1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #ifndef __ARM64_KVM_HYP_SWITCH_H__
8 #define __ARM64_KVM_HYP_SWITCH_H__
9
10 #include <hyp/adjust_pc.h>
11 #include <hyp/fault.h>
12
13 #include <linux/arm-smccc.h>
14 #include <linux/kvm_host.h>
15 #include <linux/types.h>
16 #include <linux/jump_label.h>
17 #include <uapi/linux/psci.h>
18
19 #include <kvm/arm_psci.h>
20
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/extable.h>
24 #include <asm/kprobes.h>
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/fpsimd.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/processor.h>
32 #include <asm/thread_info.h>
33
34 struct kvm_exception_table_entry {
35 int insn, fixup;
36 };
37
38 extern struct kvm_exception_table_entry __start___kvm_ex_table;
39 extern struct kvm_exception_table_entry __stop___kvm_ex_table;
40
41 /* Check whether the FP regs were dirtied while in the host-side run loop: */
update_fp_enabled(struct kvm_vcpu * vcpu)42 static inline bool update_fp_enabled(struct kvm_vcpu *vcpu)
43 {
44 /*
45 * When the system doesn't support FP/SIMD, we cannot rely on
46 * the _TIF_FOREIGN_FPSTATE flag. However, we always inject an
47 * abort on the very first access to FP and thus we should never
48 * see KVM_ARM64_FP_ENABLED. For added safety, make sure we always
49 * trap the accesses.
50 */
51 if (!system_supports_fpsimd() ||
52 vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
53 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
54 KVM_ARM64_FP_HOST);
55
56 return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
57 }
58
59 /* Save the 32-bit only FPSIMD system register state */
__fpsimd_save_fpexc32(struct kvm_vcpu * vcpu)60 static inline void __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
61 {
62 if (!vcpu_el1_is_32bit(vcpu))
63 return;
64
65 __vcpu_sys_reg(vcpu, FPEXC32_EL2) = read_sysreg(fpexc32_el2);
66 }
67
__activate_traps_fpsimd32(struct kvm_vcpu * vcpu)68 static inline void __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
69 {
70 /*
71 * We are about to set CPTR_EL2.TFP to trap all floating point
72 * register accesses to EL2, however, the ARM ARM clearly states that
73 * traps are only taken to EL2 if the operation would not otherwise
74 * trap to EL1. Therefore, always make sure that for 32-bit guests,
75 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
76 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
77 * it will cause an exception.
78 */
79 if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
80 write_sysreg(1 << 30, fpexc32_el2);
81 isb();
82 }
83 }
84
__activate_traps_common(struct kvm_vcpu * vcpu)85 static inline void __activate_traps_common(struct kvm_vcpu *vcpu)
86 {
87 /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
88 write_sysreg(1 << 15, hstr_el2);
89
90 /*
91 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
92 * PMSELR_EL0 to make sure it never contains the cycle
93 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
94 * EL1 instead of being trapped to EL2.
95 */
96 if (kvm_arm_support_pmu_v3()) {
97 write_sysreg(0, pmselr_el0);
98 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
99 }
100
101 vcpu->arch.mdcr_el2_host = read_sysreg(mdcr_el2);
102 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
103 }
104
__deactivate_traps_common(struct kvm_vcpu * vcpu)105 static inline void __deactivate_traps_common(struct kvm_vcpu *vcpu)
106 {
107 write_sysreg(vcpu->arch.mdcr_el2_host, mdcr_el2);
108
109 write_sysreg(0, hstr_el2);
110 if (kvm_arm_support_pmu_v3())
111 write_sysreg(0, pmuserenr_el0);
112 }
113
___activate_traps(struct kvm_vcpu * vcpu)114 static inline void ___activate_traps(struct kvm_vcpu *vcpu)
115 {
116 u64 hcr = vcpu->arch.hcr_el2;
117
118 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM))
119 hcr |= HCR_TVM;
120
121 write_sysreg(hcr, hcr_el2);
122
123 if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
124 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
125 }
126
___deactivate_traps(struct kvm_vcpu * vcpu)127 static inline void ___deactivate_traps(struct kvm_vcpu *vcpu)
128 {
129 /*
130 * If we pended a virtual abort, preserve it until it gets
131 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
132 * the crucial bit is "On taking a vSError interrupt,
133 * HCR_EL2.VSE is cleared to 0."
