1 /******************************************************************************
2  * timer.c
3  *
4  * Copyright (c) 2002-2003 Rolf Neugebauer
5  * Copyright (c) 2002-2005 K A Fraser
6  */
7 
8 #include <xen/init.h>
9 #include <xen/types.h>
10 #include <xen/errno.h>
11 #include <xen/sched.h>
12 #include <xen/lib.h>
13 #include <xen/param.h>
14 #include <xen/smp.h>
15 #include <xen/perfc.h>
16 #include <xen/time.h>
17 #include <xen/softirq.h>
18 #include <xen/timer.h>
19 #include <xen/keyhandler.h>
20 #include <xen/percpu.h>
21 #include <xen/cpu.h>
22 #include <xen/rcupdate.h>
23 #include <xen/symbols.h>
24 #include <asm/system.h>
25 #include <asm/desc.h>
26 #include <asm/atomic.h>
27 
28 /* We program the time hardware this far behind the closest deadline. */
29 static unsigned int timer_slop __read_mostly = 50000; /* 50 us */
30 integer_param("timer_slop", timer_slop);
31 
32 struct timers {
33     spinlock_t     lock;
34     struct timer **heap;
35     struct timer  *list;
36     struct timer  *running;
37     struct list_head inactive;
38 } __cacheline_aligned;
39 
40 static DEFINE_PER_CPU(struct timers, timers);
41 
42 /* Protects lock-free access to per-timer cpu field against cpu offlining. */
43 static DEFINE_RCU_READ_LOCK(timer_cpu_read_lock);
44 
45 DEFINE_PER_CPU(s_time_t, timer_deadline);
46 
47 /****************************************************************************
48  * HEAP OPERATIONS.
49  *
50  * Slot 0 of the heap is never a valid timer pointer, and instead holds the
51  * heap metadata.
52  */
53 
54 struct heap_metadata {
55     uint16_t size, limit;
56 };
57 
heap_metadata(struct timer ** heap)58 static struct heap_metadata *heap_metadata(struct timer **heap)
59 {
60     /* Check that our type-punning doesn't overflow into heap[1] */
61     BUILD_BUG_ON(sizeof(struct heap_metadata) > sizeof(struct timer *));
62 
63     return (struct heap_metadata *)&heap[0];
64 }
65 
66 /* Sink down element @pos of @heap. */
down_heap(struct timer ** heap,unsigned int pos)67 static void down_heap(struct timer **heap, unsigned int pos)
68 {
69     unsigned int sz = heap_metadata(heap)->size, nxt;
70     struct timer *t = heap[pos];
71 
72     while ( (nxt = (pos << 1)) <= sz )
73     {
74         if ( ((nxt+1) <= sz) && (heap[nxt+1]->expires < heap[nxt]->expires) )
75             nxt++;
76         if ( heap[nxt]->expires > t->expires )
77             break;
78         heap[pos] = heap[nxt];
79         heap[pos]->heap_offset = pos;
80         pos = nxt;
81     }
82 
83     heap[pos] = t;
84     t->heap_offset = pos;
85 }
86 
87 /* Float element @pos up @heap. */
up_heap(struct timer ** heap,unsigned int pos)88 static void up_heap(struct timer **heap, unsigned int pos)
89 {
90     struct timer *t = heap[pos];
91 
92     while ( (pos > 1) && (t->expires < heap[pos>>1]->expires) )
93     {
94         heap[pos] = heap[pos>>1];
95         heap[pos]->heap_offset = pos;
96         pos >>= 1;
97     }
98 
99     heap[pos] = t;
100     t->heap_offset = pos;
101 }
102 
103 
104 /* Delete @t from @heap. Return TRUE if new top of heap. */
remove_from_heap(struct timer ** heap,struct timer * t)105 static int remove_from_heap(struct timer **heap, struct timer *t)
106 {
107     unsigned int sz = heap_metadata(heap)->size;
108     unsigned int pos = t->heap_offset;
109 
110     if ( unlikely(pos == sz) )
111     {
112         heap_metadata(heap)->size = sz - 1;
113         goto out;
114     }
115 
116     heap[pos] = heap[sz];
117     heap[pos]->heap_offset = pos;
118 
119     heap_metadata(heap)->size = --sz;
120 
121     if ( (pos > 1) && (heap[pos]->expires < heap[pos>>1]->expires) )
122         up_heap(heap, pos);
123     else
124         down_heap(heap, pos);
125 
126  out:
127     return (pos == 1);
128 }
129 
130 
131 /* Add new entry @t to @heap. Return TRUE if new top of heap. */
add_to_heap(struct timer ** heap,struct timer * t)132 static int add_to_heap(struct timer **heap, struct timer *t)
133 {
134     unsigned int sz = heap_metadata(heap)->size;
135 
136     /* Fail if the heap is full. */
137     if ( unlikely(sz == heap_metadata(heap)->limit) )
138         return 0;
139 
140     heap_metadata(heap)->size = ++sz;
141     heap[sz] = t;
142     t->heap_offset = sz;
143     up_heap(heap, sz);
144 
145     return (t->heap_offset == 1);
146 }
147 
148 
149 /****************************************************************************
150  * LINKED LIST OPERATIONS.
