1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/guest.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11 #include <linux/bits.h>
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/nospec.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/stddef.h>
18 #include <linux/string.h>
19 #include <linux/vmalloc.h>
20 #include <linux/fs.h>
21 #include <kvm/arm_psci.h>
22 #include <asm/cputype.h>
23 #include <linux/uaccess.h>
24 #include <asm/fpsimd.h>
25 #include <asm/kvm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/sigcontext.h>
28
29 #include "trace.h"
30
31 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
32 KVM_GENERIC_VM_STATS()
33 };
34
35 const struct kvm_stats_header kvm_vm_stats_header = {
36 .name_size = KVM_STATS_NAME_SIZE,
37 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
38 .id_offset = sizeof(struct kvm_stats_header),
39 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
40 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
41 sizeof(kvm_vm_stats_desc),
42 };
43
44 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
45 KVM_GENERIC_VCPU_STATS(),
46 STATS_DESC_COUNTER(VCPU, hvc_exit_stat),
47 STATS_DESC_COUNTER(VCPU, wfe_exit_stat),
48 STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
49 STATS_DESC_COUNTER(VCPU, mmio_exit_user),
50 STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
51 STATS_DESC_COUNTER(VCPU, signal_exits),
52 STATS_DESC_COUNTER(VCPU, exits)
53 };
54
55 const struct kvm_stats_header kvm_vcpu_stats_header = {
56 .name_size = KVM_STATS_NAME_SIZE,
57 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
58 .id_offset = sizeof(struct kvm_stats_header),
59 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
60 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
61 sizeof(kvm_vcpu_stats_desc),
62 };
63
core_reg_offset_is_vreg(u64 off)64 static bool core_reg_offset_is_vreg(u64 off)
65 {
66 return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
67 off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
68 }
69
core_reg_offset_from_id(u64 id)70 static u64 core_reg_offset_from_id(u64 id)
71 {
72 return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
73 }
74
core_reg_size_from_offset(const struct kvm_vcpu * vcpu,u64 off)75 static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
76 {
77 int size;
78
79 switch (off) {
80 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
81 KVM_REG_ARM_CORE_REG(regs.regs[30]):
82 case KVM_REG_ARM_CORE_REG(regs.sp):
83 case KVM_REG_ARM_CORE_REG(regs.pc):
84 case KVM_REG_ARM_CORE_REG(regs.pstate):
85 case KVM_REG_ARM_CORE_REG(sp_el1):
86 case KVM_REG_ARM_CORE_REG(elr_el1):
87 case KVM_REG_ARM_CORE_REG(spsr[0]) ...
88 KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
89 size = sizeof(__u64);
90 break;
91
92 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
93 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
94 size = sizeof(__uint128_t);
95 break;
96
97 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
98 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
99 size = sizeof(__u32);
100 break;
101
102 default:
103 return -EINVAL;
104 }
105
106 if (!IS_ALIGNED(off, size / sizeof(__u32)))
107 return -EINVAL;
108
109 /*
110 * The KVM_REG_ARM64_SVE regs must be used instead of
111 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
112 * SVE-enabled vcpus:
113 */
114 if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
115 return -EINVAL;
116
117 return size;
118 }
119
core_reg_addr(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)120 static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
121 {
122 u64 off = core_reg_offset_from_id(reg->id);
123 int size = core_reg_size_from_offset(vcpu, off);
124
125 if (size < 0)
126 return NULL;
127
128 if (KVM_REG_SIZE(reg->id) != size)
129 return NULL;
130
131 switch (off) {
132 case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
133 KVM_REG_ARM_CORE_REG(regs.regs[30]):
134 off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
135 off /= 2;
136 return &vcpu->arch.ctxt.regs.regs[off];
137
138 case KVM_REG_ARM_CORE_REG(regs.sp):
139 return &vcpu->arch.ctxt.regs.sp;
140
141 case KVM_REG_ARM_CORE_REG(regs.pc):
142 return &vcpu->arch.ctxt.regs.pc;
143
