1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4 *
5 * Authors:
6 * Anup Patel <anup.patel@wdc.com>
7 */
8
9 #include <linux/bitops.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kdebug.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sched/signal.h>
18 #include <linux/fs.h>
19 #include <linux/kvm_host.h>
20 #include <asm/csr.h>
21 #include <asm/hwcap.h>
22
23 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
24 KVM_GENERIC_VCPU_STATS(),
25 STATS_DESC_COUNTER(VCPU, ecall_exit_stat),
26 STATS_DESC_COUNTER(VCPU, wfi_exit_stat),
27 STATS_DESC_COUNTER(VCPU, mmio_exit_user),
28 STATS_DESC_COUNTER(VCPU, mmio_exit_kernel),
29 STATS_DESC_COUNTER(VCPU, exits)
30 };
31
32 const struct kvm_stats_header kvm_vcpu_stats_header = {
33 .name_size = KVM_STATS_NAME_SIZE,
34 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
35 .id_offset = sizeof(struct kvm_stats_header),
36 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
37 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
38 sizeof(kvm_vcpu_stats_desc),
39 };
40
41 #define KVM_RISCV_ISA_ALLOWED (riscv_isa_extension_mask(a) | \
42 riscv_isa_extension_mask(c) | \
43 riscv_isa_extension_mask(d) | \
44 riscv_isa_extension_mask(f) | \
45 riscv_isa_extension_mask(i) | \
46 riscv_isa_extension_mask(m) | \
47 riscv_isa_extension_mask(s) | \
48 riscv_isa_extension_mask(u))
49
kvm_riscv_reset_vcpu(struct kvm_vcpu * vcpu)50 static void kvm_riscv_reset_vcpu(struct kvm_vcpu *vcpu)
51 {
52 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
53 struct kvm_vcpu_csr *reset_csr = &vcpu->arch.guest_reset_csr;
54 struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
55 struct kvm_cpu_context *reset_cntx = &vcpu->arch.guest_reset_context;
56
57 memcpy(csr, reset_csr, sizeof(*csr));
58
59 memcpy(cntx, reset_cntx, sizeof(*cntx));
60
61 kvm_riscv_vcpu_fp_reset(vcpu);
62
63 kvm_riscv_vcpu_timer_reset(vcpu);
64
65 WRITE_ONCE(vcpu->arch.irqs_pending, 0);
66 WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0);
67 }
68
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)69 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
70 {
71 return 0;
72 }
73
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)74 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
75 {
76 struct kvm_cpu_context *cntx;
77
78 /* Mark this VCPU never ran */
79 vcpu->arch.ran_atleast_once = false;
80
81 /* Setup ISA features available to VCPU */
82 vcpu->arch.isa = riscv_isa_extension_base(NULL) & KVM_RISCV_ISA_ALLOWED;
83
84 /* Setup reset state of shadow SSTATUS and HSTATUS CSRs */
85 cntx = &vcpu->arch.guest_reset_context;
86 cntx->sstatus = SR_SPP | SR_SPIE;
87 cntx->hstatus = 0;
88 cntx->hstatus |= HSTATUS_VTW;
89 cntx->hstatus |= HSTATUS_SPVP;
90 cntx->hstatus |= HSTATUS_SPV;
91
92 /* Setup VCPU timer */
93 kvm_riscv_vcpu_timer_init(vcpu);
94
95 /* Reset VCPU */
96 kvm_riscv_reset_vcpu(vcpu);
97
98 return 0;
99 }
100
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)101 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
102 {
103 }
104
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)105 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
106 {
107 /* Cleanup VCPU timer */
108 kvm_riscv_vcpu_timer_deinit(vcpu);
109
110 /* Flush the pages pre-allocated for Stage2 page table mappings */
111 kvm_riscv_stage2_flush_cache(vcpu);
112 }
113
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)114 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
115 {
116 return kvm_riscv_vcpu_has_interrupts(vcpu, 1UL << IRQ_VS_TIMER);
117 }
118
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)119 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
120 {
121 }