151  */
152 
remove_from_list(struct timer ** pprev,struct timer * t)153 static int remove_from_list(struct timer **pprev, struct timer *t)
154 {
155     struct timer *curr, **_pprev = pprev;
156 
157     while ( (curr = *_pprev) != t )
158         _pprev = &curr->list_next;
159 
160     *_pprev = t->list_next;
161 
162     return (_pprev == pprev);
163 }
164 
add_to_list(struct timer ** pprev,struct timer * t)165 static int add_to_list(struct timer **pprev, struct timer *t)
166 {
167     struct timer *curr, **_pprev = pprev;
168 
169     while ( ((curr = *_pprev) != NULL) && (curr->expires <= t->expires) )
170         _pprev = &curr->list_next;
171 
172     t->list_next = curr;
173     *_pprev = t;
174 
175     return (_pprev == pprev);
176 }
177 
178 
179 /****************************************************************************
180  * TIMER OPERATIONS.
181  */
182 
remove_entry(struct timer * t)183 static int remove_entry(struct timer *t)
184 {
185     struct timers *timers = &per_cpu(timers, t->cpu);
186     int rc;
187 
188     switch ( t->status )
189     {
190     case TIMER_STATUS_in_heap:
191         rc = remove_from_heap(timers->heap, t);
192         break;
193     case TIMER_STATUS_in_list:
194         rc = remove_from_list(&timers->list, t);
195         break;
196     default:
197         rc = 0;
198         BUG();
199     }
200 
201     t->status = TIMER_STATUS_invalid;
202     return rc;
203 }
204 
add_entry(struct timer * t)205 static int add_entry(struct timer *t)
206 {
207     struct timers *timers = &per_cpu(timers, t->cpu);
208     int rc;
209 
210     ASSERT(t->status == TIMER_STATUS_invalid);
211 
212     /* Try to add to heap. t->heap_offset indicates whether we succeed. */
213     t->heap_offset = 0;
214     t->status = TIMER_STATUS_in_heap;
215     rc = add_to_heap(timers->heap, t);
216     if ( t->heap_offset != 0 )
217         return rc;
218 
219     /* Fall back to adding to the slower linked list. */
220     t->status = TIMER_STATUS_in_list;
221     return add_to_list(&timers->list, t);
222 }
223 
activate_timer(struct timer * timer)224 static inline void activate_timer(struct timer *timer)
225 {
226     ASSERT(timer->status == TIMER_STATUS_inactive);
227     timer->status = TIMER_STATUS_invalid;
228     list_del(&timer->inactive);
229 
230     if ( add_entry(timer) )
231         cpu_raise_softirq(timer->cpu, TIMER_SOFTIRQ);
232 }
233 
deactivate_timer(struct timer * timer)234 static inline void deactivate_timer(struct timer *timer)
235 {
236     if ( remove_entry(timer) )
237         cpu_raise_softirq(timer->cpu, TIMER_SOFTIRQ);
238 
239     timer->status = TIMER_STATUS_inactive;
240     list_add(&timer->inactive, &per_cpu(timers, timer->cpu).inactive);
241 }
242 
timer_lock(struct timer * timer)243 static inline bool_t timer_lock(struct timer *timer)
244 {
245     unsigned int cpu;
246 
247     rcu_read_lock(&timer_cpu_read_lock);
248 
249     for ( ; ; )
250     {
251         cpu = read_atomic(&timer->cpu);
252         if ( unlikely(cpu == TIMER_CPU_status_killed) )
253         {
254             rcu_read_unlock(&timer_cpu_read_lock);
255             return 0;
256         }
257         spin_lock(&per_cpu(timers, cpu).lock);
258         if ( likely(timer->cpu == cpu) )
259             break;
260         spin_unlock(&per_cpu(timers, cpu).lock);
261     }
262 
