
403 * Try to prevent fs shutdown. This is used in places where we
404 * cannot take an active reference but we need to ensure that the
405 * filesystem is not shut down while we are working on it. It returns
406 * false if we cannot acquire s_umount or if we lose the race and
407 * filesystem already got into shutdown, and returns true with the s_umount
408 * lock held in read mode in case of success. On successful return,
409 * the caller must drop the s_umount lock when done.
410 *
411 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
412 * The reason why it's safe is that we are OK with doing trylock instead
413 * of down_read(). There's a couple of places that are OK with that, but
414 * it's very much not a general-purpose interface.
415 */
trylock_super(struct super_block * sb)416 bool trylock_super(struct super_block *sb)
417 {
418 if (down_read_trylock(&sb->s_umount)) {
419 if (!hlist_unhashed(&sb->s_instances) &&
420 sb->s_root && (sb->s_flags & SB_BORN))
421 return true;
422 up_read(&sb->s_umount);
423 }
424
425 return false;
426 }
427
428 /**
429 * generic_shutdown_super - common helper for ->kill_sb()
430 * @sb: superblock to kill
431 *
432 * generic_shutdown_super() does all fs-independent work on superblock
433 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
434 * that need destruction out of superblock, call generic_shutdown_super()
435 * and release aforementioned objects. Note: dentries and inodes _are_
436 * taken care of and do not need specific handling.
437 *
438 * Upon calling this function, the filesystem may no longer alter or
439 * rearrange the set of dentries belonging to this super_block, nor may it
440 * change the attachments of dentries to inodes.
441 */
generic_shutdown_super(struct super_block * sb)442 void generic_shutdown_super(struct super_block *sb)
443 {
444 const struct super_operations *sop = sb->s_op;
445
446 if (sb->s_root) {
447 shrink_dcache_for_umount(sb);
448 sync_filesystem(sb);
449 sb->s_flags &= ~SB_ACTIVE;
450
451 cgroup_writeback_umount();
452
453 /* evict all inodes with zero refcount */
454 evict_inodes(sb);
455 /* only nonzero refcount inodes can have marks */
456 fsnotify_sb_delete(sb);
457 security_sb_delete(sb);
458
459 if (sb->s_dio_done_wq) {
460 destroy_workqueue(sb->s_dio_done_wq);
461 sb->s_dio_done_wq = NULL;
462 }
463
464 if (sop->put_super)
465 sop->put_super(sb);
466
467 if (!list_empty(&sb->s_inodes)) {
468 printk("VFS: Busy inodes after unmount of %s. "
469 "Self-destruct in 5 seconds. Have a nice day...\n",
470 sb->s_id);
471 }
472 }
473 spin_lock(&sb_lock);
474 /* should be initialized for __put_super_and_need_restart() */
475 hlist_del_init(&sb->s_instances);
476 spin_unlock(&sb_lock);
477 up_write(&sb->s_umount);
478 if (sb->s_bdi != &noop_backing_dev_info) {
479 if (sb->s_iflags & SB_I_PERSB_BDI)
480 bdi_unregister(sb->s_bdi);
481 bdi_put(sb->s_bdi);
482 sb->s_bdi = &noop_backing_dev_info;
483 }
484 }
485
486 EXPORT_SYMBOL(generic_shutdown_super);
487
mount_capable(struct fs_context * fc)488 bool mount_capable(struct fs_context *fc)
489 {
490 if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
491 return capable(CAP_SYS_ADMIN);
492 else
493 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
494 }
495
496 /**
497 * sget_fc - Find or create a superblock
498 * @fc: Filesystem context.
499 * @test: Comparison callback
500 * @set: Setup callback
501 *
502 * Find or create a superblock using the parameters stored in the filesystem
503 * context and the two callback functions.
504 *
505 * If an extant superblock is matched, then that will be returned with an
506 * elevated reference count that the caller must transfer or discard.
507 *
508 * If no match is made, a new superblock will be allocated and basic
509 * initialisation will be performed (s_type, s_fs_info and s_id will be set and
510 * the set() callback will be invoked), the superblock will be published and it
511 * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
512 * as yet unset.
513 */
sget_fc(struct fs_context * fc,int (* test)(struct super_block *,struct fs_context *),int (* set)(struct super_block *,struct fs_context *))514 struct super_block *sget_fc(struct fs_context *fc,
515 int (*test)(struct super_block *, struct fs_context *),
516 int (*set)(struct super_block *, struct fs_context *))
517 {
518 struct super_block *s = NULL;
519 struct super_block *old;
520 struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
521 int err;
522
523 retry:
524 spin_lock(&sb_lock);
525 if (test) {
526 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
527 if (test(old, fc))
528 goto share_extant_sb;
529 }
530 }
531 if (!s) {
532 spin_unlock(&sb_lock);
533 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
534 if (!s)
535 return ERR_PTR(-ENOMEM);
536 goto retry;
537 }
538
539 s->s_fs_info = fc->s_fs_info;
540 err = set(s, fc);
541 if (err) {
542 s->s_fs_info = NULL;
543 spin_unlock(&sb_lock);
544 destroy_unused_super(s);
545 return ERR_PTR(err);
546 }
547 fc->s_fs_info = NULL;
548 s->s_type = fc->fs_type;
549 s->s_iflags |= fc->s_iflags;
550 strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
551 list_add_tail(&s->s_list, &super_blocks);
552 hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
553 spin_unlock(&sb_lock);
554 get_filesystem(s->s_type);
555 register_shrinker_prepared(&s->s_shrink);
556 return s;
557
558 share_extant_sb:
559 if (user_ns != old->s_user_ns) {
560 spin_unlock(&sb_lock);
561 destroy_unused_super(s);
562 return ERR_PTR(-EBUSY);
563 }
564 if (!grab_super(old))
565 goto retry;
566 destroy_unused_super(s);
567 return old;
568 }
569 EXPORT_SYMBOL(sget_fc);
570
571 /**
572 * sget - find or create a superblock
573 * @type: filesystem type superblock should belong to
574 * @test: comparison callback
575 * @set: setup callback
576 * @flags: mount flags
577 * @data: argument to each of them
578 */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)579 struct super_block *sget(struct file_system_type *type,
580 int (*test)(struct super_block *,void *),
581 int (*set)(struct super_block *,void *),
582 int flags,
583 void *data)
584 {
585 struct user_namespace *user_ns = current_user_ns();
586 struct super_block *s = NULL;
587 struct super_block *old;
588 int err;
589
590 /* We don't yet pass the user namespace of the parent
591 * mount through to here so always use &init_user_ns
592 * until that changes.