134 */
135 if (vcpu->arch.hcr_el2 & HCR_VSE) {
136 vcpu->arch.hcr_el2 &= ~HCR_VSE;
137 vcpu->arch.hcr_el2 |= read_sysreg(hcr_el2) & HCR_VSE;
138 }
139 }
140
__populate_fault_info(struct kvm_vcpu * vcpu)141 static inline bool __populate_fault_info(struct kvm_vcpu *vcpu)
142 {
143 return __get_fault_info(vcpu->arch.fault.esr_el2, &vcpu->arch.fault);
144 }
145
__hyp_sve_save_host(struct kvm_vcpu * vcpu)146 static inline void __hyp_sve_save_host(struct kvm_vcpu *vcpu)
147 {
148 struct thread_struct *thread;
149
150 thread = container_of(vcpu->arch.host_fpsimd_state, struct thread_struct,
151 uw.fpsimd_state);
152
153 __sve_save_state(sve_pffr(thread), &vcpu->arch.host_fpsimd_state->fpsr);
154 }
155
__hyp_sve_restore_guest(struct kvm_vcpu * vcpu)156 static inline void __hyp_sve_restore_guest(struct kvm_vcpu *vcpu)
157 {
158 sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL2);
159 __sve_restore_state(vcpu_sve_pffr(vcpu),
160 &vcpu->arch.ctxt.fp_regs.fpsr);
161 write_sysreg_el1(__vcpu_sys_reg(vcpu, ZCR_EL1), SYS_ZCR);
162 }
163
164 /*
165 * We trap the first access to the FP/SIMD to save the host context and
166 * restore the guest context lazily.
167 * If FP/SIMD is not implemented, handle the trap and inject an undefined
168 * instruction exception to the guest. Similarly for trapped SVE accesses.
169 */
kvm_hyp_handle_fpsimd(struct kvm_vcpu * vcpu,u64 * exit_code)170 static bool kvm_hyp_handle_fpsimd(struct kvm_vcpu *vcpu, u64 *exit_code)
171 {
172 bool sve_guest, sve_host;
173 u8 esr_ec;
174 u64 reg;
175
176 if (!system_supports_fpsimd())
177 return false;
178
179 if (system_supports_sve()) {
180 sve_guest = vcpu_has_sve(vcpu);
181 sve_host = vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE;
182 } else {
183 sve_guest = false;
184 sve_host = false;
185 }
186
187 esr_ec = kvm_vcpu_trap_get_class(vcpu);
188
189 /* Don't handle SVE traps for non-SVE vcpus here: */
190 if (!sve_guest && esr_ec != ESR_ELx_EC_FP_ASIMD)
191 return false;
192
193 /* Valid trap. Switch the context: */
194 if (has_vhe()) {
195 reg = CPACR_EL1_FPEN;
196 if (sve_guest)
197 reg |= CPACR_EL1_ZEN;
198
199 sysreg_clear_set(cpacr_el1, 0, reg);
200 } else {
201 reg = CPTR_EL2_TFP;
202 if (sve_guest)
203 reg |= CPTR_EL2_TZ;
204
205 sysreg_clear_set(cptr_el2, reg, 0);
206 }
207 isb();
208
209 if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
210 if (sve_host)
211 __hyp_sve_save_host(vcpu);
212 else
213 __fpsimd_save_state(vcpu->arch.host_fpsimd_state);
214
215 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
216 }
217
218 if (sve_guest)
219 __hyp_sve_restore_guest(vcpu);
220 else
221 __fpsimd_restore_state(&vcpu->arch.ctxt.fp_regs);
222
223 /* Skip restoring fpexc32 for AArch64 guests */
224 if (!(read_sysreg(hcr_el2) & HCR_RW))
225 write_sysreg(__vcpu_sys_reg(vcpu, FPEXC32_EL2), fpexc32_el2);
226
227 vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
228
229 return true;
230 }
231
handle_tx2_tvm(struct kvm_vcpu * vcpu)232 static inline bool handle_tx2_tvm(struct kvm_vcpu *vcpu)
233 {
234 u32 sysreg = esr_sys64_to_sysreg(kvm_vcpu_get_esr(vcpu));
235 int rt = kvm_vcpu_sys_get_rt(vcpu);
236 u64 val = vcpu_get_reg(vcpu, rt);
237
238 /*
239 * The normal sysreg handling code expects to see the traps,
240 * let's not do anything here.