263     rcu_read_unlock(&timer_cpu_read_lock);
264     return 1;
265 }
266 
267 #define timer_lock_irqsave(t, flags) ({         \
268     bool_t __x;                                 \
269     local_irq_save(flags);                      \
270     if ( !(__x = timer_lock(t)) )               \
271         local_irq_restore(flags);               \
272     __x;                                        \
273 })
274 
timer_unlock(struct timer * timer)275 static inline void timer_unlock(struct timer *timer)
276 {
277     spin_unlock(&per_cpu(timers, timer->cpu).lock);
278 }
279 
280 #define timer_unlock_irqrestore(t, flags) ({    \
281     timer_unlock(t);                            \
282     local_irq_restore(flags);                   \
283 })
284 
285 
active_timer(const struct timer * timer)286 static bool active_timer(const struct timer *timer)
287 {
288     ASSERT(timer->status >= TIMER_STATUS_inactive);
289     return timer_is_active(timer);
290 }
291 
292 
init_timer(struct timer * timer,void (* function)(void *),void * data,unsigned int cpu)293 void init_timer(
294     struct timer *timer,
295     void        (*function)(void *),
296     void         *data,
297     unsigned int  cpu)
298 {
299     unsigned long flags;
300     memset(timer, 0, sizeof(*timer));
301     timer->function = function;
302     timer->data = data;
303     write_atomic(&timer->cpu, cpu);
304     timer->status = TIMER_STATUS_inactive;
305     if ( !timer_lock_irqsave(timer, flags) )
306         BUG();
307     list_add(&timer->inactive, &per_cpu(timers, cpu).inactive);
308     timer_unlock_irqrestore(timer, flags);
309 }
310 
311 
set_timer(struct timer * timer,s_time_t expires)312 void set_timer(struct timer *timer, s_time_t expires)
313 {
314     unsigned long flags;
315 
316     if ( !timer_lock_irqsave(timer, flags) )
317         return;
318 
319     if ( active_timer(timer) )
320         deactivate_timer(timer);
321 
322     timer->expires = expires;
323 
324     activate_timer(timer);
325 
326     timer_unlock_irqrestore(timer, flags);
327 }
328 
329 
stop_timer(struct timer * timer)330 void stop_timer(struct timer *timer)
331 {
332     unsigned long flags;
333 
334     if ( !timer_lock_irqsave(timer, flags) )
335         return;
336 
337     if ( active_timer(timer) )
338         deactivate_timer(timer);
339 
340     timer_unlock_irqrestore(timer, flags);
341 }
342 
timer_expires_before(struct timer * timer,s_time_t t)343 bool timer_expires_before(struct timer *timer, s_time_t t)
344 {
345     unsigned long flags;
346     bool ret;
347 
348     if ( !timer_lock_irqsave(timer, flags) )
349         return false;
350 
351     ret = active_timer(timer) && timer->expires <= t;
352 
353     timer_unlock_irqrestore(timer, flags);
354 
355     return ret;
356 }
357 
migrate_timer(struct timer * timer,unsigned int new_cpu)358 void migrate_timer(struct timer *timer, unsigned int new_cpu)
359 {
360     unsigned int old_cpu;
361     bool_t active;
362     unsigned long flags;
363 
364     rcu_read_lock(&timer_cpu_read_lock);
365 
366     for ( ; ; )
367     {
368         old_cpu = read_atomic(&timer->cpu);
369         if ( (old_cpu == new_cpu) || (old_cpu == TIMER_CPU_status_killed) )
370         {
371             rcu_read_unlock(&timer_cpu_read_lock);
372             return;
373         }
374 
375         if ( old_cpu < new_cpu )
376         {
