1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kmemleak.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_irqfd.h>
22 #include <linux/irqbypass.h>
23 #include <linux/sched/stat.h>
24 #include <linux/psci.h>
25 #include <trace/events/kvm.h>
26
27 #define CREATE_TRACE_POINTS
28 #include "trace_arm.h"
29
30 #include <linux/uaccess.h>
31 #include <asm/ptrace.h>
32 #include <asm/mman.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpufeature.h>
36 #include <asm/virt.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/sections.h>
42
43 #include <kvm/arm_hypercalls.h>
44 #include <kvm/arm_pmu.h>
45 #include <kvm/arm_psci.h>
46
47 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
48 DEFINE_STATIC_KEY_FALSE(kvm_protected_mode_initialized);
49
50 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
54 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
55
56 /* The VMID used in the VTTBR */
57 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
58 static u32 kvm_next_vmid;
59 static DEFINE_SPINLOCK(kvm_vmid_lock);
60
61 static bool vgic_present;
62
63 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
64 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
65
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
69 }
70
kvm_arch_hardware_setup(void * opaque)71 int kvm_arch_hardware_setup(void *opaque)
72 {
73 return 0;
74 }
75
kvm_arch_check_processor_compat(void * opaque)76 int kvm_arch_check_processor_compat(void *opaque)
77 {
78 return 0;
79 }
80
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)81 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
82 struct kvm_enable_cap *cap)
83 {
84 int r;
85
86 if (cap->flags)
87 return -EINVAL;
88
89 switch (cap->cap) {
90 case KVM_CAP_ARM_NISV_TO_USER:
91 r = 0;
92 kvm->arch.return_nisv_io_abort_to_user = true;
93 break;
94 case KVM_CAP_ARM_MTE:
95 mutex_lock(&kvm->lock);
96 if (!system_supports_mte() || kvm->created_vcpus) {
97 r = -EINVAL;
98 } else {
99 r = 0;
100 kvm->arch.mte_enabled = true;
101 }
102 mutex_unlock(&kvm->lock);
103 break;
104 default:
105 r = -EINVAL;
106 break;
107 }
108
109 return r;
110 }
111
kvm_arm_default_max_vcpus(void)112 static int kvm_arm_default_max_vcpus(void)
113 {
114 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
115 }
116
set_default_spectre(struct kvm * kvm)117 static void set_default_spectre(struct kvm *kvm)
118 {
119 /*
120 * The default is to expose CSV2 == 1 if the HW isn't affected.
121 * Although this is a per-CPU feature, we make it global because
122 * asymmetric systems are just a nuisance.
123 *
124 * Userspace can override this as long as it doesn't promise
125 * the impossible.
126 */
127 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
128 kvm->arch.pfr0_csv2 = 1;
129 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED)
130 kvm->arch.pfr0_csv3 = 1;
131 }
132
133 /**
134 * kvm_arch_init_vm - initializes a VM data structure
135 * @kvm: pointer to the KVM struct
136 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)137 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
138 {
139 int ret;
140
141 ret = kvm_arm_setup_stage2(kvm, type);
142 if (ret)
143 return ret;
144
145 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
146 if (ret)
147 return ret;
148
149 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150 if (ret)
151 goto out_free_stage2_pgd;
152
153 kvm_vgic_early_init(kvm);
154
155 /* The maximum number of VCPUs is limited by the host's GIC model */
156 kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
157
158 set_default_spectre(kvm);
159
160 return ret;
161 out_free_stage2_pgd:
162 kvm_free_stage2_pgd(&kvm->arch.mmu);
163 return ret;
164 }
165
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)166 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168 return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173 * kvm_arch_destroy_vm - destroy the VM data structure
174 * @kvm: pointer to the KVM struct
175 */
kvm_arch_destroy_vm(struct kvm * kvm)176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178 int i;
179
180 bitmap_free(kvm->arch.pmu_filter);
181
182 kvm_vgic_destroy(kvm);
183
184 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
185 if (kvm->vcpus[i]) {
186 kvm_vcpu_destroy(kvm->vcpus[i]);
187 kvm->vcpus[i] = NULL;
188 }
189 }
190 atomic_set(&kvm->online_vcpus, 0);
191 }
192
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
194 {
195 int r;
196 switch (ext) {
197 case KVM_CAP_IRQCHIP:
198 r = vgic_present;
199 break;
200 case KVM_CAP_IOEVENTFD:
201 case KVM_CAP_DEVICE_CTRL:
202 case KVM_CAP_USER_MEMORY:
203 case KVM_CAP_SYNC_MMU:
204 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205 case KVM_CAP_ONE_REG:
206 case KVM_CAP_ARM_PSCI:
207 case KVM_CAP_ARM_PSCI_0_2:
208 case KVM_CAP_READONLY_MEM:
209 case KVM_CAP_MP_STATE:
210 case KVM_CAP_IMMEDIATE_EXIT:
211 case KVM_CAP_VCPU_EVENTS:
212 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
213 case KVM_CAP_ARM_NISV_TO_USER:
214 case KVM_CAP_ARM_INJECT_EXT_DABT:
215 case KVM_CAP_SET_GUEST_DEBUG:
216 case KVM_CAP_VCPU_ATTRIBUTES:
217 case KVM_CAP_PTP_KVM:
218 r = 1;
219 break;
220 case KVM_CAP_SET_GUEST_DEBUG2:
221 return KVM_GUESTDBG_VALID_MASK;
222 case KVM_CAP_ARM_SET_DEVICE_ADDR:
223 r = 1;
224 break;
225 case KVM_CAP_NR_VCPUS:
226 /*
227 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
228 * architectures, as it does not always bound it to
229 * KVM_CAP_MAX_VCPUS. It should not matter much because
230 * this is just an advisory value.
231 */
232 r = min_t(unsigned int, num_online_cpus(),
233 kvm_arm_default_max_vcpus());
234 break;
235 case KVM_CAP_MAX_VCPUS:
236 case KVM_CAP_MAX_VCPU_ID:
237 if (kvm)
238 r = kvm->arch.max_vcpus;
239 else
240 r = kvm_arm_default_max_vcpus();
241 break;
242 case KVM_CAP_MSI_DEVID:
243 if (!kvm)
244 r = -EINVAL;
245 else
246 r = kvm->arch.vgic.msis_require_devid;
247 break;
248 case KVM_CAP_ARM_USER_IRQ:
249 /*
250 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
251 * (bump this number if adding more devices)
252 */
253 r = 1;
254 break;
255 case KVM_CAP_ARM_MTE:
256 r = system_supports_mte();
257 break;
258 case KVM_CAP_STEAL_TIME:
259 r = kvm_arm_pvtime_supported();
260 break;
261 case KVM_CAP_ARM_EL1_32BIT:
262 r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
263 break;
264 case KVM_CAP_GUEST_DEBUG_HW_BPS:
265 r = get_num_brps();
266 break;
267 case KVM_CAP_GUEST_DEBUG_HW_WPS:
268 r = get_num_wrps();
269 break;
270 case KVM_CAP_ARM_PMU_V3:
271 r = kvm_arm_support_pmu_v3();
272 break;
273 case KVM_CAP_ARM_INJECT_SERROR_ESR:
274 r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
275 break;
276 case KVM_CAP_ARM_VM_IPA_SIZE:
277 r = get_kvm_ipa_limit();
278 break;
279 case KVM_CAP_ARM_SVE:
280 r = system_supports_sve();
281 break;
282 case KVM_CAP_ARM_PTRAUTH_ADDRESS:
283 case KVM_CAP_ARM_PTRAUTH_GENERIC:
284 r = system_has_full_ptr_auth();
285 break;
286 default:
287 r = 0;
288 }
289
290 return r;
291 }
292
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)293 long kvm_arch_dev_ioctl(struct file *filp,
294 unsigned int ioctl, unsigned long arg)
295 {
296 return -EINVAL;
297 }
298
kvm_arch_alloc_vm(void)299 struct kvm *kvm_arch_alloc_vm(void)
300 {
301 size_t sz = sizeof(struct kvm);
302
303 if (!has_vhe())
304 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
305
306 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
307 }
308
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)309 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
310 {
311 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
312 return -EBUSY;
313
314 if (id >= kvm->arch.max_vcpus)
315 return -EINVAL;
316
317 return 0;
318 }
319
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)320 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
321 {
322 int err;
323
324 /* Force users to call KVM_ARM_VCPU_INIT */
325 vcpu->arch.target = -1;
326 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
327
328 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
329
330 /* Set up the timer */
331 kvm_timer_vcpu_init(vcpu);
332
333 kvm_pmu_vcpu_init(vcpu);
334
335 kvm_arm_reset_debug_ptr(vcpu);
336
337 kvm_arm_pvtime_vcpu_init(&vcpu->arch);
338
339 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
340
341 err = kvm_vgic_vcpu_init(vcpu);
342 if (err)
343 return err;
344
345 return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
346 }
347
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)348 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
349 {
350 }
351
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)352 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
353 {
354 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
355 static_branch_dec(&userspace_irqchip_in_use);
356
357 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
358 kvm_timer_vcpu_terminate(vcpu);
359 kvm_pmu_vcpu_destroy(vcpu);
360
361 kvm_arm_vcpu_destroy(vcpu);
362 }
363
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)364 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
365 {
366 return kvm_timer_is_pending(vcpu);
367 }
368
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)369 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
370 {
371 /*
372 * If we're about to block (most likely because we've just hit a
373 * WFI), we need to sync back the state of the GIC CPU interface
374 * so that we have the latest PMR and group enables. This ensures
375 * that kvm_arch_vcpu_runnable has up-to-date data to decide
376 * whether we have pending interrupts.
