1 /******************************************************************************
2  * list.h
3  *
4  * Useful linked-list definitions taken from the Linux kernel (2.6.18).
5  */
6 
7 #ifndef __XEN_LIST_H__
8 #define __XEN_LIST_H__
9 
10 #include <xen/lib.h>
11 #include <asm/system.h>
12 
13 /*
14  * These are non-NULL pointers that will result in faults under normal
15  * circumstances, used to verify that nobody uses non-initialized list
16  * entries. Architectures can override these.
17  */
18 #ifndef LIST_POISON1
19 #define LIST_POISON1  ((void *) 0x00100100)
20 #define LIST_POISON2  ((void *) 0x00200200)
21 #endif
22 
23 /*
24  * Simple doubly linked list implementation.
25  *
26  * Some of the internal functions ("__xxx") are useful when
27  * manipulating whole lists rather than single entries, as
28  * sometimes we already know the next/prev entries and we can
29  * generate better code by using them directly rather than
30  * using the generic single-entry routines.
31  */
32 
33 struct list_head {
34     struct list_head *next, *prev;
35 };
36 
37 #define LIST_HEAD_INIT(name) { &(name), &(name) }
38 
39 #define LIST_HEAD(name) \
40     struct list_head name = LIST_HEAD_INIT(name)
41 
42 #define LIST_HEAD_READ_MOSTLY(name) \
43     struct list_head __read_mostly name = LIST_HEAD_INIT(name)
44 
INIT_LIST_HEAD(struct list_head * list)45 static inline void INIT_LIST_HEAD(struct list_head *list)
46 {
47     list->next = list;
48     list->prev = list;
49 }
50 
list_head_is_null(const struct list_head * list)51 static inline bool list_head_is_null(const struct list_head *list)
52 {
53     return !list->next && !list->prev;
54 }
55 
56 /*
57  * Insert a new entry between two known consecutive entries.
58  *
59  * This is only for internal list manipulation where we know
60  * the prev/next entries already!
61  */
__list_add(struct list_head * new,struct list_head * prev,struct list_head * next)62 static inline void __list_add(struct list_head *new,
63                               struct list_head *prev,
64                               struct list_head *next)
65 {
66     next->prev = new;
67     new->next = next;
68     new->prev = prev;
69     prev->next = new;
70 }
71 
72 /**
73  * list_add - add a new entry
74  * @new: new entry to be added
75  * @head: list head to add it after
76  *
77  * Insert a new entry after the specified head.
78  * This is good for implementing stacks.
79  */
list_add(struct list_head * new,struct list_head * head)80 static inline void list_add(struct list_head *new, struct list_head *head)
81 {
82     __list_add(new, head, head->next);
83 }
84 
85 /**
86  * list_add_tail - add a new entry
87  * @new: new entry to be added
88  * @head: list head to add it before
89  *
90  * Insert a new entry before the specified head.
91  * This is useful for implementing queues.
92  */
list_add_tail(struct list_head * new,struct list_head * head)93 static inline void list_add_tail(struct list_head *new, struct list_head *head)
94 {
95     __list_add(new, head->prev, head);
96 }
97 
98 /*
99  * Insert a new entry between two known consecutive entries.
100  *
101  * This is only for internal list manipulation where we know
102  * the prev/next entries already!
103  */
__list_add_rcu(struct list_head * new,struct list_head * prev,struct list_head * next)104 static inline void __list_add_rcu(struct list_head *new,
105                                   struct list_head *prev,
106                                   struct list_head *next)
107 {
108     new->next = next;
109     new->prev = prev;
110     smp_wmb();
111     next->prev = new;
112     prev->next = new;
113 }
114 
115 /**
116  * list_add_rcu - add a new entry to rcu-protected list
117  * @new: new entry to be added
118  * @head: list head to add it after
119  *
120  * Insert a new entry after the specified head.
121  * This is good for implementing stacks.
122  *
123  * The caller must take whatever precautions are necessary
124  * (such as holding appropriate locks) to avoid racing
125  * with another list-mutation primitive, such as list_add_rcu()
126  * or list_del_rcu(), running on this same list.
127  * However, it is perfectly legal to run concurrently with
128  * the _rcu list-traversal primitives, such as
129  * list_for_each_entry_rcu().
