1 /*
2 * 8253/8254 interval timer emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 *
28 * Authors:
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
31 */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "ioapic.h"
39 #include "irq.h"
40 #include "i8254.h"
41 #include "x86.h"
42
43 #ifndef CONFIG_X86_64
44 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
45 #else
46 #define mod_64(x, y) ((x) % (y))
47 #endif
48
49 #define RW_STATE_LSB 1
50 #define RW_STATE_MSB 2
51 #define RW_STATE_WORD0 3
52 #define RW_STATE_WORD1 4
53
pit_set_gate(struct kvm_pit * pit,int channel,u32 val)54 static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
55 {
56 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
57
58 switch (c->mode) {
59 default:
60 case 0:
61 case 4:
62 /* XXX: just disable/enable counting */
63 break;
64 case 1:
65 case 2:
66 case 3:
67 case 5:
68 /* Restart counting on rising edge. */
69 if (c->gate < val)
70 c->count_load_time = ktime_get();
71 break;
72 }
73
74 c->gate = val;
75 }
76
pit_get_gate(struct kvm_pit * pit,int channel)77 static int pit_get_gate(struct kvm_pit *pit, int channel)
78 {
79 return pit->pit_state.channels[channel].gate;
80 }
81
__kpit_elapsed(struct kvm_pit * pit)82 static s64 __kpit_elapsed(struct kvm_pit *pit)
83 {
84 s64 elapsed;
85 ktime_t remaining;
86 struct kvm_kpit_state *ps = &pit->pit_state;
87
88 if (!ps->period)
89 return 0;
90
91 /*
92 * The Counter does not stop when it reaches zero. In
93 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
94 * the highest count, either FFFF hex for binary counting
95 * or 9999 for BCD counting, and continues counting.
96 * Modes 2 and 3 are periodic; the Counter reloads
97 * itself with the initial count and continues counting
98 * from there.
99 */
100 remaining = hrtimer_get_remaining(&ps->timer);
101 elapsed = ps->period - ktime_to_ns(remaining);
102
103 return elapsed;
104 }
105
kpit_elapsed(struct kvm_pit * pit,struct kvm_kpit_channel_state * c,int channel)106 static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
107 int channel)
108 {
109 if (channel == 0)
110 return __kpit_elapsed(pit);
111
112 return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
113 }
114
pit_get_count(struct kvm_pit * pit,int channel)115 static int pit_get_count(struct kvm_pit *pit, int channel)
116 {
117 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
118 s64 d, t;
119 int counter;
120
121 t = kpit_elapsed(pit, c, channel);
122 d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
123
124 switch (c->mode) {
125 case 0:
126 case 1:
127 case 4:
128 case 5:
129 counter = (c->count - d) & 0xffff;
130 break;
131 case 3:
132 /* XXX: may be incorrect for odd counts */
133 counter = c->count - (mod_64((2 * d), c->count));
134 break;
135 default:
136 counter = c->count - mod_64(d, c->count);
137 break;
138 }
139 return counter;
140 }
141
pit_get_out(struct kvm_pit * pit,int channel)142 static int pit_get_out(struct kvm_pit *pit, int channel)
143 {
144 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
145 s64 d, t;
146 int out;
147
148 t = kpit_elapsed(pit, c, channel);
149 d = mul_u64_u32_div(t, KVM_PIT_FREQ, NSEC_PER_SEC);
150
151 switch (c->mode) {
152 default:
153 case 0:
154 out = (d >= c->count);
155 break;
156 case 1:
157 out = (d < c->count);