122
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)123 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
124 {
125 }
126
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)127 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
128 {
129 return (kvm_riscv_vcpu_has_interrupts(vcpu, -1UL) &&
130 !vcpu->arch.power_off && !vcpu->arch.pause);
131 }
132
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)133 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
134 {
135 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
136 }
137
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)138 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
139 {
140 return (vcpu->arch.guest_context.sstatus & SR_SPP) ? true : false;
141 }
142
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)143 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
144 {
145 return VM_FAULT_SIGBUS;
146 }
147
kvm_riscv_vcpu_get_reg_config(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)148 static int kvm_riscv_vcpu_get_reg_config(struct kvm_vcpu *vcpu,
149 const struct kvm_one_reg *reg)
150 {
151 unsigned long __user *uaddr =
152 (unsigned long __user *)(unsigned long)reg->addr;
153 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
154 KVM_REG_SIZE_MASK |
155 KVM_REG_RISCV_CONFIG);
156 unsigned long reg_val;
157
158 if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
159 return -EINVAL;
160
161 switch (reg_num) {
162 case KVM_REG_RISCV_CONFIG_REG(isa):
163 reg_val = vcpu->arch.isa;
164 break;
165 default:
166 return -EINVAL;
167 }
168
169 if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id)))
170 return -EFAULT;
171
172 return 0;
173 }
174
kvm_riscv_vcpu_set_reg_config(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)175 static int kvm_riscv_vcpu_set_reg_config(struct kvm_vcpu *vcpu,
176 const struct kvm_one_reg *reg)
177 {
178 unsigned long __user *uaddr =
179 (unsigned long __user *)(unsigned long)reg->addr;
180 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
181 KVM_REG_SIZE_MASK |
182 KVM_REG_RISCV_CONFIG);
183 unsigned long reg_val;
184
185 if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
186 return -EINVAL;
187
188 if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id)))
189 return -EFAULT;
190
191 switch (reg_num) {
192 case KVM_REG_RISCV_CONFIG_REG(isa):
193 if (!vcpu->arch.ran_atleast_once) {
194 vcpu->arch.isa = reg_val;
195 vcpu->arch.isa &= riscv_isa_extension_base(NULL);
196 vcpu->arch.isa &= KVM_RISCV_ISA_ALLOWED;
197 kvm_riscv_vcpu_fp_reset(vcpu);
198 } else {
199 return -EOPNOTSUPP;
200 }
201 break;
202 default:
203 return -EINVAL;
204 }
205
206 return 0;
207 }
208
kvm_riscv_vcpu_get_reg_core(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)209 static int kvm_riscv_vcpu_get_reg_core(struct kvm_vcpu *vcpu,
210 const struct kvm_one_reg *reg)
211 {
212 struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
213 unsigned long __user *uaddr =
214 (unsigned long __user *)(unsigned long)reg->addr;
215 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
216 KVM_REG_SIZE_MASK |
217 KVM_REG_RISCV_CORE);
218 unsigned long reg_val;
219
220 if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
221 return -EINVAL;
222 if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long))
223 return -EINVAL;
224
225 if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc))
226 reg_val = cntx->sepc;
227 else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num &&
228 reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6))
229 reg_val = ((unsigned long *)cntx)[reg_num];
230 else if (reg_num == KVM_REG_RISCV_CORE_REG(mode))
231 reg_val = (cntx->sstatus & SR_SPP) ?