377 *
378 * For the same reason, we want to tell GICv4 that we need
379 * doorbells to be signalled, should an interrupt become pending.
380 */
381 preempt_disable();
382 kvm_vgic_vmcr_sync(vcpu);
383 vgic_v4_put(vcpu, true);
384 preempt_enable();
385 }
386
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)387 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
388 {
389 preempt_disable();
390 vgic_v4_load(vcpu);
391 preempt_enable();
392 }
393
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)394 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
395 {
396 struct kvm_s2_mmu *mmu;
397 int *last_ran;
398
399 mmu = vcpu->arch.hw_mmu;
400 last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
401
402 /*
403 * We guarantee that both TLBs and I-cache are private to each
404 * vcpu. If detecting that a vcpu from the same VM has
405 * previously run on the same physical CPU, call into the
406 * hypervisor code to nuke the relevant contexts.
407 *
408 * We might get preempted before the vCPU actually runs, but
409 * over-invalidation doesn't affect correctness.
410 */
411 if (*last_ran != vcpu->vcpu_id) {
412 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
413 *last_ran = vcpu->vcpu_id;
414 }
415
416 vcpu->cpu = cpu;
417
418 kvm_vgic_load(vcpu);
419 kvm_timer_vcpu_load(vcpu);
420 if (has_vhe())
421 kvm_vcpu_load_sysregs_vhe(vcpu);
422 kvm_arch_vcpu_load_fp(vcpu);
423 kvm_vcpu_pmu_restore_guest(vcpu);
424 if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
425 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
426
427 if (single_task_running())
428 vcpu_clear_wfx_traps(vcpu);
429 else
430 vcpu_set_wfx_traps(vcpu);
431
432 if (vcpu_has_ptrauth(vcpu))
433 vcpu_ptrauth_disable(vcpu);
434 kvm_arch_vcpu_load_debug_state_flags(vcpu);
435 }
436
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)437 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
438 {
439 kvm_arch_vcpu_put_debug_state_flags(vcpu);
440 kvm_arch_vcpu_put_fp(vcpu);
441 if (has_vhe())
442 kvm_vcpu_put_sysregs_vhe(vcpu);
443 kvm_timer_vcpu_put(vcpu);
444 kvm_vgic_put(vcpu);
445 kvm_vcpu_pmu_restore_host(vcpu);
446
447 vcpu->cpu = -1;
448 }
449
vcpu_power_off(struct kvm_vcpu * vcpu)450 static void vcpu_power_off(struct kvm_vcpu *vcpu)
451 {
452 vcpu->arch.power_off = true;
453 kvm_make_request(KVM_REQ_SLEEP, vcpu);
454 kvm_vcpu_kick(vcpu);
455 }
456
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)457 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
458 struct kvm_mp_state *mp_state)
459 {
460 if (vcpu->arch.power_off)
461 mp_state->mp_state = KVM_MP_STATE_STOPPED;
462 else
463 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
464
465 return 0;
466 }
467
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)468 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
469 struct kvm_mp_state *mp_state)
470 {
471 int ret = 0;
472
473 switch (mp_state->mp_state) {
474 case KVM_MP_STATE_RUNNABLE:
475 vcpu->arch.power_off = false;
476 break;
477 case KVM_MP_STATE_STOPPED:
478 vcpu_power_off(vcpu);
479 break;
480 default:
481 ret = -EINVAL;
482 }
483
484 return ret;
485 }
486
487 /**
488 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
489 * @v: The VCPU pointer
490 *
491 * If the guest CPU is not waiting for interrupts or an interrupt line is
492 * asserted, the CPU is by definition runnable.
493 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)494 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
495 {
496 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
497 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
498 && !v->arch.power_off && !v->arch.pause);
499 }
500
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)501 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
502 {
503 return vcpu_mode_priv(vcpu);
504 }
505
506 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)507 static void exit_vm_noop(void *info)
508 {
509 }
510
force_vm_exit(const cpumask_t * mask)511 void force_vm_exit(const cpumask_t *mask)
512 {
513 preempt_disable();
514 smp_call_function_many(mask, exit_vm_noop, NULL, true);
515 preempt_enable();
516 }
517
518 /**
519 * need_new_vmid_gen - check that the VMID is still valid
520 * @vmid: The VMID to check
521 *
522 * return true if there is a new generation of VMIDs being used
523 *
524 * The hardware supports a limited set of values with the value zero reserved
525 * for the host, so we check if an assigned value belongs to a previous
526 * generation, which requires us to assign a new value. If we're the first to
527 * use a VMID for the new generation, we must flush necessary caches and TLBs
528 * on all CPUs.
529 */
need_new_vmid_gen(struct kvm_vmid * vmid)530 static bool need_new_vmid_gen(struct kvm_vmid *vmid)
531 {
532 u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
533 smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
534 return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
535 }
536
537 /**
538 * update_vmid - Update the vmid with a valid VMID for the current generation
539 * @vmid: The stage-2 VMID information struct
540 */
update_vmid(struct kvm_vmid * vmid)541 static void update_vmid(struct kvm_vmid *vmid)
542 {
543 if (!need_new_vmid_gen(vmid))
544 return;
545
546 spin_lock(&kvm_vmid_lock);
547
548 /*
549 * We need to re-check the vmid_gen here to ensure that if another vcpu
550 * already allocated a valid vmid for this vm, then this vcpu should
551 * use the same vmid.
552 */
553 if (!need_new_vmid_gen(vmid)) {
554 spin_unlock(&kvm_vmid_lock);
555 return;
556 }
557
558 /* First user of a new VMID generation? */
559 if (unlikely(kvm_next_vmid == 0)) {
560 atomic64_inc(&kvm_vmid_gen);
561 kvm_next_vmid = 1;
562
563 /*
564 * On SMP we know no other CPUs can use this CPU's or each
565 * other's VMID after force_vm_exit returns since the
566 * kvm_vmid_lock blocks them from reentry to the guest.
567 */
568 force_vm_exit(cpu_all_mask);
569 /*
570 * Now broadcast TLB + ICACHE invalidation over the inner
571 * shareable domain to make sure all data structures are
572 * clean.