593 */
594 if (flags & SB_SUBMOUNT)
595 user_ns = &init_user_ns;
596
597 retry:
598 spin_lock(&sb_lock);
599 if (test) {
600 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
601 if (!test(old, data))
602 continue;
603 if (user_ns != old->s_user_ns) {
604 spin_unlock(&sb_lock);
605 destroy_unused_super(s);
606 return ERR_PTR(-EBUSY);
607 }
608 if (!grab_super(old))
609 goto retry;
610 destroy_unused_super(s);
611 return old;
612 }
613 }
614 if (!s) {
615 spin_unlock(&sb_lock);
616 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
617 if (!s)
618 return ERR_PTR(-ENOMEM);
619 goto retry;
620 }
621
622 err = set(s, data);
623 if (err) {
624 spin_unlock(&sb_lock);
625 destroy_unused_super(s);
626 return ERR_PTR(err);
627 }
628 s->s_type = type;
629 strlcpy(s->s_id, type->name, sizeof(s->s_id));
630 list_add_tail(&s->s_list, &super_blocks);
631 hlist_add_head(&s->s_instances, &type->fs_supers);
632 spin_unlock(&sb_lock);
633 get_filesystem(type);
634 register_shrinker_prepared(&s->s_shrink);
635 return s;
636 }
637 EXPORT_SYMBOL(sget);
638
drop_super(struct super_block * sb)639 void drop_super(struct super_block *sb)
640 {
641 up_read(&sb->s_umount);
642 put_super(sb);
643 }
644
645 EXPORT_SYMBOL(drop_super);
646
drop_super_exclusive(struct super_block * sb)647 void drop_super_exclusive(struct super_block *sb)
648 {
649 up_write(&sb->s_umount);
650 put_super(sb);
651 }
652 EXPORT_SYMBOL(drop_super_exclusive);
653
__iterate_supers(void (* f)(struct super_block *))654 static void __iterate_supers(void (*f)(struct super_block *))
655 {
656 struct super_block *sb, *p = NULL;
657
658 spin_lock(&sb_lock);
659 list_for_each_entry(sb, &super_blocks, s_list) {
660 if (hlist_unhashed(&sb->s_instances))
661 continue;
662 sb->s_count++;
663 spin_unlock(&sb_lock);
664
665 f(sb);
666
667 spin_lock(&sb_lock);
668 if (p)
669 __put_super(p);
670 p = sb;
671 }
672 if (p)
673 __put_super(p);
674 spin_unlock(&sb_lock);
675 }
676 /**
677 * iterate_supers - call function for all active superblocks
678 * @f: function to call
679 * @arg: argument to pass to it
680 *
681 * Scans the superblock list and calls given function, passing it
682 * locked superblock and given argument.
683 */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)684 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
685 {
686 struct super_block *sb, *p = NULL;
687
688 spin_lock(&sb_lock);
689 list_for_each_entry(sb, &super_blocks, s_list) {
690 if (hlist_unhashed(&sb->s_instances))
691 continue;
692 sb->s_count++;
693 spin_unlock(&sb_lock);
694
695 down_read(&sb->s_umount);
696 if (sb->s_root && (sb->s_flags & SB_BORN))
697 f(sb, arg);
698 up_read(&sb->s_umount);
699
700 spin_lock(&sb_lock);
701 if (p)
702 __put_super(p);
703 p = sb;
704 }
705 if (p)
706 __put_super(p);
707 spin_unlock(&sb_lock);
708 }
709
710 /**
711 * iterate_supers_type - call function for superblocks of given type
712 * @type: fs type
713 * @f: function to call
714 * @arg: argument to pass to it
715 *
716 * Scans the superblock list and calls given function, passing it
717 * locked superblock and given argument.
718 */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)719 void iterate_supers_type(struct file_system_type *type,
720 void (*f)(struct super_block *, void *), void *arg)
721 {
722 struct super_block *sb, *p = NULL;
723
724 spin_lock(&sb_lock);
725 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
726 sb->s_count++;
727 spin_unlock(&sb_lock);
728
729 down_read(&sb->s_umount);
730 if (sb->s_root && (sb->s_flags & SB_BORN))
731 f(sb, arg);
732 up_read(&sb->s_umount);
733
734 spin_lock(&sb_lock);
735 if (p)
736 __put_super(p);
737 p = sb;
738 }
739 if (p)
740 __put_super(p);
741 spin_unlock(&sb_lock);
742 }
743
744 EXPORT_SYMBOL(iterate_supers_type);
745
746 /**
747 * get_super - get the superblock of a device
748 * @bdev: device to get the superblock for
749 *
750 * Scans the superblock list and finds the superblock of the file system
751 * mounted on the device given. %NULL is returned if no match is found.