144 case KVM_REG_ARM_CORE_REG(regs.pstate):
145 return &vcpu->arch.ctxt.regs.pstate;
146
147 case KVM_REG_ARM_CORE_REG(sp_el1):
148 return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
149
150 case KVM_REG_ARM_CORE_REG(elr_el1):
151 return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
152
153 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
154 return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
155
156 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
157 return &vcpu->arch.ctxt.spsr_abt;
158
159 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
160 return &vcpu->arch.ctxt.spsr_und;
161
162 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
163 return &vcpu->arch.ctxt.spsr_irq;
164
165 case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
166 return &vcpu->arch.ctxt.spsr_fiq;
167
168 case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
169 KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
170 off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
171 off /= 4;
172 return &vcpu->arch.ctxt.fp_regs.vregs[off];
173
174 case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
175 return &vcpu->arch.ctxt.fp_regs.fpsr;
176
177 case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
178 return &vcpu->arch.ctxt.fp_regs.fpcr;
179
180 default:
181 return NULL;
182 }
183 }
184
get_core_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)185 static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
186 {
187 /*
188 * Because the kvm_regs structure is a mix of 32, 64 and
189 * 128bit fields, we index it as if it was a 32bit
190 * array. Hence below, nr_regs is the number of entries, and
191 * off the index in the "array".
192 */
193 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
194 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
195 void *addr;
196 u32 off;
197
198 /* Our ID is an index into the kvm_regs struct. */
199 off = core_reg_offset_from_id(reg->id);
200 if (off >= nr_regs ||
201 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
202 return -ENOENT;
203
204 addr = core_reg_addr(vcpu, reg);
205 if (!addr)
206 return -EINVAL;
207
208 if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
209 return -EFAULT;
210
211 return 0;
212 }
213
set_core_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)214 static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
215 {
216 __u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
217 int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
218 __uint128_t tmp;
219 void *valp = &tmp, *addr;
220 u64 off;
221 int err = 0;
222
223 /* Our ID is an index into the kvm_regs struct. */
224 off = core_reg_offset_from_id(reg->id);
225 if (off >= nr_regs ||
226 (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
227 return -ENOENT;
228
229 addr = core_reg_addr(vcpu, reg);
230 if (!addr)
231 return -EINVAL;
232
233 if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
234 return -EINVAL;
235
236 if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
237 err = -EFAULT;
238 goto out;
239 }
240
241 if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
242 u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
243 switch (mode) {
244 case PSR_AA32_MODE_USR:
245 if (!system_supports_32bit_el0())
246 return -EINVAL;
247 break;
248 case PSR_AA32_MODE_FIQ:
249 case PSR_AA32_MODE_IRQ:
250 case PSR_AA32_MODE_SVC:
251 case PSR_AA32_MODE_ABT:
252 case PSR_AA32_MODE_UND:
253 if (!vcpu_el1_is_32bit(vcpu))
254 return -EINVAL;
255 break;
256 case PSR_MODE_EL0t:
257 case PSR_MODE_EL1t:
258 case PSR_MODE_EL1h:
259 if (vcpu_el1_is_32bit(vcpu))
260 return -EINVAL;
261 break;
262 default:
263 err = -EINVAL;
264 goto out;
265 }
266 }
267
268 memcpy(addr, valp, KVM_REG_SIZE(reg->id));
269
270 if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
271 int i, nr_reg;
272
273 switch (*vcpu_cpsr(vcpu)) {
274 /*
275 * Either we are dealing with user mode, and only the
276 * first 15 registers (+ PC) must be narrowed to 32bit.
277 * AArch32 r0-r14 conveniently map to AArch64 x0-x14.
278 */
279 case PSR_AA32_MODE_USR:
280 case PSR_AA32_MODE_SYS:
281 nr_reg = 15;
282 break;
283
284 /*
285 * Otherwide, this is a priviledged mode, and *all* the
286 * registers must be narrowed to 32bit.