573 */
574 kvm_call_hyp(__kvm_flush_vm_context);
575 }
576
577 WRITE_ONCE(vmid->vmid, kvm_next_vmid);
578 kvm_next_vmid++;
579 kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
580
581 smp_wmb();
582 WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
583
584 spin_unlock(&kvm_vmid_lock);
585 }
586
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)587 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
588 {
589 struct kvm *kvm = vcpu->kvm;
590 int ret = 0;
591
592 if (likely(vcpu->arch.has_run_once))
593 return 0;
594
595 if (!kvm_arm_vcpu_is_finalized(vcpu))
596 return -EPERM;
597
598 vcpu->arch.has_run_once = true;
599
600 kvm_arm_vcpu_init_debug(vcpu);
601
602 if (likely(irqchip_in_kernel(kvm))) {
603 /*
604 * Map the VGIC hardware resources before running a vcpu the
605 * first time on this VM.
606 */
607 ret = kvm_vgic_map_resources(kvm);
608 if (ret)
609 return ret;
610 } else {
611 /*
612 * Tell the rest of the code that there are userspace irqchip
613 * VMs in the wild.
614 */
615 static_branch_inc(&userspace_irqchip_in_use);
616 }
617
618 ret = kvm_timer_enable(vcpu);
619 if (ret)
620 return ret;
621
622 ret = kvm_arm_pmu_v3_enable(vcpu);
623
624 /*
625 * Initialize traps for protected VMs.
626 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
627 * the code is in place for first run initialization at EL2.
628 */
629 if (kvm_vm_is_protected(kvm))
630 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
631
632 return ret;
633 }
634
kvm_arch_intc_initialized(struct kvm * kvm)635 bool kvm_arch_intc_initialized(struct kvm *kvm)
636 {
637 return vgic_initialized(kvm);
638 }
639
kvm_arm_halt_guest(struct kvm * kvm)640 void kvm_arm_halt_guest(struct kvm *kvm)
641 {
642 int i;
643 struct kvm_vcpu *vcpu;
644
645 kvm_for_each_vcpu(i, vcpu, kvm)
646 vcpu->arch.pause = true;
647 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
648 }
649
kvm_arm_resume_guest(struct kvm * kvm)650 void kvm_arm_resume_guest(struct kvm *kvm)
651 {
652 int i;
653 struct kvm_vcpu *vcpu;
654
655 kvm_for_each_vcpu(i, vcpu, kvm) {
656 vcpu->arch.pause = false;
657 rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
658 }
659 }
660
vcpu_req_sleep(struct kvm_vcpu * vcpu)661 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
662 {
663 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
664
665 rcuwait_wait_event(wait,
666 (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
667 TASK_INTERRUPTIBLE);
668
669 if (vcpu->arch.power_off || vcpu->arch.pause) {
670 /* Awaken to handle a signal, request we sleep again later. */
671 kvm_make_request(KVM_REQ_SLEEP, vcpu);
672 }
673
674 /*
675 * Make sure we will observe a potential reset request if we've
676 * observed a change to the power state. Pairs with the smp_wmb() in
677 * kvm_psci_vcpu_on().
678 */
679 smp_rmb();
680 }
681
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)682 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
683 {
684 return vcpu->arch.target >= 0;
685 }
686
check_vcpu_requests(struct kvm_vcpu * vcpu)687 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
688 {
689 if (kvm_request_pending(vcpu)) {
690 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
691 vcpu_req_sleep(vcpu);
692
693 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
694 kvm_reset_vcpu(vcpu);
695
696 /*
697 * Clear IRQ_PENDING requests that were made to guarantee
698 * that a VCPU sees new virtual interrupts.
699 */
700 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
701
702 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
703 kvm_update_stolen_time(vcpu);
704
705 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
706 /* The distributor enable bits were changed */
707 preempt_disable();
708 vgic_v4_put(vcpu, false);
709 vgic_v4_load(vcpu);
710 preempt_enable();
711 }
712
713 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
714 kvm_pmu_handle_pmcr(vcpu,
715 __vcpu_sys_reg(vcpu, PMCR_EL0));
716 }
717 }
718
vcpu_mode_is_bad_32bit(struct kvm_vcpu * vcpu)719 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
720 {
721 if (likely(!vcpu_mode_is_32bit(vcpu)))
722 return false;
723
724 return !system_supports_32bit_el0() ||
725 static_branch_unlikely(&arm64_mismatched_32bit_el0);
726 }
727
728 /**
729 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
730 * @vcpu: The VCPU pointer
731 * @ret: Pointer to write optional return code
732 *
733 * Returns: true if the VCPU needs to return to a preemptible + interruptible
734 * and skip guest entry.
735 *
736 * This function disambiguates between two different types of exits: exits to a
737 * preemptible + interruptible kernel context and exits to userspace. For an
738 * exit to userspace, this function will write the return code to ret and return
739 * true. For an exit to preemptible + interruptible kernel context (i.e. check
740 * for pending work and re-enter), return true without writing to ret.
741 */
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu,int * ret)742 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
743 {
744 struct kvm_run *run = vcpu->run;
745
746 /*
747 * If we're using a userspace irqchip, then check if we need
748 * to tell a userspace irqchip about timer or PMU level
749 * changes and if so, exit to userspace (the actual level
750 * state gets updated in kvm_timer_update_run and
751 * kvm_pmu_update_run below).
752 */
753 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
754 if (kvm_timer_should_notify_user(vcpu) ||
755 kvm_pmu_should_notify_user(vcpu)) {
756 *ret = -EINTR;
757 run->exit_reason = KVM_EXIT_INTR;
758 return true;
759 }
760 }
761
762 return kvm_request_pending(vcpu) ||
763 need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
764 xfer_to_guest_mode_work_pending();
765 }
766
767 /**
768 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
769 * @vcpu: The VCPU pointer
770 *
771 * This function is called through the VCPU_RUN ioctl called from user space. It
772 * will execute VM code in a loop until the time slice for the process is used
773 * or some emulation is needed from user space in which case the function will
774 * return with return value 0 and with the kvm_run structure filled in with the
775 * required data for the requested emulation.
776 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)777 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
778 {
779 struct kvm_run *run = vcpu->run;
780 int ret;
781
782 if (unlikely(!kvm_vcpu_initialized(vcpu)))
783 return -ENOEXEC;
784
785 ret = kvm_vcpu_first_run_init(vcpu);
786 if (ret)
787 return ret;
788
789 if (run->exit_reason == KVM_EXIT_MMIO) {
790 ret = kvm_handle_mmio_return(vcpu);
791 if (ret)
792 return ret;
793 }
794
795 vcpu_load(vcpu);
796
797 if (run->immediate_exit) {
798 ret = -EINTR;
799 goto out;
800 }
801
802 kvm_sigset_activate(vcpu);
803
804 ret = 1;
805 run->exit_reason = KVM_EXIT_UNKNOWN;
806 while (ret > 0) {
807 /*
808 * Check conditions before entering the guest
809 */
810 ret = xfer_to_guest_mode_handle_work(vcpu);
811 if (!ret)
812 ret = 1;
813
814 update_vmid(&vcpu->arch.hw_mmu->vmid);
815
816 check_vcpu_requests(vcpu);
817
818 /*
819 * Preparing the interrupts to be injected also
820 * involves poking the GIC, which must be done in a
821 * non-preemptible context.
822 */
823 preempt_disable();
824
825 kvm_pmu_flush_hwstate(vcpu);
826
827 local_irq_disable();
828
829 kvm_vgic_flush_hwstate(vcpu);
830
831 /*
832 * Ensure we set mode to IN_GUEST_MODE after we disable
833 * interrupts and before the final VCPU requests check.