752 */
get_super(struct block_device * bdev)753 struct super_block *get_super(struct block_device *bdev)
754 {
755 struct super_block *sb;
756
757 if (!bdev)
758 return NULL;
759
760 spin_lock(&sb_lock);
761 rescan:
762 list_for_each_entry(sb, &super_blocks, s_list) {
763 if (hlist_unhashed(&sb->s_instances))
764 continue;
765 if (sb->s_bdev == bdev) {
766 sb->s_count++;
767 spin_unlock(&sb_lock);
768 down_read(&sb->s_umount);
769 /* still alive? */
770 if (sb->s_root && (sb->s_flags & SB_BORN))
771 return sb;
772 up_read(&sb->s_umount);
773 /* nope, got unmounted */
774 spin_lock(&sb_lock);
775 __put_super(sb);
776 goto rescan;
777 }
778 }
779 spin_unlock(&sb_lock);
780 return NULL;
781 }
782
783 /**
784 * get_active_super - get an active reference to the superblock of a device
785 * @bdev: device to get the superblock for
786 *
787 * Scans the superblock list and finds the superblock of the file system
788 * mounted on the device given. Returns the superblock with an active
789 * reference or %NULL if none was found.
790 */
get_active_super(struct block_device * bdev)791 struct super_block *get_active_super(struct block_device *bdev)
792 {
793 struct super_block *sb;
794
795 if (!bdev)
796 return NULL;
797
798 restart:
799 spin_lock(&sb_lock);
800 list_for_each_entry(sb, &super_blocks, s_list) {
801 if (hlist_unhashed(&sb->s_instances))
802 continue;
803 if (sb->s_bdev == bdev) {
804 if (!grab_super(sb))
805 goto restart;
806 up_write(&sb->s_umount);
807 return sb;
808 }
809 }
810 spin_unlock(&sb_lock);
811 return NULL;
812 }
813
user_get_super(dev_t dev,bool excl)814 struct super_block *user_get_super(dev_t dev, bool excl)
815 {
816 struct super_block *sb;
817
818 spin_lock(&sb_lock);
819 rescan:
820 list_for_each_entry(sb, &super_blocks, s_list) {
821 if (hlist_unhashed(&sb->s_instances))
822 continue;
823 if (sb->s_dev == dev) {
824 sb->s_count++;
825 spin_unlock(&sb_lock);
826 if (excl)
827 down_write(&sb->s_umount);
828 else
829 down_read(&sb->s_umount);
830 /* still alive? */
831 if (sb->s_root && (sb->s_flags & SB_BORN))
832 return sb;
833 if (excl)
834 up_write(&sb->s_umount);
835 else
836 up_read(&sb->s_umount);
837 /* nope, got unmounted */
838 spin_lock(&sb_lock);
839 __put_super(sb);
840 goto rescan;
841 }
842 }
843 spin_unlock(&sb_lock);
844 return NULL;
845 }
846
847 /**
848 * reconfigure_super - asks filesystem to change superblock parameters
849 * @fc: The superblock and configuration
850 *
851 * Alters the configuration parameters of a live superblock.
852 */
reconfigure_super(struct fs_context * fc)853 int reconfigure_super(struct fs_context *fc)
854 {
855 struct super_block *sb = fc->root->d_sb;
856 int retval;
857 bool remount_ro = false;
858 bool force = fc->sb_flags & SB_FORCE;
859
860 if (fc->sb_flags_mask & ~MS_RMT_MASK)
861 return -EINVAL;
862 if (sb->s_writers.frozen != SB_UNFROZEN)
863 return -EBUSY;
864
865 retval = security_sb_remount(sb, fc->security);
866 if (retval)
867 return retval;
868
869 if (fc->sb_flags_mask & SB_RDONLY) {
870 #ifdef CONFIG_BLOCK
871 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
872 bdev_read_only(sb->s_bdev))
873 return -EACCES;
874 #endif
875
876 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
877 }
878
879 if (remount_ro) {
880 if (!hlist_empty(&sb->s_pins)) {
881 up_write(&sb->s_umount);
882 group_pin_kill(&sb->s_pins);
883 down_write(&sb->s_umount);
884 if (!sb->s_root)
885 return 0;
886 if (sb->s_writers.frozen != SB_UNFROZEN)
887 return -EBUSY;
888 remount_ro = !sb_rdonly(sb);
889 }
890 }
891 shrink_dcache_sb(sb);
892
893 /* If we are reconfiguring to RDONLY and current sb is read/write,
894 * make sure there are no files open for writing.
895 */
896 if (remount_ro) {
897 if (force) {
898 sb->s_readonly_remount = 1;
899 smp_wmb();
900 } else {
901 retval = sb_prepare_remount_readonly(sb);
902 if (retval)
903 return retval;
904 }
905 }
906
907 if (fc->ops->reconfigure) {
908 retval = fc->ops->reconfigure(fc);
909 if (retval) {
910 if (!force)
911 goto cancel_readonly;
912 /* If forced remount, go ahead despite any errors */
913 WARN(1, "forced remount of a %s fs returned %i\n",
914 sb->s_type->name, retval);
915 }
916 }
917
918 WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
919 (fc->sb_flags & fc->sb_flags_mask)));
920 /* Needs to be ordered wrt mnt_is_readonly() */
921 smp_wmb();
922 sb->s_readonly_remount = 0;
923
924 /*
925 * Some filesystems modify their metadata via some other path than the
926 * bdev buffer cache (eg. use a private mapping, or directories in
927 * pagecache, etc). Also file data modifications go via their own
928 * mappings. So If we try to mount readonly then copy the filesystem
929 * from bdev, we could get stale data, so invalidate it to give a best
930 * effort at coherency.