232 KVM_RISCV_MODE_S : KVM_RISCV_MODE_U;
233 else
234 return -EINVAL;
235
236 if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id)))
237 return -EFAULT;
238
239 return 0;
240 }
241
kvm_riscv_vcpu_set_reg_core(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)242 static int kvm_riscv_vcpu_set_reg_core(struct kvm_vcpu *vcpu,
243 const struct kvm_one_reg *reg)
244 {
245 struct kvm_cpu_context *cntx = &vcpu->arch.guest_context;
246 unsigned long __user *uaddr =
247 (unsigned long __user *)(unsigned long)reg->addr;
248 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
249 KVM_REG_SIZE_MASK |
250 KVM_REG_RISCV_CORE);
251 unsigned long reg_val;
252
253 if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
254 return -EINVAL;
255 if (reg_num >= sizeof(struct kvm_riscv_core) / sizeof(unsigned long))
256 return -EINVAL;
257
258 if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id)))
259 return -EFAULT;
260
261 if (reg_num == KVM_REG_RISCV_CORE_REG(regs.pc))
262 cntx->sepc = reg_val;
263 else if (KVM_REG_RISCV_CORE_REG(regs.pc) < reg_num &&
264 reg_num <= KVM_REG_RISCV_CORE_REG(regs.t6))
265 ((unsigned long *)cntx)[reg_num] = reg_val;
266 else if (reg_num == KVM_REG_RISCV_CORE_REG(mode)) {
267 if (reg_val == KVM_RISCV_MODE_S)
268 cntx->sstatus |= SR_SPP;
269 else
270 cntx->sstatus &= ~SR_SPP;
271 } else
272 return -EINVAL;
273
274 return 0;
275 }
276
kvm_riscv_vcpu_get_reg_csr(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)277 static int kvm_riscv_vcpu_get_reg_csr(struct kvm_vcpu *vcpu,
278 const struct kvm_one_reg *reg)
279 {
280 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
281 unsigned long __user *uaddr =
282 (unsigned long __user *)(unsigned long)reg->addr;
283 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
284 KVM_REG_SIZE_MASK |
285 KVM_REG_RISCV_CSR);
286 unsigned long reg_val;
287
288 if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
289 return -EINVAL;
290 if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long))
291 return -EINVAL;
292
293 if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) {
294 kvm_riscv_vcpu_flush_interrupts(vcpu);
295 reg_val = (csr->hvip >> VSIP_TO_HVIP_SHIFT) & VSIP_VALID_MASK;
296 } else
297 reg_val = ((unsigned long *)csr)[reg_num];
298
299 if (copy_to_user(uaddr, ®_val, KVM_REG_SIZE(reg->id)))
300 return -EFAULT;
301
302 return 0;
303 }
304
kvm_riscv_vcpu_set_reg_csr(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)305 static int kvm_riscv_vcpu_set_reg_csr(struct kvm_vcpu *vcpu,
306 const struct kvm_one_reg *reg)
307 {
308 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
309 unsigned long __user *uaddr =
310 (unsigned long __user *)(unsigned long)reg->addr;
311 unsigned long reg_num = reg->id & ~(KVM_REG_ARCH_MASK |
312 KVM_REG_SIZE_MASK |
313 KVM_REG_RISCV_CSR);
314 unsigned long reg_val;
315
316 if (KVM_REG_SIZE(reg->id) != sizeof(unsigned long))
317 return -EINVAL;
318 if (reg_num >= sizeof(struct kvm_riscv_csr) / sizeof(unsigned long))
319 return -EINVAL;
320
321 if (copy_from_user(®_val, uaddr, KVM_REG_SIZE(reg->id)))
322 return -EFAULT;
323
324 if (reg_num == KVM_REG_RISCV_CSR_REG(sip)) {
325 reg_val &= VSIP_VALID_MASK;
326 reg_val <<= VSIP_TO_HVIP_SHIFT;
327 }
328
329 ((unsigned long *)csr)[reg_num] = reg_val;
330
331 if (reg_num == KVM_REG_RISCV_CSR_REG(sip))
332 WRITE_ONCE(vcpu->arch.irqs_pending_mask, 0);
333
334 return 0;
335 }
336
kvm_riscv_vcpu_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)337 static int kvm_riscv_vcpu_set_reg(struct kvm_vcpu *vcpu,
338 const struct kvm_one_reg *reg)
339 {
340 if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG)
341 return kvm_riscv_vcpu_set_reg_config(vcpu, reg);
342 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE)
343 return kvm_riscv_vcpu_set_reg_core(vcpu, reg);
344 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR)
345 return kvm_riscv_vcpu_set_reg_csr(vcpu, reg);