241 */
242 if (vcpu->arch.hcr_el2 & HCR_TVM)
243 return false;
244
245 switch (sysreg) {
246 case SYS_SCTLR_EL1:
247 write_sysreg_el1(val, SYS_SCTLR);
248 break;
249 case SYS_TTBR0_EL1:
250 write_sysreg_el1(val, SYS_TTBR0);
251 break;
252 case SYS_TTBR1_EL1:
253 write_sysreg_el1(val, SYS_TTBR1);
254 break;
255 case SYS_TCR_EL1:
256 write_sysreg_el1(val, SYS_TCR);
257 break;
258 case SYS_ESR_EL1:
259 write_sysreg_el1(val, SYS_ESR);
260 break;
261 case SYS_FAR_EL1:
262 write_sysreg_el1(val, SYS_FAR);
263 break;
264 case SYS_AFSR0_EL1:
265 write_sysreg_el1(val, SYS_AFSR0);
266 break;
267 case SYS_AFSR1_EL1:
268 write_sysreg_el1(val, SYS_AFSR1);
269 break;
270 case SYS_MAIR_EL1:
271 write_sysreg_el1(val, SYS_MAIR);
272 break;
273 case SYS_AMAIR_EL1:
274 write_sysreg_el1(val, SYS_AMAIR);
275 break;
276 case SYS_CONTEXTIDR_EL1:
277 write_sysreg_el1(val, SYS_CONTEXTIDR);
278 break;
279 default:
280 return false;
281 }
282
283 __kvm_skip_instr(vcpu);
284 return true;
285 }
286
esr_is_ptrauth_trap(u32 esr)287 static inline bool esr_is_ptrauth_trap(u32 esr)
288 {
289 switch (esr_sys64_to_sysreg(esr)) {
290 case SYS_APIAKEYLO_EL1:
291 case SYS_APIAKEYHI_EL1:
292 case SYS_APIBKEYLO_EL1:
293 case SYS_APIBKEYHI_EL1:
294 case SYS_APDAKEYLO_EL1:
295 case SYS_APDAKEYHI_EL1:
296 case SYS_APDBKEYLO_EL1:
297 case SYS_APDBKEYHI_EL1:
298 case SYS_APGAKEYLO_EL1:
299 case SYS_APGAKEYHI_EL1:
300 return true;
301 }
302
303 return false;
304 }
305
306 #define __ptrauth_save_key(ctxt, key) \
307 do { \
308 u64 __val; \
309 __val = read_sysreg_s(SYS_ ## key ## KEYLO_EL1); \
310 ctxt_sys_reg(ctxt, key ## KEYLO_EL1) = __val; \
311 __val = read_sysreg_s(SYS_ ## key ## KEYHI_EL1); \
312 ctxt_sys_reg(ctxt, key ## KEYHI_EL1) = __val; \
313 } while(0)
314
315 DECLARE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
316
kvm_hyp_handle_ptrauth(struct kvm_vcpu * vcpu,u64 * exit_code)317 static bool kvm_hyp_handle_ptrauth(struct kvm_vcpu *vcpu, u64 *exit_code)
318 {
319 struct kvm_cpu_context *ctxt;
320 u64 val;
321
322 if (!vcpu_has_ptrauth(vcpu))
323 return false;
324
325 ctxt = this_cpu_ptr(&kvm_hyp_ctxt);
326 __ptrauth_save_key(ctxt, APIA);
327 __ptrauth_save_key(ctxt, APIB);
328 __ptrauth_save_key(ctxt, APDA);
329 __ptrauth_save_key(ctxt, APDB);
330 __ptrauth_save_key(ctxt, APGA);
331
332 vcpu_ptrauth_enable(vcpu);
333
334 val = read_sysreg(hcr_el2);
335 val |= (HCR_API | HCR_APK);
336 write_sysreg(val, hcr_el2);
337
338 return true;
339 }
340
kvm_hyp_handle_sysreg(struct kvm_vcpu * vcpu,u64 * exit_code)341 static bool kvm_hyp_handle_sysreg(struct kvm_vcpu *vcpu, u64 *exit_code)
342 {
343 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_TX2_219_TVM) &&
344 handle_tx2_tvm(vcpu))
345 return true;
346
347 if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
348 __vgic_v3_perform_cpuif_access(vcpu) == 1)
349 return true;
350
351 if (esr_is_ptrauth_trap(kvm_vcpu_get_esr(vcpu)))
352 return kvm_hyp_handle_ptrauth(vcpu, exit_code);
353
354 return false;
355 }
356
kvm_hyp_handle_cp15_32(struct kvm_vcpu * vcpu,u64 * exit_code)357 static bool kvm_hyp_handle_cp15_32(struct kvm_vcpu *vcpu, u64 *exit_code)
358 {
359 if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
360 __vgic_v3_perform_cpuif_access(vcpu) == 1)
361 return true;
362
363 return false;
364 }
365
kvm_hyp_handle_iabt_low(struct kvm_vcpu * vcpu,u64 * exit_code)366 static bool kvm_hyp_handle_iabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
367 {
368 if (!__populate_fault_info(vcpu))
369 return true;
370
371 return false;
372 }
373
kvm_hyp_handle_dabt_low(struct kvm_vcpu * vcpu,u64 * exit_code)374 static bool kvm_hyp_handle_dabt_low(struct kvm_vcpu *vcpu, u64 *exit_code)
375 {
376 if (!__populate_fault_info(vcpu))
377 return true;
378
379 if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
380 bool valid;
381
382 valid = kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
383 kvm_vcpu_dabt_isvalid(vcpu) &&
384 !kvm_vcpu_abt_issea(vcpu) &&
385 !kvm_vcpu_abt_iss1tw(vcpu);
386
387 if (valid) {
388 int ret = __vgic_v2_perform_cpuif_access(vcpu);
389
390 if (ret == 1)
391 return true;
392
393 /* Promote an illegal access to an SError.*/
394 if (ret == -1)
395 *exit_code = ARM_EXCEPTION_EL1_SERROR;
396 }
397 }
398
399 return false;
400 }
401
402 typedef bool (*exit_handler_fn)(struct kvm_vcpu *, u64 *);
403
404 static const exit_handler_fn *kvm_get_exit_handler_array(struct kvm_vcpu *vcpu);
405
406 static void early_exit_filter(struct kvm_vcpu *vcpu, u64 *exit_code);
407
408 /*
409 * Allow the hypervisor to handle the exit with an exit handler if it has one.