931 */
932 if (remount_ro && sb->s_bdev)
933 invalidate_bdev(sb->s_bdev);
934 return 0;
935
936 cancel_readonly:
937 sb->s_readonly_remount = 0;
938 return retval;
939 }
940
do_emergency_remount_callback(struct super_block * sb)941 static void do_emergency_remount_callback(struct super_block *sb)
942 {
943 down_write(&sb->s_umount);
944 if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
945 !sb_rdonly(sb)) {
946 struct fs_context *fc;
947
948 fc = fs_context_for_reconfigure(sb->s_root,
949 SB_RDONLY | SB_FORCE, SB_RDONLY);
950 if (!IS_ERR(fc)) {
951 if (parse_monolithic_mount_data(fc, NULL) == 0)
952 (void)reconfigure_super(fc);
953 put_fs_context(fc);
954 }
955 }
956 up_write(&sb->s_umount);
957 }
958
do_emergency_remount(struct work_struct * work)959 static void do_emergency_remount(struct work_struct *work)
960 {
961 __iterate_supers(do_emergency_remount_callback);
962 kfree(work);
963 printk("Emergency Remount complete\n");
964 }
965
emergency_remount(void)966 void emergency_remount(void)
967 {
968 struct work_struct *work;
969
970 work = kmalloc(sizeof(*work), GFP_ATOMIC);
971 if (work) {
972 INIT_WORK(work, do_emergency_remount);
973 schedule_work(work);
974 }
975 }
976
do_thaw_all_callback(struct super_block * sb)977 static void do_thaw_all_callback(struct super_block *sb)
978 {
979 down_write(&sb->s_umount);
980 if (sb->s_root && sb->s_flags & SB_BORN) {
981 emergency_thaw_bdev(sb);
982 thaw_super_locked(sb);
983 } else {
984 up_write(&sb->s_umount);
985 }
986 }
987
do_thaw_all(struct work_struct * work)988 static void do_thaw_all(struct work_struct *work)
989 {
990 __iterate_supers(do_thaw_all_callback);
991 kfree(work);
992 printk(KERN_WARNING "Emergency Thaw complete\n");
993 }
994
995 /**
996 * emergency_thaw_all -- forcibly thaw every frozen filesystem
997 *
998 * Used for emergency unfreeze of all filesystems via SysRq
999 */
emergency_thaw_all(void)1000 void emergency_thaw_all(void)
1001 {
1002 struct work_struct *work;
1003
1004 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1005 if (work) {
1006 INIT_WORK(work, do_thaw_all);
1007 schedule_work(work);
1008 }
1009 }
1010
1011 static DEFINE_IDA(unnamed_dev_ida);
1012
1013 /**
1014 * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1015 * @p: Pointer to a dev_t.
1016 *
1017 * Filesystems which don't use real block devices can call this function
1018 * to allocate a virtual block device.
1019 *
1020 * Context: Any context. Frequently called while holding sb_lock.
1021 * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1022 * or -ENOMEM if memory allocation failed.
1023 */
get_anon_bdev(dev_t * p)1024 int get_anon_bdev(dev_t *p)
1025 {
1026 int dev;
1027
1028 /*
1029 * Many userspace utilities consider an FSID of 0 invalid.
1030 * Always return at least 1 from get_anon_bdev.
1031 */
1032 dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1033 GFP_ATOMIC);
1034 if (dev == -ENOSPC)
1035 dev = -EMFILE;
1036 if (dev < 0)
1037 return dev;
1038
1039 *p = MKDEV(0, dev);
1040 return 0;
1041 }
1042 EXPORT_SYMBOL(get_anon_bdev);
1043
free_anon_bdev(dev_t dev)1044 void free_anon_bdev(dev_t dev)
1045 {
1046 ida_free(&unnamed_dev_ida, MINOR(dev));
1047 }
1048 EXPORT_SYMBOL(free_anon_bdev);
1049
set_anon_super(struct super_block * s,void * data)1050 int set_anon_super(struct super_block *s, void *data)
1051 {
1052 return get_anon_bdev(&s->s_dev);
1053 }
1054 EXPORT_SYMBOL(set_anon_super);
1055
kill_anon_super(struct super_block * sb)1056 void kill_anon_super(struct super_block *sb)
1057 {
1058 dev_t dev = sb->s_dev;
1059 generic_shutdown_super(sb);
1060 free_anon_bdev(dev);
1061 }
1062 EXPORT_SYMBOL(kill_anon_super);
1063
kill_litter_super(struct super_block * sb)1064 void kill_litter_super(struct super_block *sb)
1065 {
1066 if (sb->s_root)
1067 d_genocide(sb->s_root);
1068 kill_anon_super(sb);
1069 }
1070 EXPORT_SYMBOL(kill_litter_super);
1071
set_anon_super_fc(struct super_block * sb,struct fs_context * fc)1072 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1073 {
1074 return set_anon_super(sb, NULL);
1075 }
1076 EXPORT_SYMBOL(set_anon_super_fc);
1077
test_keyed_super(struct super_block * sb,struct fs_context * fc)1078 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1079 {
1080 return sb->s_fs_info == fc->s_fs_info;
1081 }
1082
test_single_super(struct super_block * s,struct fs_context * fc)1083 static int test_single_super(struct super_block *s, struct fs_context *fc)
1084 {
1085 return 1;
1086 }
1087
1088 /**
1089 * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1090 * @fc: The filesystem context holding the parameters
1091 * @keying: How to distinguish superblocks
1092 * @fill_super: Helper to initialise a new superblock
1093 *
1094 * Search for a superblock and create a new one if not found. The search
1095 * criterion is controlled by @keying. If the search fails, a new superblock
1096 * is created and @fill_super() is called to initialise it.