834 * See the comment in kvm_vcpu_exiting_guest_mode() and
835 * Documentation/virt/kvm/vcpu-requests.rst
836 */
837 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
838
839 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
840 vcpu->mode = OUTSIDE_GUEST_MODE;
841 isb(); /* Ensure work in x_flush_hwstate is committed */
842 kvm_pmu_sync_hwstate(vcpu);
843 if (static_branch_unlikely(&userspace_irqchip_in_use))
844 kvm_timer_sync_user(vcpu);
845 kvm_vgic_sync_hwstate(vcpu);
846 local_irq_enable();
847 preempt_enable();
848 continue;
849 }
850
851 kvm_arm_setup_debug(vcpu);
852
853 /**************************************************************
854 * Enter the guest
855 */
856 trace_kvm_entry(*vcpu_pc(vcpu));
857 guest_enter_irqoff();
858
859 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
860
861 vcpu->mode = OUTSIDE_GUEST_MODE;
862 vcpu->stat.exits++;
863 /*
864 * Back from guest
865 *************************************************************/
866
867 kvm_arm_clear_debug(vcpu);
868
869 /*
870 * We must sync the PMU state before the vgic state so
871 * that the vgic can properly sample the updated state of the
872 * interrupt line.
873 */
874 kvm_pmu_sync_hwstate(vcpu);
875
876 /*
877 * Sync the vgic state before syncing the timer state because
878 * the timer code needs to know if the virtual timer
879 * interrupts are active.
880 */
881 kvm_vgic_sync_hwstate(vcpu);
882
883 /*
884 * Sync the timer hardware state before enabling interrupts as
885 * we don't want vtimer interrupts to race with syncing the
886 * timer virtual interrupt state.
887 */
888 if (static_branch_unlikely(&userspace_irqchip_in_use))
889 kvm_timer_sync_user(vcpu);
890
891 kvm_arch_vcpu_ctxsync_fp(vcpu);
892
893 /*
894 * We may have taken a host interrupt in HYP mode (ie
895 * while executing the guest). This interrupt is still
896 * pending, as we haven't serviced it yet!
897 *
898 * We're now back in SVC mode, with interrupts
899 * disabled. Enabling the interrupts now will have
900 * the effect of taking the interrupt again, in SVC
901 * mode this time.
902 */
903 local_irq_enable();
904
905 /*
906 * We do local_irq_enable() before calling guest_exit() so
907 * that if a timer interrupt hits while running the guest we
908 * account that tick as being spent in the guest. We enable
909 * preemption after calling guest_exit() so that if we get
910 * preempted we make sure ticks after that is not counted as
911 * guest time.
912 */
913 guest_exit();
914 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
915
916 /* Exit types that need handling before we can be preempted */
917 handle_exit_early(vcpu, ret);
918
919 preempt_enable();
920
921 /*
922 * The ARMv8 architecture doesn't give the hypervisor
923 * a mechanism to prevent a guest from dropping to AArch32 EL0
924 * if implemented by the CPU. If we spot the guest in such
925 * state and that we decided it wasn't supposed to do so (like
926 * with the asymmetric AArch32 case), return to userspace with
927 * a fatal error.
928 */
929 if (vcpu_mode_is_bad_32bit(vcpu)) {
930 /*
931 * As we have caught the guest red-handed, decide that
932 * it isn't fit for purpose anymore by making the vcpu
933 * invalid. The VMM can try and fix it by issuing a
934 * KVM_ARM_VCPU_INIT if it really wants to.
935 */
936 vcpu->arch.target = -1;
937 ret = ARM_EXCEPTION_IL;
938 }
939
940 ret = handle_exit(vcpu, ret);
941 }
942
943 /* Tell userspace about in-kernel device output levels */
944 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
945 kvm_timer_update_run(vcpu);
946 kvm_pmu_update_run(vcpu);
947 }
948
949 kvm_sigset_deactivate(vcpu);
950
951 out:
952 /*
953 * In the unlikely event that we are returning to userspace
954 * with pending exceptions or PC adjustment, commit these
955 * adjustments in order to give userspace a consistent view of
956 * the vcpu state. Note that this relies on __kvm_adjust_pc()
957 * being preempt-safe on VHE.
958 */
959 if (unlikely(vcpu->arch.flags & (KVM_ARM64_PENDING_EXCEPTION |
960 KVM_ARM64_INCREMENT_PC)))
961 kvm_call_hyp(__kvm_adjust_pc, vcpu);
962
963 vcpu_put(vcpu);
964 return ret;
965 }
966
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)967 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
968 {
969 int bit_index;
970 bool set;
971 unsigned long *hcr;
972
973 if (number == KVM_ARM_IRQ_CPU_IRQ)
974 bit_index = __ffs(HCR_VI);
975 else /* KVM_ARM_IRQ_CPU_FIQ */
976 bit_index = __ffs(HCR_VF);
977
978 hcr = vcpu_hcr(vcpu);
979 if (level)
980 set = test_and_set_bit(bit_index, hcr);
981 else
982 set = test_and_clear_bit(bit_index, hcr);
983
984 /*
985 * If we didn't change anything, no need to wake up or kick other CPUs
986 */
987 if (set == level)
988 return 0;
989
990 /*
991 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
992 * trigger a world-switch round on the running physical CPU to set the
993 * virtual IRQ/FIQ fields in the HCR appropriately.
994 */
995 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
996 kvm_vcpu_kick(vcpu);
997
998 return 0;
999 }
1000
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)1001 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1002 bool line_status)
1003 {
1004 u32 irq = irq_level->irq;
1005 unsigned int irq_type, vcpu_idx, irq_num;
1006 int nrcpus = atomic_read(&kvm->online_vcpus);
1007 struct kvm_vcpu *vcpu = NULL;
1008 bool level = irq_level->level;
1009
1010 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1011 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1012 vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1013 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1014
1015 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
1016
1017 switch (irq_type) {
1018 case KVM_ARM_IRQ_TYPE_CPU:
1019 if (irqchip_in_kernel(kvm))
1020 return -ENXIO;
1021
1022 if (vcpu_idx >= nrcpus)
1023 return -EINVAL;
1024
1025 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1026 if (!vcpu)
1027 return -EINVAL;
1028
1029 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1030 return -EINVAL;
1031
1032 return vcpu_interrupt_line(vcpu, irq_num, level);
1033 case KVM_ARM_IRQ_TYPE_PPI:
1034 if (!irqchip_in_kernel(kvm))
1035 return -ENXIO;
1036
1037 if (vcpu_idx >= nrcpus)
1038 return -EINVAL;
1039
1040 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1041 if (!vcpu)
1042 return -EINVAL;
1043
1044 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1045 return -EINVAL;
1046
1047 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
1048 case KVM_ARM_IRQ_TYPE_SPI:
1049 if (!irqchip_in_kernel(kvm))
1050 return -ENXIO;
1051
1052 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1053 return -EINVAL;
1054
1055 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
1056 }
1057
1058 return -EINVAL;
1059 }
1060
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1061 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1062 const struct kvm_vcpu_init *init)
1063 {
1064 unsigned int i, ret;
1065 u32 phys_target = kvm_target_cpu();
1066
1067 if (init->target != phys_target)
1068 return -EINVAL;
1069
1070 /*
1071 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1072 * use the same target.
1073 */
1074 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
1075 return -EINVAL;
1076
1077 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
1078 for (i = 0; i < sizeof(init->features) * 8; i++) {
1079 bool set = (init->features[i / 32] & (1 << (i % 32)));
1080
1081 if (set && i >= KVM_VCPU_MAX_FEATURES)
1082 return -ENOENT;
1083
1084 /*
1085 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
1086 * use the same feature set.
1087 */
1088 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
1089 test_bit(i, vcpu->arch.features) != set)
1090 return -EINVAL;
1091
1092 if (set)
1093 set_bit(i, vcpu->arch.features);
1094 }
1095
1096 vcpu->arch.target = phys_target;
1097
1098 /* Now we know what it is, we can reset it. */
1099 ret = kvm_reset_vcpu(vcpu);
1100 if (ret) {
1101 vcpu->arch.target = -1;
1102 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1103 }
1104
1105 return ret;
1106 }
1107
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1108 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1109 struct kvm_vcpu_init *init)
1110 {
1111 int ret;
1112
1113 ret = kvm_vcpu_set_target(vcpu, init);
1114 if (ret)
1115 return ret;
1116
1117 /*
1118 * Ensure a rebooted VM will fault in RAM pages and detect if the
1119 * guest MMU is turned off and flush the caches as needed.