130  */
list_add_rcu(struct list_head * new,struct list_head * head)131 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
132 {
133     __list_add_rcu(new, head, head->next);
134 }
135 
136 /**
137  * list_add_tail_rcu - add a new entry to rcu-protected list
138  * @new: new entry to be added
139  * @head: list head to add it before
140  *
141  * Insert a new entry before the specified head.
142  * This is useful for implementing queues.
143  *
144  * The caller must take whatever precautions are necessary
145  * (such as holding appropriate locks) to avoid racing
146  * with another list-mutation primitive, such as list_add_tail_rcu()
147  * or list_del_rcu(), running on this same list.
148  * However, it is perfectly legal to run concurrently with
149  * the _rcu list-traversal primitives, such as
150  * list_for_each_entry_rcu().
151  */
list_add_tail_rcu(struct list_head * new,struct list_head * head)152 static inline void list_add_tail_rcu(struct list_head *new,
153                                      struct list_head *head)
154 {
155     __list_add_rcu(new, head->prev, head);
156 }
157 
158 /*
159  * Delete a list entry by making the prev/next entries
160  * point to each other.
161  *
162  * This is only for internal list manipulation where we know
163  * the prev/next entries already!
164  */
__list_del(struct list_head * prev,struct list_head * next)165 static inline void __list_del(struct list_head *prev,
166                               struct list_head *next)
167 {
168     next->prev = prev;
169     prev->next = next;
170 }
171 
172 /**
173  * list_del - deletes entry from list.
174  * @entry: the element to delete from the list.
175  * Note: list_empty on entry does not return true after this, the entry is
176  * in an undefined state.
177  */
list_del(struct list_head * entry)178 static inline void list_del(struct list_head *entry)
179 {
180     ASSERT(entry->next->prev == entry);
181     ASSERT(entry->prev->next == entry);
182     __list_del(entry->prev, entry->next);
183     entry->next = LIST_POISON1;
184     entry->prev = LIST_POISON2;
185 }
186 
187 /**
188  * list_del_rcu - deletes entry from list without re-initialization
189  * @entry: the element to delete from the list.
190  *
191  * Note: list_empty on entry does not return true after this,
192  * the entry is in an undefined state. It is useful for RCU based
193  * lockfree traversal.
194  *
195  * In particular, it means that we can not poison the forward
196  * pointers that may still be used for walking the list.
197  *
198  * The caller must take whatever precautions are necessary
199  * (such as holding appropriate locks) to avoid racing
200  * with another list-mutation primitive, such as list_del_rcu()
201  * or list_add_rcu(), running on this same list.
202  * However, it is perfectly legal to run concurrently with
203  * the _rcu list-traversal primitives, such as
204  * list_for_each_entry_rcu().
205  *
206  * Note that the caller is not permitted to immediately free
207  * the newly deleted entry.  Instead, either synchronize_rcu()
208  * or call_rcu() must be used to defer freeing until an RCU
209  * grace period has elapsed.
210  */
list_del_rcu(struct list_head * entry)211 static inline void list_del_rcu(struct list_head *entry)
212 {
213     __list_del(entry->prev, entry->next);
214     entry->prev = LIST_POISON2;
215 }
216 
217 /**
218  * list_replace - replace old entry by new one
219  * @old : the element to be replaced
220  * @new : the new element to insert
221  * Note: if 'old' was empty, it will be overwritten.
222  */
list_replace(struct list_head * old,struct list_head * new)223 static inline void list_replace(struct list_head *old,
224                                 struct list_head *new)
225 {
226     new->next = old->next;
227     new->next->prev = new;
228     new->prev = old->prev;
229     new->prev->next = new;
230 }
231 
list_replace_init(struct list_head * old,struct list_head * new)232 static inline void list_replace_init(struct list_head *old,
233                                      struct list_head *new)
234 {
235     list_replace(old, new);
236     INIT_LIST_HEAD(old);
237 }
238 
239 /*
240  * list_replace_rcu - replace old entry by new one
241  * @old : the element to be replaced
242  * @new : the new element to insert
243  *
244  * The old entry will be replaced with the new entry atomically.
245  * Note: 'old' should not be empty.