287 */
288 default:
289 nr_reg = 31;
290 break;
291 }
292
293 for (i = 0; i < nr_reg; i++)
294 vcpu_set_reg(vcpu, i, (u32)vcpu_get_reg(vcpu, i));
295
296 *vcpu_pc(vcpu) = (u32)*vcpu_pc(vcpu);
297 }
298 out:
299 return err;
300 }
301
302 #define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
303 #define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
304 #define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
305
get_sve_vls(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)306 static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
307 {
308 unsigned int max_vq, vq;
309 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
310
311 if (!vcpu_has_sve(vcpu))
312 return -ENOENT;
313
314 if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
315 return -EINVAL;
316
317 memset(vqs, 0, sizeof(vqs));
318
319 max_vq = vcpu_sve_max_vq(vcpu);
320 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
321 if (sve_vq_available(vq))
322 vqs[vq_word(vq)] |= vq_mask(vq);
323
324 if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
325 return -EFAULT;
326
327 return 0;
328 }
329
set_sve_vls(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)330 static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
331 {
332 unsigned int max_vq, vq;
333 u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
334
335 if (!vcpu_has_sve(vcpu))
336 return -ENOENT;
337
338 if (kvm_arm_vcpu_sve_finalized(vcpu))
339 return -EPERM; /* too late! */
340
341 if (WARN_ON(vcpu->arch.sve_state))
342 return -EINVAL;
343
344 if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
345 return -EFAULT;
346
347 max_vq = 0;
348 for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
349 if (vq_present(vqs, vq))
350 max_vq = vq;
351
352 if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
353 return -EINVAL;
354
355 /*
356 * Vector lengths supported by the host can't currently be
357 * hidden from the guest individually: instead we can only set a
358 * maximum via ZCR_EL2.LEN. So, make sure the available vector
359 * lengths match the set requested exactly up to the requested
360 * maximum:
361 */
362 for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
363 if (vq_present(vqs, vq) != sve_vq_available(vq))
364 return -EINVAL;
365
366 /* Can't run with no vector lengths at all: */
367 if (max_vq < SVE_VQ_MIN)
368 return -EINVAL;
369
370 /* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
371 vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
372
373 return 0;
374 }
375
376 #define SVE_REG_SLICE_SHIFT 0
377 #define SVE_REG_SLICE_BITS 5
378 #define SVE_REG_ID_SHIFT (SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
379 #define SVE_REG_ID_BITS 5
380
381 #define SVE_REG_SLICE_MASK \
382 GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1, \
383 SVE_REG_SLICE_SHIFT)
384 #define SVE_REG_ID_MASK \
385 GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
386
387 #define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
388
389 #define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
390 #define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
391
392 /*
393 * Number of register slices required to cover each whole SVE register.
394 * NOTE: Only the first slice every exists, for now.