1120 *
1121 * S2FWB enforces all memory accesses to RAM being cacheable,
1122 * ensuring that the data side is always coherent. We still
1123 * need to invalidate the I-cache though, as FWB does *not*
1124 * imply CTR_EL0.DIC.
1125 */
1126 if (vcpu->arch.has_run_once) {
1127 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1128 stage2_unmap_vm(vcpu->kvm);
1129 else
1130 icache_inval_all_pou();
1131 }
1132
1133 vcpu_reset_hcr(vcpu);
1134 vcpu->arch.cptr_el2 = CPTR_EL2_DEFAULT;
1135
1136 /*
1137 * Handle the "start in power-off" case.
1138 */
1139 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1140 vcpu_power_off(vcpu);
1141 else
1142 vcpu->arch.power_off = false;
1143
1144 return 0;
1145 }
1146
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1147 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1148 struct kvm_device_attr *attr)
1149 {
1150 int ret = -ENXIO;
1151
1152 switch (attr->group) {
1153 default:
1154 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1155 break;
1156 }
1157
1158 return ret;
1159 }
1160
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1161 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1162 struct kvm_device_attr *attr)
1163 {
1164 int ret = -ENXIO;
1165
1166 switch (attr->group) {
1167 default:
1168 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1169 break;
1170 }
1171
1172 return ret;
1173 }
1174
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1175 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1176 struct kvm_device_attr *attr)
1177 {
1178 int ret = -ENXIO;
1179
1180 switch (attr->group) {
1181 default:
1182 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1183 break;
1184 }
1185
1186 return ret;
1187 }
1188
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1189 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1190 struct kvm_vcpu_events *events)
1191 {
1192 memset(events, 0, sizeof(*events));
1193
1194 return __kvm_arm_vcpu_get_events(vcpu, events);
1195 }
1196
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1197 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1198 struct kvm_vcpu_events *events)
1199 {
1200 int i;
1201
1202 /* check whether the reserved field is zero */
1203 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1204 if (events->reserved[i])
1205 return -EINVAL;
1206
1207 /* check whether the pad field is zero */
1208 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1209 if (events->exception.pad[i])
1210 return -EINVAL;
1211
1212 return __kvm_arm_vcpu_set_events(vcpu, events);
1213 }
1214
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1215 long kvm_arch_vcpu_ioctl(struct file *filp,
1216 unsigned int ioctl, unsigned long arg)
1217 {
1218 struct kvm_vcpu *vcpu = filp->private_data;
1219 void __user *argp = (void __user *)arg;
1220 struct kvm_device_attr attr;
1221 long r;
1222
1223 switch (ioctl) {
1224 case KVM_ARM_VCPU_INIT: {
1225 struct kvm_vcpu_init init;
1226
1227 r = -EFAULT;
1228 if (copy_from_user(&init, argp, sizeof(init)))
1229 break;
1230
1231 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1232 break;
1233 }
1234 case KVM_SET_ONE_REG:
1235 case KVM_GET_ONE_REG: {
1236 struct kvm_one_reg reg;
1237
1238 r = -ENOEXEC;
1239 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1240 break;
1241
1242 r = -EFAULT;
1243 if (copy_from_user(®, argp, sizeof(reg)))
1244 break;
1245
1246 /*
1247 * We could owe a reset due to PSCI. Handle the pending reset
1248 * here to ensure userspace register accesses are ordered after
1249 * the reset.
1250 */
1251 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1252 kvm_reset_vcpu(vcpu);
1253
1254 if (ioctl == KVM_SET_ONE_REG)
1255 r = kvm_arm_set_reg(vcpu, ®);
1256 else
1257 r = kvm_arm_get_reg(vcpu, ®);
1258 break;
1259 }
1260 case KVM_GET_REG_LIST: {
1261 struct kvm_reg_list __user *user_list = argp;
1262 struct kvm_reg_list reg_list;
1263 unsigned n;
1264
1265 r = -ENOEXEC;
1266 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1267 break;
1268
1269 r = -EPERM;
1270 if (!kvm_arm_vcpu_is_finalized(vcpu))
1271 break;
1272
1273 r = -EFAULT;
1274 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1275 break;
1276 n = reg_list.n;
1277 reg_list.n = kvm_arm_num_regs(vcpu);
1278 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1279 break;
1280 r = -E2BIG;
1281 if (n < reg_list.n)
1282 break;
1283 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1284 break;
1285 }
1286 case KVM_SET_DEVICE_ATTR: {
1287 r = -EFAULT;
1288 if (copy_from_user(&attr, argp, sizeof(attr)))
1289 break;
1290 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1291 break;
1292 }
1293 case KVM_GET_DEVICE_ATTR: {
1294 r = -EFAULT;
1295 if (copy_from_user(&attr, argp, sizeof(attr)))
1296 break;
1297 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1298 break;
1299 }
1300 case KVM_HAS_DEVICE_ATTR: {
1301 r = -EFAULT;
1302 if (copy_from_user(&attr, argp, sizeof(attr)))
1303 break;
1304 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1305 break;
1306 }
1307 case KVM_GET_VCPU_EVENTS: {
1308 struct kvm_vcpu_events events;
1309
1310 if (kvm_arm_vcpu_get_events(vcpu, &events))
1311 return -EINVAL;
1312
1313 if (copy_to_user(argp, &events, sizeof(events)))
1314 return -EFAULT;
1315
1316 return 0;
1317 }
1318 case KVM_SET_VCPU_EVENTS: {
1319 struct kvm_vcpu_events events;
1320
1321 if (copy_from_user(&events, argp, sizeof(events)))
1322 return -EFAULT;
1323
1324 return kvm_arm_vcpu_set_events(vcpu, &events);
1325 }
1326 case KVM_ARM_VCPU_FINALIZE: {
1327 int what;
1328
1329 if (!kvm_vcpu_initialized(vcpu))
1330 return -ENOEXEC;
1331
1332 if (get_user(what, (const int __user *)argp))
1333 return -EFAULT;
1334
1335 return kvm_arm_vcpu_finalize(vcpu, what);
1336 }
1337 default:
1338 r = -EINVAL;
1339 }
1340
1341 return r;
1342 }
1343
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1344 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1345 {
1346
1347 }
1348
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)1349 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1350 const struct kvm_memory_slot *memslot)
1351 {
1352 kvm_flush_remote_tlbs(kvm);
1353 }
1354
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1355 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1356 struct kvm_arm_device_addr *dev_addr)
1357 {
1358 unsigned long dev_id, type;
1359
1360 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1361 KVM_ARM_DEVICE_ID_SHIFT;
1362 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1363 KVM_ARM_DEVICE_TYPE_SHIFT;
1364
1365 switch (dev_id) {
1366 case KVM_ARM_DEVICE_VGIC_V2:
1367 if (!vgic_present)
1368 return -ENXIO;
1369 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1370 default:
1371 return -ENODEV;
1372 }
1373 }
1374
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1375 long kvm_arch_vm_ioctl(struct file *filp,
1376 unsigned int ioctl, unsigned long arg)
1377 {
1378 struct kvm *kvm = filp->private_data;
1379 void __user *argp = (void __user *)arg;
1380
1381 switch (ioctl) {
1382 case KVM_CREATE_IRQCHIP: {
1383 int ret;
1384 if (!vgic_present)
1385 return -ENXIO;
1386 mutex_lock(&kvm->lock);
1387 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1388 mutex_unlock(&kvm->lock);
1389 return ret;
1390 }
1391 case KVM_ARM_SET_DEVICE_ADDR: {
1392 struct kvm_arm_device_addr dev_addr;
1393
1394 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1395 return -EFAULT;
1396 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1397 }
1398 case KVM_ARM_PREFERRED_TARGET: {
1399 struct kvm_vcpu_init init;
1400
1401 kvm_vcpu_preferred_target(&init);
1402
1403 if (copy_to_user(argp, &init, sizeof(init)))
1404 return -EFAULT;
1405
1406 return 0;
1407 }
1408 case KVM_ARM_MTE_COPY_TAGS: {
1409 struct kvm_arm_copy_mte_tags copy_tags;
1410
1411 if (copy_from_user(©_tags, argp, sizeof(copy_tags)))
1412 return -EFAULT;
1413 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags);
1414 }
1415 default:
1416 return -EINVAL;
1417 }
1418 }
1419
nvhe_percpu_size(void)1420 static unsigned long nvhe_percpu_size(void)
1421 {
1422 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1423 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1424 }
1425
nvhe_percpu_order(void)1426 static unsigned long nvhe_percpu_order(void)
1427 {
1428 unsigned long size = nvhe_percpu_size();
1429
1430 return size ? get_order(size) : 0;
1431 }
1432
1433 /* A lookup table holding the hypervisor VA for each vector slot */
1434 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1435
kvm_init_vector_slot(void * base,enum arm64_hyp_spectre_vector slot)1436 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1437 {
1438 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1439 }
1440
kvm_init_vector_slots(void)1441 static int kvm_init_vector_slots(void)
1442 {
1443 int err;
1444 void *base;
1445
1446 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1447 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1448
1449 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1450 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1451
1452 if (!cpus_have_const_cap(ARM64_SPECTRE_V3A))
1453 return 0;
1454
1455 if (!has_vhe()) {
1456 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
1457 __BP_HARDEN_HYP_VECS_SZ, &base);
1458 if (err)
1459 return err;
1460 }
1461
1462 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
1463 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
1464 return 0;
1465 }
1466
cpu_prepare_hyp_mode(int cpu)1467 static void cpu_prepare_hyp_mode(int cpu)
1468 {
1469 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
1470 unsigned long tcr;
1471
1472 /*
1473 * Calculate the raw per-cpu offset without a translation from the
1474 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1475 * so that we can use adr_l to access per-cpu variables in EL2.