158 break;
159 case 2:
160 out = ((mod_64(d, c->count) == 0) && (d != 0));
161 break;
162 case 3:
163 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
164 break;
165 case 4:
166 case 5:
167 out = (d == c->count);
168 break;
169 }
170
171 return out;
172 }
173
pit_latch_count(struct kvm_pit * pit,int channel)174 static void pit_latch_count(struct kvm_pit *pit, int channel)
175 {
176 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
177
178 if (!c->count_latched) {
179 c->latched_count = pit_get_count(pit, channel);
180 c->count_latched = c->rw_mode;
181 }
182 }
183
pit_latch_status(struct kvm_pit * pit,int channel)184 static void pit_latch_status(struct kvm_pit *pit, int channel)
185 {
186 struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
187
188 if (!c->status_latched) {
189 /* TODO: Return NULL COUNT (bit 6). */
190 c->status = ((pit_get_out(pit, channel) << 7) |
191 (c->rw_mode << 4) |
192 (c->mode << 1) |
193 c->bcd);
194 c->status_latched = 1;
195 }
196 }
197
pit_state_to_pit(struct kvm_kpit_state * ps)198 static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps)
199 {
200 return container_of(ps, struct kvm_pit, pit_state);
201 }
202
kvm_pit_ack_irq(struct kvm_irq_ack_notifier * kian)203 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
204 {
205 struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
206 irq_ack_notifier);
207 struct kvm_pit *pit = pit_state_to_pit(ps);
208
209 atomic_set(&ps->irq_ack, 1);
210 /* irq_ack should be set before pending is read. Order accesses with
211 * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
212 */
213 smp_mb();
214 if (atomic_dec_if_positive(&ps->pending) > 0)
215 kthread_queue_work(pit->worker, &pit->expired);
216 }
217
__kvm_migrate_pit_timer(struct kvm_vcpu * vcpu)218 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
219 {
220 struct kvm_pit *pit = vcpu->kvm->arch.vpit;
221 struct hrtimer *timer;
222
223 /* Somewhat arbitrarily make vcpu0 the owner of the PIT. */
224 if (vcpu->vcpu_id || !pit)
225 return;
226
227 timer = &pit->pit_state.timer;
228 mutex_lock(&pit->pit_state.lock);
229 if (hrtimer_cancel(timer))
230 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
231 mutex_unlock(&pit->pit_state.lock);
232 }
233
destroy_pit_timer(struct kvm_pit * pit)234 static void destroy_pit_timer(struct kvm_pit *pit)
235 {
236 hrtimer_cancel(&pit->pit_state.timer);
237 kthread_flush_work(&pit->expired);
238 }
239
pit_do_work(struct kthread_work * work)240 static void pit_do_work(struct kthread_work *work)
241 {
242 struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
243 struct kvm *kvm = pit->kvm;
244 struct kvm_vcpu *vcpu;
245 int i;
246 struct kvm_kpit_state *ps = &pit->pit_state;
247
248 if (atomic_read(&ps->reinject) && !atomic_xchg(&ps->irq_ack, 0))
249 return;
250
251 kvm_set_irq(kvm, pit->irq_source_id, 0, 1, false);
252 kvm_set_irq(kvm, pit->irq_source_id, 0, 0, false);
253
254 /*
255 * Provides NMI watchdog support via Virtual Wire mode.
256 * The route is: PIT -> LVT0 in NMI mode.
257 *
258 * Note: Our Virtual Wire implementation does not follow
259 * the MP specification. We propagate a PIT interrupt to all
260 * VCPUs and only when LVT0 is in NMI mode. The interrupt can
261 * also be simultaneously delivered through PIC and IOAPIC.