395 * If you are tempted to modify this, you must also rework sve_reg_to_region()
396 * to match:
397 */
398 #define vcpu_sve_slices(vcpu) 1
399
400 /* Bounds of a single SVE register slice within vcpu->arch.sve_state */
401 struct sve_state_reg_region {
402 unsigned int koffset; /* offset into sve_state in kernel memory */
403 unsigned int klen; /* length in kernel memory */
404 unsigned int upad; /* extra trailing padding in user memory */
405 };
406
407 /*
408 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
409 * register copy
410 */
sve_reg_to_region(struct sve_state_reg_region * region,struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)411 static int sve_reg_to_region(struct sve_state_reg_region *region,
412 struct kvm_vcpu *vcpu,
413 const struct kvm_one_reg *reg)
414 {
415 /* reg ID ranges for Z- registers */
416 const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
417 const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
418 SVE_NUM_SLICES - 1);
419
420 /* reg ID ranges for P- registers and FFR (which are contiguous) */
421 const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
422 const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
423
424 unsigned int vq;
425 unsigned int reg_num;
426
427 unsigned int reqoffset, reqlen; /* User-requested offset and length */
428 unsigned int maxlen; /* Maximum permitted length */
429
430 size_t sve_state_size;
431
432 const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
433 SVE_NUM_SLICES - 1);
434
435 /* Verify that the P-regs and FFR really do have contiguous IDs: */
436 BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
437
438 /* Verify that we match the UAPI header: */
439 BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
440
441 reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
442
443 if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
444 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
445 return -ENOENT;
446
447 vq = vcpu_sve_max_vq(vcpu);
448
449 reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
450 SVE_SIG_REGS_OFFSET;
451 reqlen = KVM_SVE_ZREG_SIZE;
452 maxlen = SVE_SIG_ZREG_SIZE(vq);
453 } else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
454 if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
455 return -ENOENT;
456
457 vq = vcpu_sve_max_vq(vcpu);
458
459 reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
460 SVE_SIG_REGS_OFFSET;
461 reqlen = KVM_SVE_PREG_SIZE;
462 maxlen = SVE_SIG_PREG_SIZE(vq);
463 } else {
464 return -EINVAL;
465 }
466
467 sve_state_size = vcpu_sve_state_size(vcpu);
468 if (WARN_ON(!sve_state_size))
469 return -EINVAL;
470
471 region->koffset = array_index_nospec(reqoffset, sve_state_size);
472 region->klen = min(maxlen, reqlen);
473 region->upad = reqlen - region->klen;
474
475 return 0;
476 }
477
get_sve_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)478 static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
479 {
480 int ret;
481 struct sve_state_reg_region region;
482 char __user *uptr = (char __user *)reg->addr;
483
484 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
485 if (reg->id == KVM_REG_ARM64_SVE_VLS)
486 return get_sve_vls(vcpu, reg);
487
488 /* Try to interpret reg ID as an architectural SVE register... */
489 ret = sve_reg_to_region(®ion, vcpu, reg);
490 if (ret)
491 return ret;
492
493 if (!kvm_arm_vcpu_sve_finalized(vcpu))
494 return -EPERM;
495
496 if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
497 region.klen) ||
498 clear_user(uptr + region.klen, region.upad))
499 return -EFAULT;
500
501 return 0;
502 }
503
set_sve_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)504 static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
505 {
506 int ret;
507 struct sve_state_reg_region region;
508 const char __user *uptr = (const char __user *)reg->addr;
509
510 /* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
511 if (reg->id == KVM_REG_ARM64_SVE_VLS)
512 return set_sve_vls(vcpu, reg);
513
514 /* Try to interpret reg ID as an architectural SVE register... */
515 ret = sve_reg_to_region(®ion, vcpu, reg);
516 if (ret)
517 return ret;
518
519 if (!kvm_arm_vcpu_sve_finalized(vcpu))
520 return -EPERM;
521
522 if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
523 region.klen))
524 return -EFAULT;
525
526 return 0;
527 }
528
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)529 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
530 {
531 return -EINVAL;
532 }
533
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)534 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
535 {
536 return -EINVAL;
537 }
538