1476 * Also drop the KASAN tag which gets in the way...
1477 */
1478 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
1479 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1480
1481 params->mair_el2 = read_sysreg(mair_el1);
1482
1483 /*
1484 * The ID map may be configured to use an extended virtual address
1485 * range. This is only the case if system RAM is out of range for the
1486 * currently configured page size and VA_BITS, in which case we will
1487 * also need the extended virtual range for the HYP ID map, or we won't
1488 * be able to enable the EL2 MMU.
1489 *
1490 * However, at EL2, there is only one TTBR register, and we can't switch
1491 * between translation tables *and* update TCR_EL2.T0SZ at the same
1492 * time. Bottom line: we need to use the extended range with *both* our
1493 * translation tables.
1494 *
1495 * So use the same T0SZ value we use for the ID map.
1496 */
1497 tcr = (read_sysreg(tcr_el1) & TCR_EL2_MASK) | TCR_EL2_RES1;
1498 tcr &= ~TCR_T0SZ_MASK;
1499 tcr |= (idmap_t0sz & GENMASK(TCR_TxSZ_WIDTH - 1, 0)) << TCR_T0SZ_OFFSET;
1500 params->tcr_el2 = tcr;
1501
1502 params->stack_hyp_va = kern_hyp_va(per_cpu(kvm_arm_hyp_stack_page, cpu) + PAGE_SIZE);
1503 params->pgd_pa = kvm_mmu_get_httbr();
1504 if (is_protected_kvm_enabled())
1505 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
1506 else
1507 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
1508 params->vttbr = params->vtcr = 0;
1509
1510 /*
1511 * Flush the init params from the data cache because the struct will
1512 * be read while the MMU is off.
1513 */
1514 kvm_flush_dcache_to_poc(params, sizeof(*params));
1515 }
1516
hyp_install_host_vector(void)1517 static void hyp_install_host_vector(void)
1518 {
1519 struct kvm_nvhe_init_params *params;
1520 struct arm_smccc_res res;
1521
1522 /* Switch from the HYP stub to our own HYP init vector */
1523 __hyp_set_vectors(kvm_get_idmap_vector());
1524
1525 /*
1526 * Call initialization code, and switch to the full blown HYP code.
1527 * If the cpucaps haven't been finalized yet, something has gone very
1528 * wrong, and hyp will crash and burn when it uses any
1529 * cpus_have_const_cap() wrapper.
1530 */
1531 BUG_ON(!system_capabilities_finalized());
1532 params = this_cpu_ptr_nvhe_sym(kvm_init_params);
1533 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
1534 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1535 }
1536
cpu_init_hyp_mode(void)1537 static void cpu_init_hyp_mode(void)
1538 {
1539 hyp_install_host_vector();
1540
1541 /*
1542 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1543 * at EL2.
1544 */
1545 if (this_cpu_has_cap(ARM64_SSBS) &&
1546 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1547 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1548 }
1549 }
1550
cpu_hyp_reset(void)1551 static void cpu_hyp_reset(void)
1552 {
1553 if (!is_kernel_in_hyp_mode())
1554 __hyp_reset_vectors();
1555 }
1556
1557 /*
1558 * EL2 vectors can be mapped and rerouted in a number of ways,
1559 * depending on the kernel configuration and CPU present:
1560 *
1561 * - If the CPU is affected by Spectre-v2, the hardening sequence is
1562 * placed in one of the vector slots, which is executed before jumping
1563 * to the real vectors.
1564 *
1565 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
1566 * containing the hardening sequence is mapped next to the idmap page,
1567 * and executed before jumping to the real vectors.
1568 *
1569 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
1570 * empty slot is selected, mapped next to the idmap page, and
1571 * executed before jumping to the real vectors.
1572 *
1573 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
1574 * VHE, as we don't have hypervisor-specific mappings. If the system
1575 * is VHE and yet selects this capability, it will be ignored.
1576 */
cpu_set_hyp_vector(void)1577 static void cpu_set_hyp_vector(void)
1578 {
1579 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
1580 void *vector = hyp_spectre_vector_selector[data->slot];
1581
1582 if (!is_protected_kvm_enabled())
1583 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
1584 else
1585 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
1586 }
1587
cpu_hyp_init_context(void)1588 static void cpu_hyp_init_context(void)
1589 {
1590 kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1591
1592 if (!is_kernel_in_hyp_mode())
1593 cpu_init_hyp_mode();
1594 }
1595
cpu_hyp_init_features(void)1596 static void cpu_hyp_init_features(void)
1597 {
1598 cpu_set_hyp_vector();
1599 kvm_arm_init_debug();
1600
1601 if (is_kernel_in_hyp_mode())
1602 kvm_timer_init_vhe();
1603
1604 if (vgic_present)
1605 kvm_vgic_init_cpu_hardware();
1606 }
1607
cpu_hyp_reinit(void)1608 static void cpu_hyp_reinit(void)
1609 {
1610 cpu_hyp_reset();
1611 cpu_hyp_init_context();
1612 cpu_hyp_init_features();
1613 }
1614
_kvm_arch_hardware_enable(void * discard)1615 static void _kvm_arch_hardware_enable(void *discard)
1616 {
1617 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1618 cpu_hyp_reinit();
1619 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1620 }
1621 }
1622
kvm_arch_hardware_enable(void)1623 int kvm_arch_hardware_enable(void)
1624 {
1625 _kvm_arch_hardware_enable(NULL);
1626 return 0;
1627 }
1628
_kvm_arch_hardware_disable(void * discard)1629 static void _kvm_arch_hardware_disable(void *discard)
1630 {
1631 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1632 cpu_hyp_reset();
1633 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1634 }
1635 }
1636
kvm_arch_hardware_disable(void)1637 void kvm_arch_hardware_disable(void)
1638 {
1639 if (!is_protected_kvm_enabled())
1640 _kvm_arch_hardware_disable(NULL);
1641 }
1642
1643 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1644 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1645 unsigned long cmd,
1646 void *v)
1647 {
1648 /*
1649 * kvm_arm_hardware_enabled is left with its old value over
1650 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1651 * re-enable hyp.