346 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER)
347 return kvm_riscv_vcpu_set_reg_timer(vcpu, reg);
348 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F)
349 return kvm_riscv_vcpu_set_reg_fp(vcpu, reg,
350 KVM_REG_RISCV_FP_F);
351 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D)
352 return kvm_riscv_vcpu_set_reg_fp(vcpu, reg,
353 KVM_REG_RISCV_FP_D);
354
355 return -EINVAL;
356 }
357
kvm_riscv_vcpu_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)358 static int kvm_riscv_vcpu_get_reg(struct kvm_vcpu *vcpu,
359 const struct kvm_one_reg *reg)
360 {
361 if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CONFIG)
362 return kvm_riscv_vcpu_get_reg_config(vcpu, reg);
363 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CORE)
364 return kvm_riscv_vcpu_get_reg_core(vcpu, reg);
365 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_CSR)
366 return kvm_riscv_vcpu_get_reg_csr(vcpu, reg);
367 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_TIMER)
368 return kvm_riscv_vcpu_get_reg_timer(vcpu, reg);
369 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_F)
370 return kvm_riscv_vcpu_get_reg_fp(vcpu, reg,
371 KVM_REG_RISCV_FP_F);
372 else if ((reg->id & KVM_REG_RISCV_TYPE_MASK) == KVM_REG_RISCV_FP_D)
373 return kvm_riscv_vcpu_get_reg_fp(vcpu, reg,
374 KVM_REG_RISCV_FP_D);
375
376 return -EINVAL;
377 }
378
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)379 long kvm_arch_vcpu_async_ioctl(struct file *filp,
380 unsigned int ioctl, unsigned long arg)
381 {
382 struct kvm_vcpu *vcpu = filp->private_data;
383 void __user *argp = (void __user *)arg;
384
385 if (ioctl == KVM_INTERRUPT) {
386 struct kvm_interrupt irq;
387
388 if (copy_from_user(&irq, argp, sizeof(irq)))
389 return -EFAULT;
390
391 if (irq.irq == KVM_INTERRUPT_SET)
392 return kvm_riscv_vcpu_set_interrupt(vcpu, IRQ_VS_EXT);
393 else
394 return kvm_riscv_vcpu_unset_interrupt(vcpu, IRQ_VS_EXT);
395 }
396
397 return -ENOIOCTLCMD;
398 }
399
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)400 long kvm_arch_vcpu_ioctl(struct file *filp,
401 unsigned int ioctl, unsigned long arg)
402 {
403 struct kvm_vcpu *vcpu = filp->private_data;
404 void __user *argp = (void __user *)arg;
405 long r = -EINVAL;
406
407 switch (ioctl) {
408 case KVM_SET_ONE_REG:
409 case KVM_GET_ONE_REG: {
410 struct kvm_one_reg reg;
411
412 r = -EFAULT;
413 if (copy_from_user(®, argp, sizeof(reg)))
414 break;
415
416 if (ioctl == KVM_SET_ONE_REG)
417 r = kvm_riscv_vcpu_set_reg(vcpu, ®);
418 else
419 r = kvm_riscv_vcpu_get_reg(vcpu, ®);
420 break;
421 }
422 default:
423 break;
424 }
425
426 return r;
427 }
428
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)429 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
430 struct kvm_sregs *sregs)
431 {
432 return -EINVAL;
433 }
434
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)435 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
436 struct kvm_sregs *sregs)
437 {
438 return -EINVAL;
439 }
440
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)441 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
442 {
443 return -EINVAL;
444 }
445
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)446 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
447 {
448 return -EINVAL;
449 }
450
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)451 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
452 struct kvm_translation *tr)
453 {
454 return -EINVAL;
455 }
456
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)457 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
458 {
459 return -EINVAL;
460 }
461
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)462 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
463 {
464 return -EINVAL;
465 }
466
kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu * vcpu)467 void kvm_riscv_vcpu_flush_interrupts(struct kvm_vcpu *vcpu)
468 {
469 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