copy_core_reg_indices(const struct kvm_vcpu * vcpu,u64 __user * uindices)539 static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
540 u64 __user *uindices)
541 {
542 unsigned int i;
543 int n = 0;
544
545 for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
546 u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
547 int size = core_reg_size_from_offset(vcpu, i);
548
549 if (size < 0)
550 continue;
551
552 switch (size) {
553 case sizeof(__u32):
554 reg |= KVM_REG_SIZE_U32;
555 break;
556
557 case sizeof(__u64):
558 reg |= KVM_REG_SIZE_U64;
559 break;
560
561 case sizeof(__uint128_t):
562 reg |= KVM_REG_SIZE_U128;
563 break;
564
565 default:
566 WARN_ON(1);
567 continue;
568 }
569
570 if (uindices) {
571 if (put_user(reg, uindices))
572 return -EFAULT;
573 uindices++;
574 }
575
576 n++;
577 }
578
579 return n;
580 }
581
num_core_regs(const struct kvm_vcpu * vcpu)582 static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
583 {
584 return copy_core_reg_indices(vcpu, NULL);
585 }
586
587 /**
588 * ARM64 versions of the TIMER registers, always available on arm64
589 */
590
591 #define NUM_TIMER_REGS 3
592
is_timer_reg(u64 index)593 static bool is_timer_reg(u64 index)
594 {
595 switch (index) {
596 case KVM_REG_ARM_TIMER_CTL:
597 case KVM_REG_ARM_TIMER_CNT:
598 case KVM_REG_ARM_TIMER_CVAL:
599 return true;
600 }
601 return false;
602 }
603
copy_timer_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)604 static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
605 {
606 if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
607 return -EFAULT;
608 uindices++;
609 if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
610 return -EFAULT;
611 uindices++;
612 if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
613 return -EFAULT;
614
615 return 0;
616 }
617
set_timer_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)618 static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
619 {
620 void __user *uaddr = (void __user *)(long)reg->addr;
621 u64 val;
622 int ret;
623
624 ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
625 if (ret != 0)
626 return -EFAULT;
627
628 return kvm_arm_timer_set_reg(vcpu, reg->id, val);
629 }
630
get_timer_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)631 static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
632 {
633 void __user *uaddr = (void __user *)(long)reg->addr;
634 u64 val;
635
636 val = kvm_arm_timer_get_reg(vcpu, reg->id);
637 return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
638 }
639
num_sve_regs(const struct kvm_vcpu * vcpu)640 static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
641 {
642 const unsigned int slices = vcpu_sve_slices(vcpu);
643
644 if (!vcpu_has_sve(vcpu))
645 return 0;
646
647 /* Policed by KVM_GET_REG_LIST: */
648 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
649
650 return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
651 + 1; /* KVM_REG_ARM64_SVE_VLS */
652 }
653
copy_sve_reg_indices(const struct kvm_vcpu * vcpu,u64 __user * uindices)654 static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
655 u64 __user *uindices)
656 {
657 const unsigned int slices = vcpu_sve_slices(vcpu);
658 u64 reg;
659 unsigned int i, n;
660 int num_regs = 0;
661
662 if (!vcpu_has_sve(vcpu))
663 return 0;
664
665 /* Policed by KVM_GET_REG_LIST: */
666 WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
667
668 /*
669 * Enumerate this first, so that userspace can save/restore in
670 * the order reported by KVM_GET_REG_LIST:
671 */
672 reg = KVM_REG_ARM64_SVE_VLS;
673 if (put_user(reg, uindices++))
674 return -EFAULT;
675 ++num_regs;
676
677 for (i = 0; i < slices; i++) {
678 for (n = 0; n < SVE_NUM_ZREGS; n++) {
679 reg = KVM_REG_ARM64_SVE_ZREG(n, i);
680 if (put_user(reg, uindices++))
681 return -EFAULT;
682 num_regs++;
683 }
684
685 for (n = 0; n < SVE_NUM_PREGS; n++) {
686 reg = KVM_REG_ARM64_SVE_PREG(n, i);
687 if (put_user(reg, uindices++))
688 return -EFAULT;
689 num_regs++;
690 }
691
692 reg = KVM_REG_ARM64_SVE_FFR(i);
693 if (put_user(reg, uindices++))
694 return -EFAULT;
695 num_regs++;
696 }
697
698 return num_regs;
699 }
700
701 /**
702 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
703 *
704 * This is for all registers.
705 */
kvm_arm_num_regs(struct kvm_vcpu * vcpu)706 unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
707 {
708 unsigned long res = 0;
709
710 res += num_core_regs(vcpu);
711 res += num_sve_regs(vcpu);
712 res += kvm_arm_num_sys_reg_descs(vcpu);
713 res += kvm_arm_get_fw_num_regs(vcpu);
714 res += NUM_TIMER_REGS;
715
716 return res;
717 }
718
719 /**
720 * kvm_arm_copy_reg_indices - get indices of all registers.