262 */
263 if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
264 kvm_for_each_vcpu(i, vcpu, kvm)
265 kvm_apic_nmi_wd_deliver(vcpu);
266 }
267
pit_timer_fn(struct hrtimer * data)268 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
269 {
270 struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
271 struct kvm_pit *pt = pit_state_to_pit(ps);
272
273 if (atomic_read(&ps->reinject))
274 atomic_inc(&ps->pending);
275
276 kthread_queue_work(pt->worker, &pt->expired);
277
278 if (ps->is_periodic) {
279 hrtimer_add_expires_ns(&ps->timer, ps->period);
280 return HRTIMER_RESTART;
281 } else
282 return HRTIMER_NORESTART;
283 }
284
kvm_pit_reset_reinject(struct kvm_pit * pit)285 static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
286 {
287 atomic_set(&pit->pit_state.pending, 0);
288 atomic_set(&pit->pit_state.irq_ack, 1);
289 }
290
kvm_pit_set_reinject(struct kvm_pit * pit,bool reinject)291 void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
292 {
293 struct kvm_kpit_state *ps = &pit->pit_state;
294 struct kvm *kvm = pit->kvm;
295
296 if (atomic_read(&ps->reinject) == reinject)
297 return;
298
299 /*
300 * AMD SVM AVIC accelerates EOI write and does not trap.
301 * This cause in-kernel PIT re-inject mode to fail
302 * since it checks ps->irq_ack before kvm_set_irq()
303 * and relies on the ack notifier to timely queue
304 * the pt->worker work iterm and reinject the missed tick.
305 * So, deactivate APICv when PIT is in reinject mode.
306 */
307 if (reinject) {
308 kvm_request_apicv_update(kvm, false,
309 APICV_INHIBIT_REASON_PIT_REINJ);
310 /* The initial state is preserved while ps->reinject == 0. */
311 kvm_pit_reset_reinject(pit);
312 kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
313 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
314 } else {
315 kvm_request_apicv_update(kvm, true,
316 APICV_INHIBIT_REASON_PIT_REINJ);
317 kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
318 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
319 }
320
321 atomic_set(&ps->reinject, reinject);
322 }
323
create_pit_timer(struct kvm_pit * pit,u32 val,int is_period)324 static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
325 {
326 struct kvm_kpit_state *ps = &pit->pit_state;
327 struct kvm *kvm = pit->kvm;
328 s64 interval;
329
330 if (!ioapic_in_kernel(kvm) ||
331 ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
332 return;
333
334 interval = mul_u64_u32_div(val, NSEC_PER_SEC, KVM_PIT_FREQ);
335
336 pr_debug("create pit timer, interval is %llu nsec\n", interval);
337
338 /* TODO The new value only affected after the retriggered */
339 hrtimer_cancel(&ps->timer);
340 kthread_flush_work(&pit->expired);
341 ps->period = interval;
342 ps->is_periodic = is_period;
343
344 kvm_pit_reset_reinject(pit);
345
346 /*
347 * Do not allow the guest to program periodic timers with small
348 * interval, since the hrtimers are not throttled by the host
349 * scheduler.
350 */
351 if (ps->is_periodic) {
352 s64 min_period = min_timer_period_us * 1000LL;
353
354 if (ps->period < min_period) {
355 pr_info_ratelimited(
356 "kvm: requested %lld ns "
357 "i8254 timer period limited to %lld ns\n",
358 ps->period, min_period);
359 ps->period = min_period;
360 }
361 }
362
363 hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
364 HRTIMER_MODE_ABS);
365 }
366
pit_load_count(struct kvm_pit * pit,int channel,u32 val)367 static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
368 {
369 struct kvm_kpit_state *ps = &pit->pit_state;
370
371 pr_debug("load_count val is %u, channel is %d\n", val, channel);
372
373 /*
374 * The largest possible initial count is 0; this is equivalent
375 * to 216 for binary counting and 104 for BCD counting.