377             spin_lock_irqsave(&per_cpu(timers, old_cpu).lock, flags);
378             spin_lock(&per_cpu(timers, new_cpu).lock);
379         }
380         else
381         {
382             spin_lock_irqsave(&per_cpu(timers, new_cpu).lock, flags);
383             spin_lock(&per_cpu(timers, old_cpu).lock);
384         }
385 
386         if ( likely(timer->cpu == old_cpu) )
387              break;
388 
389         spin_unlock(&per_cpu(timers, old_cpu).lock);
390         spin_unlock_irqrestore(&per_cpu(timers, new_cpu).lock, flags);
391     }
392 
393     rcu_read_unlock(&timer_cpu_read_lock);
394 
395     active = active_timer(timer);
396     if ( active )
397         deactivate_timer(timer);
398 
399     list_del(&timer->inactive);
400     write_atomic(&timer->cpu, new_cpu);
401     list_add(&timer->inactive, &per_cpu(timers, new_cpu).inactive);
402 
403     if ( active )
404         activate_timer(timer);
405 
406     spin_unlock(&per_cpu(timers, old_cpu).lock);
407     spin_unlock_irqrestore(&per_cpu(timers, new_cpu).lock, flags);
408 }
409 
410 
kill_timer(struct timer * timer)411 void kill_timer(struct timer *timer)
412 {
413     unsigned int old_cpu, cpu;
414     unsigned long flags;
415 
416     BUG_ON(this_cpu(timers).running == timer);
417 
418     if ( !timer_lock_irqsave(timer, flags) )
419         return;
420 
421     if ( active_timer(timer) )
422         deactivate_timer(timer);
423 
424     list_del(&timer->inactive);
425     timer->status = TIMER_STATUS_killed;
426     old_cpu = timer->cpu;
427     write_atomic(&timer->cpu, TIMER_CPU_status_killed);
428 
429     spin_unlock_irqrestore(&per_cpu(timers, old_cpu).lock, flags);
430 
431     for_each_online_cpu ( cpu )
432         while ( per_cpu(timers, cpu).running == timer )
433             cpu_relax();
434 }
435 
436 
execute_timer(struct timers * ts,struct timer * t)437 static void execute_timer(struct timers *ts, struct timer *t)
438 {
439     void (*fn)(void *) = t->function;
440     void *data = t->data;
441 
442     t->status = TIMER_STATUS_inactive;
443     list_add(&t->inactive, &ts->inactive);
444 
445     ts->running = t;
446     spin_unlock_irq(&ts->lock);
447     (*fn)(data);
448     spin_lock_irq(&ts->lock);
449     ts->running = NULL;
450 }
451 
452 
timer_softirq_action(void)453 static void timer_softirq_action(void)
454 {
455     struct timer  *t, **heap, *next;
456     struct timers *ts;
457     s_time_t       now, deadline;
458 
459     ts = &this_cpu(timers);
460     heap = ts->heap;
461 
462     /* If we overflowed the heap, try to allocate a larger heap. */
463     if ( unlikely(ts->list != NULL) )
464     {
465         /* old_limit == (2^n)-1; new_limit == (2^(n+4))-1 */
466         unsigned int old_limit = heap_metadata(heap)->limit;
467         unsigned int new_limit = ((old_limit + 1) << 4) - 1;
468         struct timer **newheap = NULL;
469 
470         /* Don't grow the heap beyond what is representable in its metadata. */
471         if ( new_limit == (typeof(heap_metadata(heap)->limit))new_limit &&
472              new_limit + 1 )
473             newheap = xmalloc_array(struct timer *, new_limit + 1);
474         else
475             printk_once(XENLOG_WARNING "CPU%u: timer heap limit reached\n",
476                         smp_processor_id());
477         if ( newheap != NULL )
478         {
479             spin_lock_irq(&ts->lock);