470 unsigned long mask, val;
471
472 if (READ_ONCE(vcpu->arch.irqs_pending_mask)) {
473 mask = xchg_acquire(&vcpu->arch.irqs_pending_mask, 0);
474 val = READ_ONCE(vcpu->arch.irqs_pending) & mask;
475
476 csr->hvip &= ~mask;
477 csr->hvip |= val;
478 }
479 }
480
kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu * vcpu)481 void kvm_riscv_vcpu_sync_interrupts(struct kvm_vcpu *vcpu)
482 {
483 unsigned long hvip;
484 struct kvm_vcpu_arch *v = &vcpu->arch;
485 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
486
487 /* Read current HVIP and VSIE CSRs */
488 csr->vsie = csr_read(CSR_VSIE);
489
490 /* Sync-up HVIP.VSSIP bit changes does by Guest */
491 hvip = csr_read(CSR_HVIP);
492 if ((csr->hvip ^ hvip) & (1UL << IRQ_VS_SOFT)) {
493 if (hvip & (1UL << IRQ_VS_SOFT)) {
494 if (!test_and_set_bit(IRQ_VS_SOFT,
495 &v->irqs_pending_mask))
496 set_bit(IRQ_VS_SOFT, &v->irqs_pending);
497 } else {
498 if (!test_and_set_bit(IRQ_VS_SOFT,
499 &v->irqs_pending_mask))
500 clear_bit(IRQ_VS_SOFT, &v->irqs_pending);
501 }
502 }
503 }
504
kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu * vcpu,unsigned int irq)505 int kvm_riscv_vcpu_set_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
506 {
507 if (irq != IRQ_VS_SOFT &&
508 irq != IRQ_VS_TIMER &&
509 irq != IRQ_VS_EXT)
510 return -EINVAL;
511
512 set_bit(irq, &vcpu->arch.irqs_pending);
513 smp_mb__before_atomic();
514 set_bit(irq, &vcpu->arch.irqs_pending_mask);
515
516 kvm_vcpu_kick(vcpu);
517
518 return 0;
519 }
520
kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu * vcpu,unsigned int irq)521 int kvm_riscv_vcpu_unset_interrupt(struct kvm_vcpu *vcpu, unsigned int irq)
522 {
523 if (irq != IRQ_VS_SOFT &&
524 irq != IRQ_VS_TIMER &&
525 irq != IRQ_VS_EXT)
526 return -EINVAL;
527
528 clear_bit(irq, &vcpu->arch.irqs_pending);
529 smp_mb__before_atomic();
530 set_bit(irq, &vcpu->arch.irqs_pending_mask);
531
532 return 0;
533 }
534
kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu * vcpu,unsigned long mask)535 bool kvm_riscv_vcpu_has_interrupts(struct kvm_vcpu *vcpu, unsigned long mask)
536 {
537 unsigned long ie = ((vcpu->arch.guest_csr.vsie & VSIP_VALID_MASK)
538 << VSIP_TO_HVIP_SHIFT) & mask;
539
540 return (READ_ONCE(vcpu->arch.irqs_pending) & ie) ? true : false;
541 }
542
kvm_riscv_vcpu_power_off(struct kvm_vcpu * vcpu)543 void kvm_riscv_vcpu_power_off(struct kvm_vcpu *vcpu)
544 {
545 vcpu->arch.power_off = true;
546 kvm_make_request(KVM_REQ_SLEEP, vcpu);
547 kvm_vcpu_kick(vcpu);
548 }
549
kvm_riscv_vcpu_power_on(struct kvm_vcpu * vcpu)550 void kvm_riscv_vcpu_power_on(struct kvm_vcpu *vcpu)
551 {
552 vcpu->arch.power_off = false;
553 kvm_vcpu_wake_up(vcpu);
554 }
555
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)556 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
557 struct kvm_mp_state *mp_state)
558 {
559 if (vcpu->arch.power_off)
560 mp_state->mp_state = KVM_MP_STATE_STOPPED;
561 else
562 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
563
564 return 0;
565 }
566
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)567 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
568 struct kvm_mp_state *mp_state)
569 {
570 int ret = 0;
571
572 switch (mp_state->mp_state) {
573 case KVM_MP_STATE_RUNNABLE:
574 vcpu->arch.power_off = false;
575 break;
576 case KVM_MP_STATE_STOPPED:
577 kvm_riscv_vcpu_power_off(vcpu);
578 break;
579 default:
580 ret = -EINVAL;
581 }
582
583 return ret;
584 }
585
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)586 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
587 struct kvm_guest_debug *dbg)
588 {
589 /* TODO; To be implemented later. */
590 return -EINVAL;
591 }
592
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)593 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
594 {
595 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
596
597 csr_write(CSR_VSSTATUS, csr->vsstatus);