376 */
377 if (val == 0)
378 val = 0x10000;
379
380 ps->channels[channel].count = val;
381
382 if (channel != 0) {
383 ps->channels[channel].count_load_time = ktime_get();
384 return;
385 }
386
387 /* Two types of timer
388 * mode 1 is one shot, mode 2 is period, otherwise del timer */
389 switch (ps->channels[0].mode) {
390 case 0:
391 case 1:
392 /* FIXME: enhance mode 4 precision */
393 case 4:
394 create_pit_timer(pit, val, 0);
395 break;
396 case 2:
397 case 3:
398 create_pit_timer(pit, val, 1);
399 break;
400 default:
401 destroy_pit_timer(pit);
402 }
403 }
404
kvm_pit_load_count(struct kvm_pit * pit,int channel,u32 val,int hpet_legacy_start)405 void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
406 int hpet_legacy_start)
407 {
408 u8 saved_mode;
409
410 WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
411
412 if (hpet_legacy_start) {
413 /* save existing mode for later reenablement */
414 WARN_ON(channel != 0);
415 saved_mode = pit->pit_state.channels[0].mode;
416 pit->pit_state.channels[0].mode = 0xff; /* disable timer */
417 pit_load_count(pit, channel, val);
418 pit->pit_state.channels[0].mode = saved_mode;
419 } else {
420 pit_load_count(pit, channel, val);
421 }
422 }
423
dev_to_pit(struct kvm_io_device * dev)424 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
425 {
426 return container_of(dev, struct kvm_pit, dev);
427 }
428
speaker_to_pit(struct kvm_io_device * dev)429 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
430 {
431 return container_of(dev, struct kvm_pit, speaker_dev);
432 }
433
pit_in_range(gpa_t addr)434 static inline int pit_in_range(gpa_t addr)
435 {
436 return ((addr >= KVM_PIT_BASE_ADDRESS) &&
437 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
438 }
439
pit_ioport_write(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t addr,int len,const void * data)440 static int pit_ioport_write(struct kvm_vcpu *vcpu,
441 struct kvm_io_device *this,
442 gpa_t addr, int len, const void *data)
443 {
444 struct kvm_pit *pit = dev_to_pit(this);
445 struct kvm_kpit_state *pit_state = &pit->pit_state;
446 int channel, access;
447 struct kvm_kpit_channel_state *s;
448 u32 val = *(u32 *) data;
449 if (!pit_in_range(addr))
450 return -EOPNOTSUPP;
451
452 val &= 0xff;
453 addr &= KVM_PIT_CHANNEL_MASK;
454
455 mutex_lock(&pit_state->lock);
456
457 if (val != 0)
458 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
459 (unsigned int)addr, len, val);
460
461 if (addr == 3) {
462 channel = val >> 6;
463 if (channel == 3) {
464 /* Read-Back Command. */
465 for (channel = 0; channel < 3; channel++) {
466 if (val & (2 << channel)) {
467 if (!(val & 0x20))
468 pit_latch_count(pit, channel);
469 if (!(val & 0x10))
470 pit_latch_status(pit, channel);
471 }
472 }
473 } else {
474 /* Select Counter <channel>. */
475 s = &pit_state->channels[channel];
476 access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
477 if (access == 0) {
478 pit_latch_count(pit, channel);
479 } else {
480 s->rw_mode = access;
481 s->read_state = access;
482 s->write_state = access;
483 s->mode = (val >> 1) & 7;
484 if (s->mode > 5)
485 s->mode -= 4;
486 s->bcd = val & 1;
487 }
488 }
489 } else {
490 /* Write Count. */
491 s = &pit_state->channels[addr];
492 switch (s->write_state) {
493 default:
494 case RW_STATE_LSB:
495 pit_load_count(pit, addr, val);
496 break;
497 case RW_STATE_MSB:
498 pit_load_count(pit, addr, val << 8);
499 break;
500 case RW_STATE_WORD0:
501 s->write_latch = val;