246  */
list_replace_rcu(struct list_head * old,struct list_head * new)247 static inline void list_replace_rcu(struct list_head *old,
248                                     struct list_head *new)
249 {
250     new->next = old->next;
251     new->prev = old->prev;
252     smp_wmb();
253     new->next->prev = new;
254     new->prev->next = new;
255     old->prev = LIST_POISON2;
256 }
257 
258 /**
259  * list_del_init - deletes entry from list and reinitialize it.
260  * @entry: the element to delete from the list.
261  */
list_del_init(struct list_head * entry)262 static inline void list_del_init(struct list_head *entry)
263 {
264     __list_del(entry->prev, entry->next);
265     INIT_LIST_HEAD(entry);
266 }
267 
268 /**
269  * list_move - delete from one list and add as another's head
270  * @list: the entry to move
271  * @head: the head that will precede our entry
272  */
list_move(struct list_head * list,struct list_head * head)273 static inline void list_move(struct list_head *list, struct list_head *head)
274 {
275     __list_del(list->prev, list->next);
276     list_add(list, head);
277 }
278 
279 /**
280  * list_move_tail - delete from one list and add as another's tail
281  * @list: the entry to move
282  * @head: the head that will follow our entry
283  */
list_move_tail(struct list_head * list,struct list_head * head)284 static inline void list_move_tail(struct list_head *list,
285                                   struct list_head *head)
286 {
287     __list_del(list->prev, list->next);
288     list_add_tail(list, head);
289 }
290 
291 /**
292  * list_is_last - tests whether @list is the last entry in list @head
293  * @list: the entry to test
294  * @head: the head of the list
295  */
list_is_last(const struct list_head * list,const struct list_head * head)296 static inline int list_is_last(const struct list_head *list,
297                                const struct list_head *head)
298 {
299     return list->next == head;
300 }
301 
302 /**
303  * list_empty - tests whether a list is empty
304  * @head: the list to test.
305  */
list_empty(const struct list_head * head)306 static inline int list_empty(const struct list_head *head)
307 {
308     return head->next == head;
309 }
310 
311 /**
312  * list_is_singular - tests whether a list has exactly one entry
313  * @head: the list to test.
314  */
list_is_singular(const struct list_head * head)315 static inline int list_is_singular(const struct list_head *head)
316 {
317     return !list_empty(head) && (head->next == head->prev);
318 }
319 
320 /**
321  * list_empty_careful - tests whether a list is empty and not being modified
322  * @head: the list to test
323  *
324  * Description:
325  * tests whether a list is empty _and_ checks that no other CPU might be
326  * in the process of modifying either member (next or prev)
327  *
328  * NOTE: using list_empty_careful() without synchronization
329  * can only be safe if the only activity that can happen
330  * to the list entry is list_del_init(). Eg. it cannot be used
331  * if another CPU could re-list_add() it.
332  */
list_empty_careful(const struct list_head * head)333 static inline int list_empty_careful(const struct list_head *head)
334 {
335     struct list_head *next = head->next;
336     return (next == head) && (next == head->prev);
337 }
338 
__list_splice(struct list_head * list,struct list_head * head)339 static inline void __list_splice(struct list_head *list,
340                                  struct list_head *head)
341 {
342     struct list_head *first = list->next;
343     struct list_head *last = list->prev;
344     struct list_head *at = head->next;
345 
346     first->prev = head;
347     head->next = first;
348 
349     last->next = at;
350     at->prev = last;
351 }
352 
353 /**
354  * list_splice - join two lists
355  * @list: the new list to add.
356  * @head: the place to add it in the first list.
357  */
list_splice(struct list_head * list,struct list_head * head)358 static inline void list_splice(struct list_head *list, struct list_head *head)
359 {
360     if (!list_empty(list))
361         __list_splice(list, head);
362 }
363 
364 /**
365  * list_splice_init - join two lists and reinitialise the emptied list.
366  * @list: the new list to add.
367  * @head: the place to add it in the first list.
368  *
369  * The list at @list is reinitialised
370  */
list_splice_init(struct list_head * list,struct list_head * head)371 static inline void list_splice_init(struct list_head *list,
372                                     struct list_head *head)
373 {
374     if (!list_empty(list)) {
375         __list_splice(list, head);
376         INIT_LIST_HEAD(list);
377     }
378 }
379 
380 /**
381  * list_entry - get the struct for this entry
382  * @ptr:    the &struct list_head pointer.