598 csr_write(CSR_VSIE, csr->vsie);
599 csr_write(CSR_VSTVEC, csr->vstvec);
600 csr_write(CSR_VSSCRATCH, csr->vsscratch);
601 csr_write(CSR_VSEPC, csr->vsepc);
602 csr_write(CSR_VSCAUSE, csr->vscause);
603 csr_write(CSR_VSTVAL, csr->vstval);
604 csr_write(CSR_HVIP, csr->hvip);
605 csr_write(CSR_VSATP, csr->vsatp);
606
607 kvm_riscv_stage2_update_hgatp(vcpu);
608
609 kvm_riscv_vcpu_timer_restore(vcpu);
610
611 kvm_riscv_vcpu_host_fp_save(&vcpu->arch.host_context);
612 kvm_riscv_vcpu_guest_fp_restore(&vcpu->arch.guest_context,
613 vcpu->arch.isa);
614
615 vcpu->cpu = cpu;
616 }
617
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)618 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
619 {
620 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
621
622 vcpu->cpu = -1;
623
624 kvm_riscv_vcpu_guest_fp_save(&vcpu->arch.guest_context,
625 vcpu->arch.isa);
626 kvm_riscv_vcpu_host_fp_restore(&vcpu->arch.host_context);
627
628 csr_write(CSR_HGATP, 0);
629
630 csr->vsstatus = csr_read(CSR_VSSTATUS);
631 csr->vsie = csr_read(CSR_VSIE);
632 csr->vstvec = csr_read(CSR_VSTVEC);
633 csr->vsscratch = csr_read(CSR_VSSCRATCH);
634 csr->vsepc = csr_read(CSR_VSEPC);
635 csr->vscause = csr_read(CSR_VSCAUSE);
636 csr->vstval = csr_read(CSR_VSTVAL);
637 csr->hvip = csr_read(CSR_HVIP);
638 csr->vsatp = csr_read(CSR_VSATP);
639 }
640
kvm_riscv_check_vcpu_requests(struct kvm_vcpu * vcpu)641 static void kvm_riscv_check_vcpu_requests(struct kvm_vcpu *vcpu)
642 {
643 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
644
645 if (kvm_request_pending(vcpu)) {
646 if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) {
647 rcuwait_wait_event(wait,
648 (!vcpu->arch.power_off) && (!vcpu->arch.pause),
649 TASK_INTERRUPTIBLE);
650
651 if (vcpu->arch.power_off || vcpu->arch.pause) {
652 /*
653 * Awaken to handle a signal, request to
654 * sleep again later.
655 */
656 kvm_make_request(KVM_REQ_SLEEP, vcpu);
657 }
658 }
659
660 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
661 kvm_riscv_reset_vcpu(vcpu);
662
663 if (kvm_check_request(KVM_REQ_UPDATE_HGATP, vcpu))
664 kvm_riscv_stage2_update_hgatp(vcpu);
665
666 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
667 __kvm_riscv_hfence_gvma_all();
668 }
669 }
670
kvm_riscv_update_hvip(struct kvm_vcpu * vcpu)671 static void kvm_riscv_update_hvip(struct kvm_vcpu *vcpu)
672 {
673 struct kvm_vcpu_csr *csr = &vcpu->arch.guest_csr;
674
675 csr_write(CSR_HVIP, csr->hvip);
676 }
677
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)678 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
679 {
680 int ret;
681 struct kvm_cpu_trap trap;
682 struct kvm_run *run = vcpu->run;
683
684 /* Mark this VCPU ran at least once */
685 vcpu->arch.ran_atleast_once = true;
686
687 vcpu->arch.srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
688
689 /* Process MMIO value returned from user-space */
690 if (run->exit_reason == KVM_EXIT_MMIO) {
691 ret = kvm_riscv_vcpu_mmio_return(vcpu, vcpu->run);
692 if (ret) {
693 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
694 return ret;
695 }
696 }
697
698 /* Process SBI value returned from user-space */
699 if (run->exit_reason == KVM_EXIT_RISCV_SBI) {
700 ret = kvm_riscv_vcpu_sbi_return(vcpu, vcpu->run);
701 if (ret) {
702 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
703 return ret;
704 }
705 }
706
707 if (run->immediate_exit) {
708 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
709 return -EINTR;
710 }
711
712 vcpu_load(vcpu);
713
714 kvm_sigset_activate(vcpu);
715
716 ret = 1;
717 run->exit_reason = KVM_EXIT_UNKNOWN;
718 while (ret > 0) {
719 /* Check conditions before entering the guest */
720 cond_resched();
721
722 kvm_riscv_stage2_vmid_update(vcpu);
723
724 kvm_riscv_check_vcpu_requests(vcpu);
725
726 preempt_disable();
727
728 local_irq_disable();
729
730 /*
731 * Exit if we have a signal pending so that we can deliver
732 * the signal to user space.