502 s->write_state = RW_STATE_WORD1;
503 break;
504 case RW_STATE_WORD1:
505 pit_load_count(pit, addr, s->write_latch | (val << 8));
506 s->write_state = RW_STATE_WORD0;
507 break;
508 }
509 }
510
511 mutex_unlock(&pit_state->lock);
512 return 0;
513 }
514
pit_ioport_read(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t addr,int len,void * data)515 static int pit_ioport_read(struct kvm_vcpu *vcpu,
516 struct kvm_io_device *this,
517 gpa_t addr, int len, void *data)
518 {
519 struct kvm_pit *pit = dev_to_pit(this);
520 struct kvm_kpit_state *pit_state = &pit->pit_state;
521 int ret, count;
522 struct kvm_kpit_channel_state *s;
523 if (!pit_in_range(addr))
524 return -EOPNOTSUPP;
525
526 addr &= KVM_PIT_CHANNEL_MASK;
527 if (addr == 3)
528 return 0;
529
530 s = &pit_state->channels[addr];
531
532 mutex_lock(&pit_state->lock);
533
534 if (s->status_latched) {
535 s->status_latched = 0;
536 ret = s->status;
537 } else if (s->count_latched) {
538 switch (s->count_latched) {
539 default:
540 case RW_STATE_LSB:
541 ret = s->latched_count & 0xff;
542 s->count_latched = 0;
543 break;
544 case RW_STATE_MSB:
545 ret = s->latched_count >> 8;
546 s->count_latched = 0;
547 break;
548 case RW_STATE_WORD0:
549 ret = s->latched_count & 0xff;
550 s->count_latched = RW_STATE_MSB;
551 break;
552 }
553 } else {
554 switch (s->read_state) {
555 default:
556 case RW_STATE_LSB:
557 count = pit_get_count(pit, addr);
558 ret = count & 0xff;
559 break;
560 case RW_STATE_MSB:
561 count = pit_get_count(pit, addr);
562 ret = (count >> 8) & 0xff;
563 break;
564 case RW_STATE_WORD0:
565 count = pit_get_count(pit, addr);
566 ret = count & 0xff;
567 s->read_state = RW_STATE_WORD1;
568 break;
569 case RW_STATE_WORD1:
570 count = pit_get_count(pit, addr);
571 ret = (count >> 8) & 0xff;
572 s->read_state = RW_STATE_WORD0;
573 break;
574 }
575 }
576
577 if (len > sizeof(ret))
578 len = sizeof(ret);
579 memcpy(data, (char *)&ret, len);
580
581 mutex_unlock(&pit_state->lock);
582 return 0;
583 }
584
speaker_ioport_write(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t addr,int len,const void * data)585 static int speaker_ioport_write(struct kvm_vcpu *vcpu,
586 struct kvm_io_device *this,
587 gpa_t addr, int len, const void *data)
588 {
589 struct kvm_pit *pit = speaker_to_pit(this);
590 struct kvm_kpit_state *pit_state = &pit->pit_state;
591 u32 val = *(u32 *) data;
592 if (addr != KVM_SPEAKER_BASE_ADDRESS)
593 return -EOPNOTSUPP;
594
595 mutex_lock(&pit_state->lock);
596 pit_state->speaker_data_on = (val >> 1) & 1;
597 pit_set_gate(pit, 2, val & 1);
598 mutex_unlock(&pit_state->lock);
599 return 0;
600 }
601
speaker_ioport_read(struct kvm_vcpu * vcpu,struct kvm_io_device * this,gpa_t addr,int len,void * data)602 static int speaker_ioport_read(struct kvm_vcpu *vcpu,
603 struct kvm_io_device *this,
604 gpa_t addr, int len, void *data)
605 {
606 struct kvm_pit *pit = speaker_to_pit(this);
607 struct kvm_kpit_state *pit_state = &pit->pit_state;
608 unsigned int refresh_clock;
609 int ret;
610 if (addr != KVM_SPEAKER_BASE_ADDRESS)
611 return -EOPNOTSUPP;
612
613 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
614 refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
615
616 mutex_lock(&pit_state->lock);
617 ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) |
618 (pit_get_out(pit, 2) << 5) | (refresh_clock << 4));
619 if (len > sizeof(ret))
620 len = sizeof(ret);
621 memcpy(data, (char *)&ret, len);
622 mutex_unlock(&pit_state->lock);
623 return 0;