721 *
722 * We do core registers right here, then we append system regs.
723 */
kvm_arm_copy_reg_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)724 int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
725 {
726 int ret;
727
728 ret = copy_core_reg_indices(vcpu, uindices);
729 if (ret < 0)
730 return ret;
731 uindices += ret;
732
733 ret = copy_sve_reg_indices(vcpu, uindices);
734 if (ret < 0)
735 return ret;
736 uindices += ret;
737
738 ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
739 if (ret < 0)
740 return ret;
741 uindices += kvm_arm_get_fw_num_regs(vcpu);
742
743 ret = copy_timer_indices(vcpu, uindices);
744 if (ret < 0)
745 return ret;
746 uindices += NUM_TIMER_REGS;
747
748 return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
749 }
750
kvm_arm_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)751 int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
752 {
753 /* We currently use nothing arch-specific in upper 32 bits */
754 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
755 return -EINVAL;
756
757 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
758 case KVM_REG_ARM_CORE: return get_core_reg(vcpu, reg);
759 case KVM_REG_ARM_FW: return kvm_arm_get_fw_reg(vcpu, reg);
760 case KVM_REG_ARM64_SVE: return get_sve_reg(vcpu, reg);
761 }
762
763 if (is_timer_reg(reg->id))
764 return get_timer_reg(vcpu, reg);
765
766 return kvm_arm_sys_reg_get_reg(vcpu, reg);
767 }
768
kvm_arm_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)769 int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
770 {
771 /* We currently use nothing arch-specific in upper 32 bits */
772 if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
773 return -EINVAL;
774
775 switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
776 case KVM_REG_ARM_CORE: return set_core_reg(vcpu, reg);
777 case KVM_REG_ARM_FW: return kvm_arm_set_fw_reg(vcpu, reg);
778 case KVM_REG_ARM64_SVE: return set_sve_reg(vcpu, reg);
779 }
780
781 if (is_timer_reg(reg->id))
782 return set_timer_reg(vcpu, reg);
783
784 return kvm_arm_sys_reg_set_reg(vcpu, reg);
785 }
786
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)787 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
788 struct kvm_sregs *sregs)
789 {
790 return -EINVAL;
791 }
792
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)793 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
794 struct kvm_sregs *sregs)
795 {
796 return -EINVAL;
797 }
798
__kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)799 int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
800 struct kvm_vcpu_events *events)
801 {
802 events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
803 events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
804
805 if (events->exception.serror_pending && events->exception.serror_has_esr)
806 events->exception.serror_esr = vcpu_get_vsesr(vcpu);
807
808 /*
809 * We never return a pending ext_dabt here because we deliver it to
810 * the virtual CPU directly when setting the event and it's no longer
811 * 'pending' at this point.