1652 */
1653 switch (cmd) {
1654 case CPU_PM_ENTER:
1655 if (__this_cpu_read(kvm_arm_hardware_enabled))
1656 /*
1657 * don't update kvm_arm_hardware_enabled here
1658 * so that the hardware will be re-enabled
1659 * when we resume. See below.
1660 */
1661 cpu_hyp_reset();
1662
1663 return NOTIFY_OK;
1664 case CPU_PM_ENTER_FAILED:
1665 case CPU_PM_EXIT:
1666 if (__this_cpu_read(kvm_arm_hardware_enabled))
1667 /* The hardware was enabled before suspend. */
1668 cpu_hyp_reinit();
1669
1670 return NOTIFY_OK;
1671
1672 default:
1673 return NOTIFY_DONE;
1674 }
1675 }
1676
1677 static struct notifier_block hyp_init_cpu_pm_nb = {
1678 .notifier_call = hyp_init_cpu_pm_notifier,
1679 };
1680
hyp_cpu_pm_init(void)1681 static void hyp_cpu_pm_init(void)
1682 {
1683 if (!is_protected_kvm_enabled())
1684 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1685 }
hyp_cpu_pm_exit(void)1686 static void hyp_cpu_pm_exit(void)
1687 {
1688 if (!is_protected_kvm_enabled())
1689 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1690 }
1691 #else
hyp_cpu_pm_init(void)1692 static inline void hyp_cpu_pm_init(void)
1693 {
1694 }
hyp_cpu_pm_exit(void)1695 static inline void hyp_cpu_pm_exit(void)
1696 {
1697 }
1698 #endif
1699
init_cpu_logical_map(void)1700 static void init_cpu_logical_map(void)
1701 {
1702 unsigned int cpu;
1703
1704 /*
1705 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
1706 * Only copy the set of online CPUs whose features have been chacked
1707 * against the finalized system capabilities. The hypervisor will not
1708 * allow any other CPUs from the `possible` set to boot.
1709 */
1710 for_each_online_cpu(cpu)
1711 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
1712 }
1713
1714 #define init_psci_0_1_impl_state(config, what) \
1715 config.psci_0_1_ ## what ## _implemented = psci_ops.what
1716
init_psci_relay(void)1717 static bool init_psci_relay(void)
1718 {
1719 /*
1720 * If PSCI has not been initialized, protected KVM cannot install
1721 * itself on newly booted CPUs.
1722 */
1723 if (!psci_ops.get_version) {
1724 kvm_err("Cannot initialize protected mode without PSCI\n");
1725 return false;
1726 }
1727
1728 kvm_host_psci_config.version = psci_ops.get_version();
1729
1730 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
1731 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
1732 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
1733 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
1734 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
1735 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
1736 }
1737 return true;
1738 }
1739
init_subsystems(void)1740 static int init_subsystems(void)
1741 {
1742 int err = 0;
1743
1744 /*
1745 * Enable hardware so that subsystem initialisation can access EL2.
1746 */
1747 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1748
1749 /*
1750 * Register CPU lower-power notifier
1751 */
1752 hyp_cpu_pm_init();
1753
1754 /*
1755 * Init HYP view of VGIC
1756 */
1757 err = kvm_vgic_hyp_init();
1758 switch (err) {
1759 case 0:
1760 vgic_present = true;
1761 break;
1762 case -ENODEV:
1763 case -ENXIO:
1764 vgic_present = false;
1765 err = 0;
1766 break;
1767 default:
1768 goto out;
1769 }
1770
1771 /*
1772 * Init HYP architected timer support
1773 */
1774 err = kvm_timer_hyp_init(vgic_present);
1775 if (err)
1776 goto out;
1777
1778 kvm_perf_init();
1779 kvm_sys_reg_table_init();
1780
1781 out:
1782 if (err || !is_protected_kvm_enabled())
1783 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1784
1785 return err;
1786 }
1787
teardown_hyp_mode(void)1788 static void teardown_hyp_mode(void)
1789 {
1790 int cpu;
1791
1792 free_hyp_pgds();
1793 for_each_possible_cpu(cpu) {
1794 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1795 free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1796 }
1797 }
1798
do_pkvm_init(u32 hyp_va_bits)1799 static int do_pkvm_init(u32 hyp_va_bits)
1800 {
1801 void *per_cpu_base = kvm_ksym_ref(kvm_arm_hyp_percpu_base);
1802 int ret;
1803
1804 preempt_disable();
1805 cpu_hyp_init_context();
1806 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
1807 num_possible_cpus(), kern_hyp_va(per_cpu_base),
1808 hyp_va_bits);
1809 cpu_hyp_init_features();
1810
1811 /*
1812 * The stub hypercalls are now disabled, so set our local flag to
1813 * prevent a later re-init attempt in kvm_arch_hardware_enable().
1814 */
1815 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1816 preempt_enable();
1817
1818 return ret;
1819 }
1820
kvm_hyp_init_protection(u32 hyp_va_bits)1821 static int kvm_hyp_init_protection(u32 hyp_va_bits)
1822 {
1823 void *addr = phys_to_virt(hyp_mem_base);
1824 int ret;
1825
1826 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1827 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1828 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
1829 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
1830 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
1831 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
1832 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
1833
1834 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
1835 if (ret)
1836 return ret;
1837
1838 ret = do_pkvm_init(hyp_va_bits);
1839 if (ret)
1840 return ret;
1841
1842 free_hyp_pgds();
1843
1844 return 0;
1845 }
1846
1847 /**
1848 * Inits Hyp-mode on all online CPUs
1849 */
init_hyp_mode(void)1850 static int init_hyp_mode(void)
1851 {
1852 u32 hyp_va_bits;
1853 int cpu;
1854 int err = -ENOMEM;
1855
1856 /*
1857 * The protected Hyp-mode cannot be initialized if the memory pool
1858 * allocation has failed.
1859 */
1860 if (is_protected_kvm_enabled() && !hyp_mem_base)
1861 goto out_err;
1862
1863 /*
1864 * Allocate Hyp PGD and setup Hyp identity mapping
1865 */
1866 err = kvm_mmu_init(&hyp_va_bits);
1867 if (err)
1868 goto out_err;
1869
1870 /*
1871 * Allocate stack pages for Hypervisor-mode
1872 */
1873 for_each_possible_cpu(cpu) {
1874 unsigned long stack_page;
1875
1876 stack_page = __get_free_page(GFP_KERNEL);
1877 if (!stack_page) {
1878 err = -ENOMEM;
1879 goto out_err;
1880 }
1881
1882 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1883 }
1884
1885 /*
1886 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1887 */
1888 for_each_possible_cpu(cpu) {
1889 struct page *page;
1890 void *page_addr;
1891
1892 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1893 if (!page) {
1894 err = -ENOMEM;
1895 goto out_err;
1896 }
1897
1898 page_addr = page_address(page);
1899 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1900 kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1901 }
1902
1903 /*
1904 * Map the Hyp-code called directly from the host
1905 */
1906 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1907 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1908 if (err) {
1909 kvm_err("Cannot map world-switch code\n");
1910 goto out_err;
1911 }
1912
1913 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
1914 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
1915 if (err) {
1916 kvm_err("Cannot map .hyp.rodata section\n");
1917 goto out_err;
1918 }
1919
1920 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1921 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1922 if (err) {
1923 kvm_err("Cannot map rodata section\n");
1924 goto out_err;
1925 }
1926
1927 /*
1928 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
1929 * section thanks to an assertion in the linker script. Map it RW and
1930 * the rest of .bss RO.