733 */
734 if (signal_pending(current)) {
735 ret = -EINTR;
736 run->exit_reason = KVM_EXIT_INTR;
737 }
738
739 /*
740 * Ensure we set mode to IN_GUEST_MODE after we disable
741 * interrupts and before the final VCPU requests check.
742 * See the comment in kvm_vcpu_exiting_guest_mode() and
743 * Documentation/virt/kvm/vcpu-requests.rst
744 */
745 vcpu->mode = IN_GUEST_MODE;
746
747 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
748 smp_mb__after_srcu_read_unlock();
749
750 /*
751 * We might have got VCPU interrupts updated asynchronously
752 * so update it in HW.
753 */
754 kvm_riscv_vcpu_flush_interrupts(vcpu);
755
756 /* Update HVIP CSR for current CPU */
757 kvm_riscv_update_hvip(vcpu);
758
759 if (ret <= 0 ||
760 kvm_riscv_stage2_vmid_ver_changed(&vcpu->kvm->arch.vmid) ||
761 kvm_request_pending(vcpu)) {
762 vcpu->mode = OUTSIDE_GUEST_MODE;
763 local_irq_enable();
764 preempt_enable();
765 vcpu->arch.srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
766 continue;
767 }
768
769 guest_enter_irqoff();
770
771 __kvm_riscv_switch_to(&vcpu->arch);
772
773 vcpu->mode = OUTSIDE_GUEST_MODE;
774 vcpu->stat.exits++;
775
776 /*
777 * Save SCAUSE, STVAL, HTVAL, and HTINST because we might
778 * get an interrupt between __kvm_riscv_switch_to() and
779 * local_irq_enable() which can potentially change CSRs.
780 */
781 trap.sepc = vcpu->arch.guest_context.sepc;
782 trap.scause = csr_read(CSR_SCAUSE);
783 trap.stval = csr_read(CSR_STVAL);
784 trap.htval = csr_read(CSR_HTVAL);
785 trap.htinst = csr_read(CSR_HTINST);
786
787 /* Syncup interrupts state with HW */
788 kvm_riscv_vcpu_sync_interrupts(vcpu);
789
790 /*
791 * We may have taken a host interrupt in VS/VU-mode (i.e.
792 * while executing the guest). This interrupt is still
793 * pending, as we haven't serviced it yet!
794 *
795 * We're now back in HS-mode with interrupts disabled
796 * so enabling the interrupts now will have the effect
797 * of taking the interrupt again, in HS-mode this time.
798 */
799 local_irq_enable();
800
801 /*
802 * We do local_irq_enable() before calling guest_exit() so
803 * that if a timer interrupt hits while running the guest
804 * we account that tick as being spent in the guest. We
805 * enable preemption after calling guest_exit() so that if
806 * we get preempted we make sure ticks after that is not
807 * counted as guest time.
808 */
809 guest_exit();
810
811 preempt_enable();
812
813 vcpu->arch.srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
814
815 ret = kvm_riscv_vcpu_exit(vcpu, run, &trap);
816 }
817
818 kvm_sigset_deactivate(vcpu);
819
820 vcpu_put(vcpu);
821
822 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->arch.srcu_idx);
823
824 return ret;
825 }
826