624 }
625
kvm_pit_reset(struct kvm_pit * pit)626 static void kvm_pit_reset(struct kvm_pit *pit)
627 {
628 int i;
629 struct kvm_kpit_channel_state *c;
630
631 pit->pit_state.flags = 0;
632 for (i = 0; i < 3; i++) {
633 c = &pit->pit_state.channels[i];
634 c->mode = 0xff;
635 c->gate = (i != 2);
636 pit_load_count(pit, i, 0);
637 }
638
639 kvm_pit_reset_reinject(pit);
640 }
641
pit_mask_notifer(struct kvm_irq_mask_notifier * kimn,bool mask)642 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
643 {
644 struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
645
646 if (!mask)
647 kvm_pit_reset_reinject(pit);
648 }
649
650 static const struct kvm_io_device_ops pit_dev_ops = {
651 .read = pit_ioport_read,
652 .write = pit_ioport_write,
653 };
654
655 static const struct kvm_io_device_ops speaker_dev_ops = {
656 .read = speaker_ioport_read,
657 .write = speaker_ioport_write,
658 };
659
kvm_create_pit(struct kvm * kvm,u32 flags)660 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
661 {
662 struct kvm_pit *pit;
663 struct kvm_kpit_state *pit_state;
664 struct pid *pid;
665 pid_t pid_nr;
666 int ret;
667
668 pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL_ACCOUNT);
669 if (!pit)
670 return NULL;
671
672 pit->irq_source_id = kvm_request_irq_source_id(kvm);
673 if (pit->irq_source_id < 0)
674 goto fail_request;
675
676 mutex_init(&pit->pit_state.lock);
677
678 pid = get_pid(task_tgid(current));
679 pid_nr = pid_vnr(pid);
680 put_pid(pid);
681
682 pit->worker = kthread_create_worker(0, "kvm-pit/%d", pid_nr);
683 if (IS_ERR(pit->worker))
684 goto fail_kthread;
685
686 kthread_init_work(&pit->expired, pit_do_work);
687
688 pit->kvm = kvm;
689
690 pit_state = &pit->pit_state;
691 hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
692 pit_state->timer.function = pit_timer_fn;
693
694 pit_state->irq_ack_notifier.gsi = 0;
695 pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
696 pit->mask_notifier.func = pit_mask_notifer;
697
698 kvm_pit_reset(pit);
699
700 kvm_pit_set_reinject(pit, true);
701
702 mutex_lock(&kvm->slots_lock);
703 kvm_iodevice_init(&pit->dev, &pit_dev_ops);
704 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
705 KVM_PIT_MEM_LENGTH, &pit->dev);
706 if (ret < 0)
707 goto fail_register_pit;
708
709 if (flags & KVM_PIT_SPEAKER_DUMMY) {
710 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
711 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
712 KVM_SPEAKER_BASE_ADDRESS, 4,
713 &pit->speaker_dev);
714 if (ret < 0)
715 goto fail_register_speaker;
716 }
717 mutex_unlock(&kvm->slots_lock);
718
719 return pit;
720
721 fail_register_speaker:
722 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
723 fail_register_pit:
724 mutex_unlock(&kvm->slots_lock);
725 kvm_pit_set_reinject(pit, false);
726 kthread_destroy_worker(pit->worker);
727 fail_kthread:
728 kvm_free_irq_source_id(kvm, pit->irq_source_id);
729 fail_request:
730 kfree(pit);
731 return NULL;
732 }
733
kvm_free_pit(struct kvm * kvm)734 void kvm_free_pit(struct kvm *kvm)
735 {
736 struct kvm_pit *pit = kvm->arch.vpit;
737
738 if (pit) {
739 mutex_lock(&kvm->slots_lock);
740 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
741 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
742 mutex_unlock(&kvm->slots_lock);
743 kvm_pit_set_reinject(pit, false);
744 hrtimer_cancel(&pit->pit_state.timer);
745 kthread_destroy_worker(pit->worker);
746 kvm_free_irq_source_id(kvm, pit->irq_source_id);
747 kfree(pit);
748 }
749 }
750