480             memcpy(newheap, heap, (old_limit + 1) * sizeof(*heap));
481             heap_metadata(newheap)->limit = new_limit;
482             ts->heap = newheap;
483             spin_unlock_irq(&ts->lock);
484             if ( old_limit != 0 )
485                 xfree(heap);
486             heap = newheap;
487         }
488     }
489 
490     spin_lock_irq(&ts->lock);
491 
492     now = NOW();
493 
494     /* Execute ready heap timers. */
495     while ( (heap_metadata(heap)->size != 0) &&
496             ((t = heap[1])->expires < now) )
497     {
498         remove_from_heap(heap, t);
499         execute_timer(ts, t);
500     }
501 
502     /* Execute ready list timers. */
503     while ( ((t = ts->list) != NULL) && (t->expires < now) )
504     {
505         ts->list = t->list_next;
506         execute_timer(ts, t);
507     }
508 
509     /* Try to move timers from linked list to more efficient heap. */
510     next = ts->list;
511     ts->list = NULL;
512     while ( unlikely((t = next) != NULL) )
513     {
514         next = t->list_next;
515         t->status = TIMER_STATUS_invalid;
516         add_entry(t);
517     }
518 
519     /* Find earliest deadline from head of linked list and top of heap. */
520     deadline = STIME_MAX;
521     if ( heap_metadata(heap)->size != 0 )
522         deadline = heap[1]->expires;
523     if ( (ts->list != NULL) && (ts->list->expires < deadline) )
524         deadline = ts->list->expires;
525     now = NOW();
526     this_cpu(timer_deadline) =
527         (deadline == STIME_MAX) ? 0 : MAX(deadline, now + timer_slop);
528 
529     if ( !reprogram_timer(this_cpu(timer_deadline)) )
530         raise_softirq(TIMER_SOFTIRQ);
531 
532     spin_unlock_irq(&ts->lock);
533 }
534 
align_timer(s_time_t firsttick,uint64_t period)535 s_time_t align_timer(s_time_t firsttick, uint64_t period)
536 {
537     if ( !period )
538         return firsttick;
539 
540     return firsttick + (period - 1) - ((firsttick - 1) % period);
541 }
542 
dump_timer(struct timer * t,s_time_t now)543 static void dump_timer(struct timer *t, s_time_t now)
544 {
545     printk("  ex=%12"PRId64"us timer=%p cb=%ps(%p)\n",
546            (t->expires - now) / 1000, t, t->function, t->data);
547 }
548 
dump_timerq(unsigned char key)549 static void dump_timerq(unsigned char key)
550 {
551     struct timer  *t;
552     struct timers *ts;
553     unsigned long  flags;
554     s_time_t       now = NOW();
555     unsigned int   i, j;
556 
557     printk("Dumping timer queues:\n");
558 
559     for_each_online_cpu( i )
560     {
561         ts = &per_cpu(timers, i);
562 
563         printk("CPU%02d:\n", i);
564         spin_lock_irqsave(&ts->lock, flags);
565         for ( j = 1; j <= heap_metadata(ts->heap)->size; j++ )
566             dump_timer(ts->heap[j], now);
567         for ( t = ts->list; t != NULL; t = t->list_next )
568             dump_timer(t, now);
569         spin_unlock_irqrestore(&ts->lock, flags);
570     }
571 }
572 
migrate_timers_from_cpu(unsigned int old_cpu)573 static void migrate_timers_from_cpu(unsigned int old_cpu)
574 {
575     unsigned int new_cpu = cpumask_any(&cpu_online_map);
576     struct timers *old_ts, *new_ts;
577     struct timer *t;
578     bool_t notify = 0;
579 
580     ASSERT(!cpu_online(old_cpu) && cpu_online(new_cpu));
581 
582     old_ts = &per_cpu(timers, old_cpu);