1097 *
1098 * @keying can take one of a number of values:
1099 *
1100 * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1101 * system. This is typically used for special system filesystems.
1102 *
1103 * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1104 * distinct keys (where the key is in s_fs_info). Searching for the same
1105 * key again will turn up the superblock for that key.
1106 *
1107 * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1108 * unkeyed. Each call will get a new superblock.
1109 *
1110 * A permissions check is made by sget_fc() unless we're getting a superblock
1111 * for a kernel-internal mount or a submount.
1112 */
vfs_get_super(struct fs_context * fc,enum vfs_get_super_keying keying,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1113 int vfs_get_super(struct fs_context *fc,
1114 enum vfs_get_super_keying keying,
1115 int (*fill_super)(struct super_block *sb,
1116 struct fs_context *fc))
1117 {
1118 int (*test)(struct super_block *, struct fs_context *);
1119 struct super_block *sb;
1120 int err;
1121
1122 switch (keying) {
1123 case vfs_get_single_super:
1124 case vfs_get_single_reconf_super:
1125 test = test_single_super;
1126 break;
1127 case vfs_get_keyed_super:
1128 test = test_keyed_super;
1129 break;
1130 case vfs_get_independent_super:
1131 test = NULL;
1132 break;
1133 default:
1134 BUG();
1135 }
1136
1137 sb = sget_fc(fc, test, set_anon_super_fc);
1138 if (IS_ERR(sb))
1139 return PTR_ERR(sb);
1140
1141 if (!sb->s_root) {
1142 err = fill_super(sb, fc);
1143 if (err)
1144 goto error;
1145
1146 sb->s_flags |= SB_ACTIVE;
1147 fc->root = dget(sb->s_root);
1148 } else {
1149 fc->root = dget(sb->s_root);
1150 if (keying == vfs_get_single_reconf_super) {
1151 err = reconfigure_super(fc);
1152 if (err < 0) {
1153 dput(fc->root);
1154 fc->root = NULL;
1155 goto error;
1156 }
1157 }
1158 }
1159
1160 return 0;
1161
1162 error:
1163 deactivate_locked_super(sb);
1164 return err;
1165 }
1166 EXPORT_SYMBOL(vfs_get_super);
1167
get_tree_nodev(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1168 int get_tree_nodev(struct fs_context *fc,
1169 int (*fill_super)(struct super_block *sb,
1170 struct fs_context *fc))
1171 {
1172 return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1173 }
1174 EXPORT_SYMBOL(get_tree_nodev);
1175
get_tree_single(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1176 int get_tree_single(struct fs_context *fc,
1177 int (*fill_super)(struct super_block *sb,
1178 struct fs_context *fc))
1179 {
1180 return vfs_get_super(fc, vfs_get_single_super, fill_super);
1181 }
1182 EXPORT_SYMBOL(get_tree_single);
1183
get_tree_single_reconf(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc))1184 int get_tree_single_reconf(struct fs_context *fc,
1185 int (*fill_super)(struct super_block *sb,
1186 struct fs_context *fc))
1187 {
1188 return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1189 }
1190 EXPORT_SYMBOL(get_tree_single_reconf);
1191
get_tree_keyed(struct fs_context * fc,int (* fill_super)(struct super_block * sb,struct fs_context * fc),void * key)1192 int get_tree_keyed(struct fs_context *fc,
1193 int (*fill_super)(struct super_block *sb,
1194 struct fs_context *fc),
1195 void *key)
1196 {
1197 fc->s_fs_info = key;
1198 return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1199 }
1200 EXPORT_SYMBOL(get_tree_keyed);
1201
1202 #ifdef CONFIG_BLOCK
1203
set_bdev_super(struct super_block * s,void * data)1204 static int set_bdev_super(struct super_block *s, void *data)
1205 {
1206 s->s_bdev = data;
1207 s->s_dev = s->s_bdev->bd_dev;
1208 s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1209
1210 if (blk_queue_stable_writes(s->s_bdev->bd_disk->queue))
1211 s->s_iflags |= SB_I_STABLE_WRITES;
1212 return 0;
1213 }
1214
set_bdev_super_fc(struct super_block * s,struct fs_context * fc)1215 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1216 {
1217 return set_bdev_super(s, fc->sget_key);
1218 }
1219
test_bdev_super_fc(struct super_block * s,struct fs_context * fc)1220 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1221 {
1222 return s->s_bdev == fc->sget_key;
1223 }
1224
1225 /**
1226 * get_tree_bdev - Get a superblock based on a single block device
1227 * @fc: The filesystem context holding the parameters
1228 * @fill_super: Helper to initialise a new superblock
1229 */
get_tree_bdev(struct fs_context * fc,int (* fill_super)(struct super_block *,struct fs_context *))1230 int get_tree_bdev(struct fs_context *fc,
1231 int (*fill_super)(struct super_block *,
1232 struct fs_context *))
1233 {
1234 struct block_device *bdev;
1235 struct super_block *s;
1236 fmode_t mode = FMODE_READ | FMODE_EXCL;
1237 int error = 0;
1238
1239 if (!(fc->sb_flags & SB_RDONLY))
1240 mode |= FMODE_WRITE;
1241
1242 if (!fc->source)
1243 return invalf(fc, "No source specified");
1244
1245 bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1246 if (IS_ERR(bdev)) {
1247 errorf(fc, "%s: Can't open blockdev", fc->source);
1248 return PTR_ERR(bdev);
1249 }
1250
1251 /* Once the superblock is inserted into the list by sget_fc(), s_umount
1252 * will protect the lockfs code from trying to start a snapshot while
1253 * we are mounting
1254 */
1255 mutex_lock(&bdev->bd_fsfreeze_mutex);
1256 if (bdev->bd_fsfreeze_count > 0) {
1257 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1258 warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1259 blkdev_put(bdev, mode);
1260 return -EBUSY;
1261 }
1262
1263 fc->sb_flags |= SB_NOSEC;
1264 fc->sget_key = bdev;
1265 s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1266 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1267 if (IS_ERR(s)) {
1268 blkdev_put(bdev, mode);
1269 return PTR_ERR(s);
1270 }
1271
1272 if (s->s_root) {
1273 /* Don't summarily change the RO/RW state. */
1274 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1275 warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1276 deactivate_locked_super(s);
1277 blkdev_put(bdev, mode);
1278 return -EBUSY;
1279 }
1280
1281 /*
1282 * s_umount nests inside open_mutex during
1283 * __invalidate_device(). blkdev_put() acquires
1284 * open_mutex and can't be called under s_umount. Drop
1285 * s_umount temporarily. This is safe as we're
1286 * holding an active reference.