812 */
813
814 return 0;
815 }
816
__kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)817 int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
818 struct kvm_vcpu_events *events)
819 {
820 bool serror_pending = events->exception.serror_pending;
821 bool has_esr = events->exception.serror_has_esr;
822 bool ext_dabt_pending = events->exception.ext_dabt_pending;
823
824 if (serror_pending && has_esr) {
825 if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
826 return -EINVAL;
827
828 if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
829 kvm_set_sei_esr(vcpu, events->exception.serror_esr);
830 else
831 return -EINVAL;
832 } else if (serror_pending) {
833 kvm_inject_vabt(vcpu);
834 }
835
836 if (ext_dabt_pending)
837 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
838
839 return 0;
840 }
841
kvm_target_cpu(void)842 u32 __attribute_const__ kvm_target_cpu(void)
843 {
844 unsigned long implementor = read_cpuid_implementor();
845 unsigned long part_number = read_cpuid_part_number();
846
847 switch (implementor) {
848 case ARM_CPU_IMP_ARM:
849 switch (part_number) {
850 case ARM_CPU_PART_AEM_V8:
851 return KVM_ARM_TARGET_AEM_V8;
852 case ARM_CPU_PART_FOUNDATION:
853 return KVM_ARM_TARGET_FOUNDATION_V8;
854 case ARM_CPU_PART_CORTEX_A53:
855 return KVM_ARM_TARGET_CORTEX_A53;
856 case ARM_CPU_PART_CORTEX_A57:
857 return KVM_ARM_TARGET_CORTEX_A57;
858 }
859 break;
860 case ARM_CPU_IMP_APM:
861 switch (part_number) {
862 case APM_CPU_PART_POTENZA:
863 return KVM_ARM_TARGET_XGENE_POTENZA;
864 }
865 break;
866 }
867
868 /* Return a default generic target */
869 return KVM_ARM_TARGET_GENERIC_V8;
870 }
871
kvm_vcpu_preferred_target(struct kvm_vcpu_init * init)872 void kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
873 {
874 u32 target = kvm_target_cpu();
875
876 memset(init, 0, sizeof(*init));
877
878 /*
879 * For now, we don't return any features.
880 * In future, we might use features to return target
881 * specific features available for the preferred
882 * target type.
883 */
884 init->target = (__u32)target;
885 }
886
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)887 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
888 {
889 return -EINVAL;
890 }
891
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)892 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
893 {
894 return -EINVAL;
895 }
896
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)897 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
898 struct kvm_translation *tr)
899 {
900 return -EINVAL;
901 }
902
903 /**
904 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
905 * @kvm: pointer to the KVM struct
906 * @kvm_guest_debug: the ioctl data buffer
907 *
908 * This sets up and enables the VM for guest debugging. Userspace
909 * passes in a control flag to enable different debug types and
910 * potentially other architecture specific information in the rest of
911 * the structure.
912 */
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)913 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
914 struct kvm_guest_debug *dbg)
915 {
916 int ret = 0;
917
918 trace_kvm_set_guest_debug(vcpu, dbg->control);
919
920 if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
921 ret = -EINVAL;
922 goto out;
923 }
924
925 if (dbg->control & KVM_GUESTDBG_ENABLE) {
926 vcpu->guest_debug = dbg->control;
927
928 /* Hardware assisted Break and Watch points */
929 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
930 vcpu->arch.external_debug_state = dbg->arch;
931 }
932
933 } else {
934 /* If not enabled clear all flags */
935 vcpu->guest_debug = 0;
936 }
937
938 out:
939 return ret;
940 }
941
kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)942 int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
943 struct kvm_device_attr *attr)
944 {