583     new_ts = &per_cpu(timers, new_cpu);
584 
585     if ( old_cpu < new_cpu )
586     {
587         spin_lock_irq(&old_ts->lock);
588         spin_lock(&new_ts->lock);
589     }
590     else
591     {
592         spin_lock_irq(&new_ts->lock);
593         spin_lock(&old_ts->lock);
594     }
595 
596     while ( (t = heap_metadata(old_ts->heap)->size
597              ? old_ts->heap[1] : old_ts->list) != NULL )
598     {
599         remove_entry(t);
600         write_atomic(&t->cpu, new_cpu);
601         notify |= add_entry(t);
602     }
603 
604     while ( !list_empty(&old_ts->inactive) )
605     {
606         t = list_entry(old_ts->inactive.next, struct timer, inactive);
607         list_del(&t->inactive);
608         write_atomic(&t->cpu, new_cpu);
609         list_add(&t->inactive, &new_ts->inactive);
610     }
611 
612     spin_unlock(&old_ts->lock);
613     spin_unlock_irq(&new_ts->lock);
614 
615     if ( notify )
616         cpu_raise_softirq(new_cpu, TIMER_SOFTIRQ);
617 }
618 
619 /*
620  * All CPUs initially share an empty dummy heap. Only those CPUs that
621  * are brought online will be dynamically allocated their own heap.
622  * The size/limit metadata are both 0 by being in .bss
623  */
624 static struct timer *dummy_heap[1];
625 
free_percpu_timers(unsigned int cpu)626 static void free_percpu_timers(unsigned int cpu)
627 {
628     struct timers *ts = &per_cpu(timers, cpu);
629 
630     ASSERT(heap_metadata(ts->heap)->size == 0);
631     if ( heap_metadata(ts->heap)->limit )
632     {
633         xfree(ts->heap);
634         ts->heap = dummy_heap;
635     }
636     else
637         ASSERT(ts->heap == dummy_heap);
638 }
639 
cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)640 static int cpu_callback(
641     struct notifier_block *nfb, unsigned long action, void *hcpu)
642 {
643     unsigned int cpu = (unsigned long)hcpu;
644     struct timers *ts = &per_cpu(timers, cpu);
645 
646     switch ( action )
647     {
648     case CPU_UP_PREPARE:
649         /* Only initialise ts once. */
650         if ( !ts->heap )
651         {
652             INIT_LIST_HEAD(&ts->inactive);
653             spin_lock_init(&ts->lock);
654             ts->heap = dummy_heap;
655         }
656         break;
657 
658     case CPU_UP_CANCELED:
659     case CPU_DEAD:
660     case CPU_RESUME_FAILED:
661         migrate_timers_from_cpu(cpu);
662 
663         if ( !park_offline_cpus && system_state != SYS_STATE_suspend )
664             free_percpu_timers(cpu);
665         break;
666 
667     case CPU_REMOVE:
668         if ( park_offline_cpus )
669             free_percpu_timers(cpu);
670         break;
671 
672     default:
673         break;
674     }
675 
676     return NOTIFY_DONE;
677 }
678 
679 static struct notifier_block cpu_nfb = {
680     .notifier_call = cpu_callback,
681     .priority = 99
682 };
683 
timer_init(void)684 void __init timer_init(void)
685 {
686     void *cpu = (void *)(long)smp_processor_id();
687 
688     open_softirq(TIMER_SOFTIRQ, timer_softirq_action);
689 
690     cpu_callback(&cpu_nfb, CPU_UP_PREPARE, cpu);
691     register_cpu_notifier(&cpu_nfb);
692 
693     register_keyhandler('a', dump_timerq, "dump timer queues", 1);
694 }
695 
696 /*
697  * Local variables:
698  * mode: C
699  * c-file-style: "BSD"
700  * c-basic-offset: 4
701  * tab-width: 4
702  * indent-tabs-mode: nil
703  * End:
704  */
705