1287 */
1288 up_write(&s->s_umount);
1289 blkdev_put(bdev, mode);
1290 down_write(&s->s_umount);
1291 } else {
1292 s->s_mode = mode;
1293 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1294 sb_set_blocksize(s, block_size(bdev));
1295 error = fill_super(s, fc);
1296 if (error) {
1297 deactivate_locked_super(s);
1298 return error;
1299 }
1300
1301 s->s_flags |= SB_ACTIVE;
1302 bdev->bd_super = s;
1303 }
1304
1305 BUG_ON(fc->root);
1306 fc->root = dget(s->s_root);
1307 return 0;
1308 }
1309 EXPORT_SYMBOL(get_tree_bdev);
1310
test_bdev_super(struct super_block * s,void * data)1311 static int test_bdev_super(struct super_block *s, void *data)
1312 {
1313 return (void *)s->s_bdev == data;
1314 }
1315
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))1316 struct dentry *mount_bdev(struct file_system_type *fs_type,
1317 int flags, const char *dev_name, void *data,
1318 int (*fill_super)(struct super_block *, void *, int))
1319 {
1320 struct block_device *bdev;
1321 struct super_block *s;
1322 fmode_t mode = FMODE_READ | FMODE_EXCL;
1323 int error = 0;
1324
1325 if (!(flags & SB_RDONLY))
1326 mode |= FMODE_WRITE;
1327
1328 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1329 if (IS_ERR(bdev))
1330 return ERR_CAST(bdev);
1331
1332 /*
1333 * once the super is inserted into the list by sget, s_umount
1334 * will protect the lockfs code from trying to start a snapshot
1335 * while we are mounting
1336 */
1337 mutex_lock(&bdev->bd_fsfreeze_mutex);
1338 if (bdev->bd_fsfreeze_count > 0) {
1339 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1340 error = -EBUSY;
1341 goto error_bdev;
1342 }
1343 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1344 bdev);
1345 mutex_unlock(&bdev->bd_fsfreeze_mutex);
1346 if (IS_ERR(s))
1347 goto error_s;
1348
1349 if (s->s_root) {
1350 if ((flags ^ s->s_flags) & SB_RDONLY) {
1351 deactivate_locked_super(s);
1352 error = -EBUSY;
1353 goto error_bdev;
1354 }
1355
1356 /*
1357 * s_umount nests inside open_mutex during
1358 * __invalidate_device(). blkdev_put() acquires
1359 * open_mutex and can't be called under s_umount. Drop
1360 * s_umount temporarily. This is safe as we're
1361 * holding an active reference.
1362 */
1363 up_write(&s->s_umount);
1364 blkdev_put(bdev, mode);
1365 down_write(&s->s_umount);
1366 } else {
1367 s->s_mode = mode;
1368 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1369 sb_set_blocksize(s, block_size(bdev));
1370 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1371 if (error) {
1372 deactivate_locked_super(s);
1373 goto error;
1374 }
1375
1376 s->s_flags |= SB_ACTIVE;
1377 bdev->bd_super = s;
1378 }
1379
1380 return dget(s->s_root);
1381
1382 error_s:
1383 error = PTR_ERR(s);
1384 error_bdev:
1385 blkdev_put(bdev, mode);
1386 error:
1387 return ERR_PTR(error);
1388 }
1389 EXPORT_SYMBOL(mount_bdev);
1390
kill_block_super(struct super_block * sb)1391 void kill_block_super(struct super_block *sb)
1392 {
1393 struct block_device *bdev = sb->s_bdev;
1394 fmode_t mode = sb->s_mode;
1395
1396 bdev->bd_super = NULL;
1397 generic_shutdown_super(sb);
1398 sync_blockdev(bdev);
1399 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1400 blkdev_put(bdev, mode | FMODE_EXCL);
1401 }
1402
1403 EXPORT_SYMBOL(kill_block_super);
1404 #endif
1405
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1406 struct dentry *mount_nodev(struct file_system_type *fs_type,
1407 int flags, void *data,
1408 int (*fill_super)(struct super_block *, void *, int))
1409 {
1410 int error;
1411 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1412
1413 if (IS_ERR(s))
1414 return ERR_CAST(s);
1415
1416 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1417 if (error) {
1418 deactivate_locked_super(s);
1419 return ERR_PTR(error);
1420 }
1421 s->s_flags |= SB_ACTIVE;
1422 return dget(s->s_root);
1423 }
1424 EXPORT_SYMBOL(mount_nodev);
1425
reconfigure_single(struct super_block * s,int flags,void * data)1426 static int reconfigure_single(struct super_block *s,
1427 int flags, void *data)
1428 {
1429 struct fs_context *fc;
1430 int ret;
1431
1432 /* The caller really need to be passing fc down into mount_single(),
1433 * then a chunk of this can be removed. [Bollocks -- AV]
1434 * Better yet, reconfiguration shouldn't happen, but rather the second
1435 * mount should be rejected if the parameters are not compatible.