1931 */
1932 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
1933 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
1934 if (err) {
1935 kvm_err("Cannot map hyp bss section: %d\n", err);
1936 goto out_err;
1937 }
1938
1939 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
1940 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1941 if (err) {
1942 kvm_err("Cannot map bss section\n");
1943 goto out_err;
1944 }
1945
1946 /*
1947 * Map the Hyp stack pages
1948 */
1949 for_each_possible_cpu(cpu) {
1950 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1951 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1952 PAGE_HYP);
1953
1954 if (err) {
1955 kvm_err("Cannot map hyp stack\n");
1956 goto out_err;
1957 }
1958 }
1959
1960 for_each_possible_cpu(cpu) {
1961 char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1962 char *percpu_end = percpu_begin + nvhe_percpu_size();
1963
1964 /* Map Hyp percpu pages */
1965 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1966 if (err) {
1967 kvm_err("Cannot map hyp percpu region\n");
1968 goto out_err;
1969 }
1970
1971 /* Prepare the CPU initialization parameters */
1972 cpu_prepare_hyp_mode(cpu);
1973 }
1974
1975 if (is_protected_kvm_enabled()) {
1976 init_cpu_logical_map();
1977
1978 if (!init_psci_relay()) {
1979 err = -ENODEV;
1980 goto out_err;
1981 }
1982 }
1983
1984 if (is_protected_kvm_enabled()) {
1985 err = kvm_hyp_init_protection(hyp_va_bits);
1986 if (err) {
1987 kvm_err("Failed to init hyp memory protection\n");
1988 goto out_err;
1989 }
1990 }
1991
1992 return 0;
1993
1994 out_err:
1995 teardown_hyp_mode();
1996 kvm_err("error initializing Hyp mode: %d\n", err);
1997 return err;
1998 }
1999
_kvm_host_prot_finalize(void * arg)2000 static void _kvm_host_prot_finalize(void *arg)
2001 {
2002 int *err = arg;
2003
2004 if (WARN_ON(kvm_call_hyp_nvhe(__pkvm_prot_finalize)))
2005 WRITE_ONCE(*err, -EINVAL);
2006 }
2007
pkvm_drop_host_privileges(void)2008 static int pkvm_drop_host_privileges(void)
2009 {
2010 int ret = 0;
2011
2012 /*
2013 * Flip the static key upfront as that may no longer be possible
2014 * once the host stage 2 is installed.
2015 */
2016 static_branch_enable(&kvm_protected_mode_initialized);
2017 on_each_cpu(_kvm_host_prot_finalize, &ret, 1);
2018 return ret;
2019 }
2020
finalize_hyp_mode(void)2021 static int finalize_hyp_mode(void)
2022 {
2023 if (!is_protected_kvm_enabled())
2024 return 0;
2025
2026 /*
2027 * Exclude HYP BSS from kmemleak so that it doesn't get peeked
2028 * at, which would end badly once the section is inaccessible.
2029 * None of other sections should ever be introspected.
2030 */
2031 kmemleak_free_part(__hyp_bss_start, __hyp_bss_end - __hyp_bss_start);
2032 return pkvm_drop_host_privileges();
2033 }
2034
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)2035 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2036 {
2037 struct kvm_vcpu *vcpu;
2038 int i;
2039
2040 mpidr &= MPIDR_HWID_BITMASK;
2041 kvm_for_each_vcpu(i, vcpu, kvm) {
2042 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2043 return vcpu;
2044 }
2045 return NULL;
2046 }
2047
kvm_arch_has_irq_bypass(void)2048 bool kvm_arch_has_irq_bypass(void)
2049 {
2050 return true;
2051 }
2052
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2053 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2054 struct irq_bypass_producer *prod)
2055 {
2056 struct kvm_kernel_irqfd *irqfd =
2057 container_of(cons, struct kvm_kernel_irqfd, consumer);
2058
2059 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2060 &irqfd->irq_entry);
2061 }
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2062 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2063 struct irq_bypass_producer *prod)
2064 {
2065 struct kvm_kernel_irqfd *irqfd =
2066 container_of(cons, struct kvm_kernel_irqfd, consumer);
2067
2068 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2069 &irqfd->irq_entry);
2070 }
2071
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)2072 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2073 {
2074 struct kvm_kernel_irqfd *irqfd =
2075 container_of(cons, struct kvm_kernel_irqfd, consumer);
2076
2077 kvm_arm_halt_guest(irqfd->kvm);
2078 }
2079
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)2080 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2081 {
2082 struct kvm_kernel_irqfd *irqfd =
2083 container_of(cons, struct kvm_kernel_irqfd, consumer);
2084
2085 kvm_arm_resume_guest(irqfd->kvm);
2086 }
2087
2088 /**
2089 * Initialize Hyp-mode and memory mappings on all CPUs.
2090 */
kvm_arch_init(void * opaque)2091 int kvm_arch_init(void *opaque)
2092 {
2093 int err;
2094 bool in_hyp_mode;
2095
2096 if (!is_hyp_mode_available()) {
2097 kvm_info("HYP mode not available\n");
2098 return -ENODEV;
2099 }
2100
2101 if (kvm_get_mode() == KVM_MODE_NONE) {
2102 kvm_info("KVM disabled from command line\n");
2103 return -ENODEV;
2104 }
2105
2106 in_hyp_mode = is_kernel_in_hyp_mode();
2107
2108 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2109 cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2110 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2111 "Only trusted guests should be used on this system.\n");
2112
2113 err = kvm_set_ipa_limit();
2114 if (err)
2115 return err;
2116
2117 err = kvm_arm_init_sve();
2118 if (err)
2119 return err;
2120
2121 if (!in_hyp_mode) {
2122 err = init_hyp_mode();
2123 if (err)
2124 goto out_err;
2125 }
2126
2127 err = kvm_init_vector_slots();
2128 if (err) {
2129 kvm_err("Cannot initialise vector slots\n");
2130 goto out_err;
2131 }
2132
2133 err = init_subsystems();
2134 if (err)
2135 goto out_hyp;
2136
2137 if (!in_hyp_mode) {
2138 err = finalize_hyp_mode();
2139 if (err) {
2140 kvm_err("Failed to finalize Hyp protection\n");
2141 goto out_hyp;
2142 }
2143 }
2144
2145 if (is_protected_kvm_enabled()) {
2146 kvm_info("Protected nVHE mode initialized successfully\n");
2147 } else if (in_hyp_mode) {
2148 kvm_info("VHE mode initialized successfully\n");
2149 } else {
2150 kvm_info("Hyp mode initialized successfully\n");
2151 }
2152
2153 return 0;
2154
2155 out_hyp:
2156 hyp_cpu_pm_exit();
2157 if (!in_hyp_mode)
2158 teardown_hyp_mode();
2159 out_err:
2160 return err;
2161 }
2162
2163 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)2164 void kvm_arch_exit(void)
2165 {
2166 kvm_perf_teardown();
2167 }
2168
early_kvm_mode_cfg(char * arg)2169 static int __init early_kvm_mode_cfg(char *arg)
2170 {
2171 if (!arg)
2172 return -EINVAL;
2173
2174 if (strcmp(arg, "protected") == 0) {
2175 kvm_mode = KVM_MODE_PROTECTED;
2176 return 0;
2177 }
2178
2179 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2180 kvm_mode = KVM_MODE_DEFAULT;
2181 return 0;
2182 }
2183
2184 if (strcmp(arg, "none") == 0) {
2185 kvm_mode = KVM_MODE_NONE;
2186 return 0;
2187 }
2188
2189 return -EINVAL;
2190 }
2191 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2192
kvm_get_mode(void)2193 enum kvm_mode kvm_get_mode(void)
2194 {
2195 return kvm_mode;
2196 }
2197
arm_init(void)2198 static int arm_init(void)
2199 {
2200 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2201 return rc;
2202 }
2203
2204 module_init(arm_init);
2205