410 *
411 * Returns true if the hypervisor handled the exit, and control should go back
412 * to the guest, or false if it hasn't.
413 */
kvm_hyp_handle_exit(struct kvm_vcpu * vcpu,u64 * exit_code)414 static inline bool kvm_hyp_handle_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
415 {
416 const exit_handler_fn *handlers = kvm_get_exit_handler_array(vcpu);
417 exit_handler_fn fn;
418
419 fn = handlers[kvm_vcpu_trap_get_class(vcpu)];
420
421 if (fn)
422 return fn(vcpu, exit_code);
423
424 return false;
425 }
426
427 /*
428 * Return true when we were able to fixup the guest exit and should return to
429 * the guest, false when we should restore the host state and return to the
430 * main run loop.
431 */
fixup_guest_exit(struct kvm_vcpu * vcpu,u64 * exit_code)432 static inline bool fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
433 {
434 /*
435 * Save PSTATE early so that we can evaluate the vcpu mode
436 * early on.
437 */
438 vcpu->arch.ctxt.regs.pstate = read_sysreg_el2(SYS_SPSR);
439
440 /*
441 * Check whether we want to repaint the state one way or
442 * another.
443 */
444 early_exit_filter(vcpu, exit_code);
445
446 if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
447 vcpu->arch.fault.esr_el2 = read_sysreg_el2(SYS_ESR);
448
449 if (ARM_SERROR_PENDING(*exit_code)) {
450 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
451
452 /*
453 * HVC already have an adjusted PC, which we need to
454 * correct in order to return to after having injected
455 * the SError.
456 *
457 * SMC, on the other hand, is *trapped*, meaning its
458 * preferred return address is the SMC itself.
459 */
460 if (esr_ec == ESR_ELx_EC_HVC32 || esr_ec == ESR_ELx_EC_HVC64)
461 write_sysreg_el2(read_sysreg_el2(SYS_ELR) - 4, SYS_ELR);
462 }
463
464 /*
465 * We're using the raw exception code in order to only process
466 * the trap if no SError is pending. We will come back to the
467 * same PC once the SError has been injected, and replay the
468 * trapping instruction.
469 */
470 if (*exit_code != ARM_EXCEPTION_TRAP)
471 goto exit;
472
473 /* Check if there's an exit handler and allow it to handle the exit. */
474 if (kvm_hyp_handle_exit(vcpu, exit_code))
475 goto guest;
476 exit:
477 /* Return to the host kernel and handle the exit */
478 return false;
479
480 guest:
481 /* Re-enter the guest */
482 asm(ALTERNATIVE("nop", "dmb sy", ARM64_WORKAROUND_1508412));
483 return true;
484 }
485
__kvm_unexpected_el2_exception(void)486 static inline void __kvm_unexpected_el2_exception(void)
487 {
488 extern char __guest_exit_panic[];
489 unsigned long addr, fixup;
490 struct kvm_exception_table_entry *entry, *end;
491 unsigned long elr_el2 = read_sysreg(elr_el2);
492
493 entry = &__start___kvm_ex_table;
494 end = &__stop___kvm_ex_table;
495
496 while (entry < end) {
497 addr = (unsigned long)&entry->insn + entry->insn;
498 fixup = (unsigned long)&entry->fixup + entry->fixup;
499
500 if (addr != elr_el2) {
501 entry++;
502 continue;
503 }
504
505 write_sysreg(fixup, elr_el2);
506 return;
507 }
508
509 /* Trigger a panic after restoring the hyp context. */
510 write_sysreg(__guest_exit_panic, elr_el2);
511 }
512
513 #endif /* __ARM64_KVM_HYP_SWITCH_H__ */
514