1436 */
1437 fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1438 if (IS_ERR(fc))
1439 return PTR_ERR(fc);
1440
1441 ret = parse_monolithic_mount_data(fc, data);
1442 if (ret < 0)
1443 goto out;
1444
1445 ret = reconfigure_super(fc);
1446 out:
1447 put_fs_context(fc);
1448 return ret;
1449 }
1450
compare_single(struct super_block * s,void * p)1451 static int compare_single(struct super_block *s, void *p)
1452 {
1453 return 1;
1454 }
1455
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1456 struct dentry *mount_single(struct file_system_type *fs_type,
1457 int flags, void *data,
1458 int (*fill_super)(struct super_block *, void *, int))
1459 {
1460 struct super_block *s;
1461 int error;
1462
1463 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1464 if (IS_ERR(s))
1465 return ERR_CAST(s);
1466 if (!s->s_root) {
1467 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1468 if (!error)
1469 s->s_flags |= SB_ACTIVE;
1470 } else {
1471 error = reconfigure_single(s, flags, data);
1472 }
1473 if (unlikely(error)) {
1474 deactivate_locked_super(s);
1475 return ERR_PTR(error);
1476 }
1477 return dget(s->s_root);
1478 }
1479 EXPORT_SYMBOL(mount_single);
1480
1481 /**
1482 * vfs_get_tree - Get the mountable root
1483 * @fc: The superblock configuration context.
1484 *
1485 * The filesystem is invoked to get or create a superblock which can then later
1486 * be used for mounting. The filesystem places a pointer to the root to be
1487 * used for mounting in @fc->root.
1488 */
vfs_get_tree(struct fs_context * fc)1489 int vfs_get_tree(struct fs_context *fc)
1490 {
1491 struct super_block *sb;
1492 int error;
1493
1494 if (fc->root)
1495 return -EBUSY;
1496
1497 /* Get the mountable root in fc->root, with a ref on the root and a ref
1498 * on the superblock.
1499 */
1500 error = fc->ops->get_tree(fc);
1501 if (error < 0)
1502 return error;
1503
1504 if (!fc->root) {
1505 pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1506 fc->fs_type->name);
1507 /* We don't know what the locking state of the superblock is -
1508 * if there is a superblock.
1509 */
1510 BUG();
1511 }
1512
1513 sb = fc->root->d_sb;
1514 WARN_ON(!sb->s_bdi);
1515
1516 /*
1517 * Write barrier is for super_cache_count(). We place it before setting
1518 * SB_BORN as the data dependency between the two functions is the
1519 * superblock structure contents that we just set up, not the SB_BORN
1520 * flag.
1521 */
1522 smp_wmb();
1523 sb->s_flags |= SB_BORN;
1524
1525 error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1526 if (unlikely(error)) {
1527 fc_drop_locked(fc);
1528 return error;
1529 }
1530
1531 /*
1532 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1533 * but s_maxbytes was an unsigned long long for many releases. Throw
1534 * this warning for a little while to try and catch filesystems that
1535 * violate this rule.
1536 */
1537 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1538 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1539
1540 return 0;
1541 }
1542 EXPORT_SYMBOL(vfs_get_tree);
1543
1544 /*
1545 * Setup private BDI for given superblock. It gets automatically cleaned up
1546 * in generic_shutdown_super().
1547 */
super_setup_bdi_name(struct super_block * sb,char * fmt,...)1548 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1549 {
1550 struct backing_dev_info *bdi;
1551 int err;
1552 va_list args;
1553
1554 bdi = bdi_alloc(NUMA_NO_NODE);
1555 if (!bdi)
1556 return -ENOMEM;
1557
1558 va_start(args, fmt);
1559 err = bdi_register_va(bdi, fmt, args);
1560 va_end(args);
1561 if (err) {
1562 bdi_put(bdi);
1563 return err;
1564 }
1565 WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1566 sb->s_bdi = bdi;
1567 sb->s_iflags |= SB_I_PERSB_BDI;
1568
1569 return 0;
1570 }
1571 EXPORT_SYMBOL(super_setup_bdi_name);
1572
1573 /*
1574 * Setup private BDI for given superblock. I gets automatically cleaned up
1575 * in generic_shutdown_super().
1576 */
super_setup_bdi(struct super_block * sb)1577 int super_setup_bdi(struct super_block *sb)
1578 {
1579 static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1580
1581 return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1582 atomic_long_inc_return(&bdi_seq));
1583 }
1584 EXPORT_SYMBOL(super_setup_bdi);
1585
1586 /**
1587 * sb_wait_write - wait until all writers to given file system finish
1588 * @sb: the super for which we wait
1589 * @level: type of writers we wait for (normal vs page fault)
1590 *
1591 * This function waits until there are no writers of given type to given file
1592 * system.
1593 */
sb_wait_write(struct super_block * sb,int level)1594 static void sb_wait_write(struct super_block *sb, int level)
1595 {
1596 percpu_down_write(sb->s_writers.rw_sem + level-1);
1597 }
1598
1599 /*
1600 * We are going to return to userspace and forget about these locks, the
1601 * ownership goes to the caller of thaw_super() which does unlock().