945 int ret;
946
947 switch (attr->group) {
948 case KVM_ARM_VCPU_PMU_V3_CTRL:
949 ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
950 break;
951 case KVM_ARM_VCPU_TIMER_CTRL:
952 ret = kvm_arm_timer_set_attr(vcpu, attr);
953 break;
954 case KVM_ARM_VCPU_PVTIME_CTRL:
955 ret = kvm_arm_pvtime_set_attr(vcpu, attr);
956 break;
957 default:
958 ret = -ENXIO;
959 break;
960 }
961
962 return ret;
963 }
964
kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)965 int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
966 struct kvm_device_attr *attr)
967 {
968 int ret;
969
970 switch (attr->group) {
971 case KVM_ARM_VCPU_PMU_V3_CTRL:
972 ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
973 break;
974 case KVM_ARM_VCPU_TIMER_CTRL:
975 ret = kvm_arm_timer_get_attr(vcpu, attr);
976 break;
977 case KVM_ARM_VCPU_PVTIME_CTRL:
978 ret = kvm_arm_pvtime_get_attr(vcpu, attr);
979 break;
980 default:
981 ret = -ENXIO;
982 break;
983 }
984
985 return ret;
986 }
987
kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)988 int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
989 struct kvm_device_attr *attr)
990 {
991 int ret;
992
993 switch (attr->group) {
994 case KVM_ARM_VCPU_PMU_V3_CTRL:
995 ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
996 break;
997 case KVM_ARM_VCPU_TIMER_CTRL:
998 ret = kvm_arm_timer_has_attr(vcpu, attr);
999 break;
1000 case KVM_ARM_VCPU_PVTIME_CTRL:
1001 ret = kvm_arm_pvtime_has_attr(vcpu, attr);
1002 break;
1003 default:
1004 ret = -ENXIO;
1005 break;
1006 }
1007
1008 return ret;
1009 }
1010
kvm_vm_ioctl_mte_copy_tags(struct kvm * kvm,struct kvm_arm_copy_mte_tags * copy_tags)1011 long kvm_vm_ioctl_mte_copy_tags(struct kvm *kvm,
1012 struct kvm_arm_copy_mte_tags *copy_tags)
1013 {
1014 gpa_t guest_ipa = copy_tags->guest_ipa;
1015 size_t length = copy_tags->length;
1016 void __user *tags = copy_tags->addr;
1017 gpa_t gfn;
1018 bool write = !(copy_tags->flags & KVM_ARM_TAGS_FROM_GUEST);
1019 int ret = 0;
1020
1021 if (!kvm_has_mte(kvm))
1022 return -EINVAL;
1023
1024 if (copy_tags->reserved[0] || copy_tags->reserved[1])
1025 return -EINVAL;
1026
1027 if (copy_tags->flags & ~KVM_ARM_TAGS_FROM_GUEST)
1028 return -EINVAL;
1029
1030 if (length & ~PAGE_MASK || guest_ipa & ~PAGE_MASK)
1031 return -EINVAL;
1032
1033 gfn = gpa_to_gfn(guest_ipa);
1034
1035 mutex_lock(&kvm->slots_lock);
1036
1037 while (length > 0) {
1038 kvm_pfn_t pfn = gfn_to_pfn_prot(kvm, gfn, write, NULL);
1039 void *maddr;
1040 unsigned long num_tags;
1041 struct page *page;
1042
1043 if (is_error_noslot_pfn(pfn)) {
1044 ret = -EFAULT;
1045 goto out;
1046 }
1047
1048 page = pfn_to_online_page(pfn);
1049 if (!page) {
1050 /* Reject ZONE_DEVICE memory */
1051 ret = -EFAULT;
1052 goto out;
1053 }
1054 maddr = page_address(page);
1055
1056 if (!write) {
1057 if (test_bit(PG_mte_tagged, &page->flags))
1058 num_tags = mte_copy_tags_to_user(tags, maddr,
1059 MTE_GRANULES_PER_PAGE);
1060 else
1061 /* No tags in memory, so write zeros */
1062 num_tags = MTE_GRANULES_PER_PAGE -
1063 clear_user(tags, MTE_GRANULES_PER_PAGE);
1064 kvm_release_pfn_clean(pfn);
1065 } else {
1066 num_tags = mte_copy_tags_from_user(maddr, tags,
1067 MTE_GRANULES_PER_PAGE);
1068
1069 /*
1070 * Set the flag after checking the write
1071 * completed fully
1072 */
1073 if (num_tags == MTE_GRANULES_PER_PAGE)
1074 set_bit(PG_mte_tagged, &page->flags);
1075
1076 kvm_release_pfn_dirty(pfn);
1077 }
1078
1079 if (num_tags != MTE_GRANULES_PER_PAGE) {
1080 ret = -EFAULT;
1081 goto out;
1082 }
1083
1084 gfn++;
1085 tags += num_tags;
1086 length -= PAGE_SIZE;
1087 }
1088
1089 out:
1090 mutex_unlock(&kvm->slots_lock);
1091 /* If some data has been copied report the number of bytes copied */
1092 if (length != copy_tags->length)
1093 return copy_tags->length - length;
1094 return ret;
1095 }
1096