1602 */
lockdep_sb_freeze_release(struct super_block * sb)1603 static void lockdep_sb_freeze_release(struct super_block *sb)
1604 {
1605 int level;
1606
1607 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1608 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1609 }
1610
1611 /*
1612 * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1613 */
lockdep_sb_freeze_acquire(struct super_block * sb)1614 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1615 {
1616 int level;
1617
1618 for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1619 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1620 }
1621
sb_freeze_unlock(struct super_block * sb)1622 static void sb_freeze_unlock(struct super_block *sb)
1623 {
1624 int level;
1625
1626 for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1627 percpu_up_write(sb->s_writers.rw_sem + level);
1628 }
1629
1630 /**
1631 * freeze_super - lock the filesystem and force it into a consistent state
1632 * @sb: the super to lock
1633 *
1634 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1635 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1636 * -EBUSY.
1637 *
1638 * During this function, sb->s_writers.frozen goes through these values:
1639 *
1640 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1641 *
1642 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1643 * writes should be blocked, though page faults are still allowed. We wait for
1644 * all writes to complete and then proceed to the next stage.
1645 *
1646 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1647 * but internal fs threads can still modify the filesystem (although they
1648 * should not dirty new pages or inodes), writeback can run etc. After waiting
1649 * for all running page faults we sync the filesystem which will clean all
1650 * dirty pages and inodes (no new dirty pages or inodes can be created when
1651 * sync is running).
1652 *
1653 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1654 * modification are blocked (e.g. XFS preallocation truncation on inode
1655 * reclaim). This is usually implemented by blocking new transactions for
1656 * filesystems that have them and need this additional guard. After all
1657 * internal writers are finished we call ->freeze_fs() to finish filesystem
1658 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1659 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1660 *
1661 * sb->s_writers.frozen is protected by sb->s_umount.
1662 */
freeze_super(struct super_block * sb)1663 int freeze_super(struct super_block *sb)
1664 {
1665 int ret;
1666
1667 atomic_inc(&sb->s_active);
1668 down_write(&sb->s_umount);
1669 if (sb->s_writers.frozen != SB_UNFROZEN) {
1670 deactivate_locked_super(sb);
1671 return -EBUSY;
1672 }
1673
1674 if (!(sb->s_flags & SB_BORN)) {
1675 up_write(&sb->s_umount);
1676 return 0; /* sic - it's "nothing to do" */
1677 }
1678
1679 if (sb_rdonly(sb)) {
1680 /* Nothing to do really... */
1681 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1682 up_write(&sb->s_umount);
1683 return 0;
1684 }
1685
1686 sb->s_writers.frozen = SB_FREEZE_WRITE;
1687 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1688 up_write(&sb->s_umount);
1689 sb_wait_write(sb, SB_FREEZE_WRITE);
1690 down_write(&sb->s_umount);
1691
1692 /* Now we go and block page faults... */
1693 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1694 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1695
1696 /* All writers are done so after syncing there won't be dirty data */
1697 sync_filesystem(sb);
1698
1699 /* Now wait for internal filesystem counter */
1700 sb->s_writers.frozen = SB_FREEZE_FS;
1701 sb_wait_write(sb, SB_FREEZE_FS);
1702
1703 if (sb->s_op->freeze_fs) {
1704 ret = sb->s_op->freeze_fs(sb);
1705 if (ret) {
1706 printk(KERN_ERR
1707 "VFS:Filesystem freeze failed\n");
1708 sb->s_writers.frozen = SB_UNFROZEN;
1709 sb_freeze_unlock(sb);
1710 wake_up(&sb->s_writers.wait_unfrozen);
1711 deactivate_locked_super(sb);
1712 return ret;
1713 }
1714 }
1715 /*
1716 * For debugging purposes so that fs can warn if it sees write activity
1717 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1718 */
1719 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1720 lockdep_sb_freeze_release(sb);
1721 up_write(&sb->s_umount);
1722 return 0;
1723 }
1724 EXPORT_SYMBOL(freeze_super);
1725
thaw_super_locked(struct super_block * sb)1726 static int thaw_super_locked(struct super_block *sb)
1727 {
1728 int error;
1729
1730 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1731 up_write(&sb->s_umount);
1732 return -EINVAL;
1733 }
1734
1735 if (sb_rdonly(sb)) {
1736 sb->s_writers.frozen = SB_UNFROZEN;
1737 goto out;
1738 }
1739
1740 lockdep_sb_freeze_acquire(sb);
1741
1742 if (sb->s_op->unfreeze_fs) {
1743 error = sb->s_op->unfreeze_fs(sb);
1744 if (error) {
1745 printk(KERN_ERR
1746 "VFS:Filesystem thaw failed\n");
1747 lockdep_sb_freeze_release(sb);
1748 up_write(&sb->s_umount);
1749 return error;
1750 }
1751 }
1752
1753 sb->s_writers.frozen = SB_UNFROZEN;
1754 sb_freeze_unlock(sb);
1755 out:
1756 wake_up(&sb->s_writers.wait_unfrozen);
1757 deactivate_locked_super(sb);
1758 return 0;
1759 }
1760
1761 /**
1762 * thaw_super -- unlock filesystem
1763 * @sb: the super to thaw
1764 *
1765 * Unlocks the filesystem and marks it writeable again after freeze_super().
1766 */
thaw_super(struct super_block * sb)1767 int thaw_super(struct super_block *sb)
1768 {
1769 down_write(&sb->s_umount);
1770 return thaw_super_locked(sb);
1771 }
1772 EXPORT_SYMBOL(thaw_super);
1773