383  * @type:    the type of the struct this is embedded in.
384  * @member:    the name of the list_struct within the struct.
385  */
386 #define list_entry(ptr, type, member) \
387     container_of(ptr, type, member)
388 
389 /**
390  * list_first_entry - get the first element from a list
391  * @ptr:        the list head to take the element from.
392  * @type:       the type of the struct this is embedded in.
393  * @member:     the name of the list_struct within the struct.
394  *
395  * Note, that list is expected to be not empty.
396  */
397 #define list_first_entry(ptr, type, member) \
398         list_entry((ptr)->next, type, member)
399 
400 /**
401  * list_last_entry - get the last element from a list
402  * @ptr:        the list head to take the element from.
403  * @type:       the type of the struct this is embedded in.
404  * @member:     the name of the list_struct within the struct.
405  *
406  * Note, that list is expected to be not empty.
407  */
408 #define list_last_entry(ptr, type, member) \
409         list_entry((ptr)->prev, type, member)
410 
411 /**
412  * list_first_entry_or_null - get the first element from a list
413  * @ptr:        the list head to take the element from.
414  * @type:       the type of the struct this is embedded in.
415  * @member:     the name of the list_struct within the struct.
416  *
417  * Note that if the list is empty, it returns NULL.
418  */
419 #define list_first_entry_or_null(ptr, type, member) \
420         (!list_empty(ptr) ? list_first_entry(ptr, type, member) : NULL)
421 
422 /**
423  * list_last_entry_or_null - get the last element from a list
424  * @ptr:        the list head to take the element from.
425  * @type:       the type of the struct this is embedded in.
426  * @member:     the name of the list_struct within the struct.
427  *
428  * Note that if the list is empty, it returns NULL.
429  */
430 #define list_last_entry_or_null(ptr, type, member) \
431         (!list_empty(ptr) ? list_last_entry(ptr, type, member) : NULL)
432 
433 /**
434   * list_next_entry - get the next element in list
435   * @pos:        the type * to cursor
436   * @member:     the name of the list_struct within the struct.
437   */
438 #define list_next_entry(pos, member) \
439         list_entry((pos)->member.next, typeof(*(pos)), member)
440 
441 /**
442   * list_prev_entry - get the prev element in list
443   * @pos:        the type * to cursor
444   * @member:     the name of the list_struct within the struct.
445   */
446 #define list_prev_entry(pos, member) \
447         list_entry((pos)->member.prev, typeof(*(pos)), member)
448 
449 /**
450  * list_for_each    -    iterate over a list
451  * @pos:    the &struct list_head to use as a loop cursor.
452  * @head:    the head for your list.
453  */
454 #define list_for_each(pos, head)                                        \
455     for (pos = (head)->next; pos != (head); pos = pos->next)
456 
457 /**
458  * list_for_each_prev - iterate over a list backwards
459  * @pos:    the &struct list_head to use as a loop cursor.
460  * @head:   the head for your list.
461  */
462 #define list_for_each_prev(pos, head)                                   \
463     for (pos = (head)->prev; pos != (head); pos = pos->prev)
464 
465 /**
466  * list_for_each_safe - iterate over a list safe against removal of list entry
467  * @pos:    the &struct list_head to use as a loop cursor.
468  * @n:      another &struct list_head to use as temporary storage
469  * @head:   the head for your list.
470  */
471 #define list_for_each_safe(pos, n, head)                        \
472     for (pos = (head)->next, n = pos->next; pos != (head);      \
473          pos = n, n = pos->next)
474 
475 /**
476  * list_for_each_backwards_safe    -    iterate backwards over a list safe
477  *                                      against removal of list entry
478  * @pos:    the &struct list_head to use as a loop counter.
479  * @n:      another &struct list_head to use as temporary storage
480  * @head:   the head for your list.
481  */
482 #define list_for_each_backwards_safe(pos, n, head)              \
483     for ( pos = (head)->prev, n = pos->prev; pos != (head);     \
484           pos = n, n = pos->prev )
485 
486 /**
487  * list_for_each_entry - iterate over list of given type
488  * @pos:    the type * to use as a loop cursor.
489  * @head:   the head for your list.
490  * @member: the name of the list_struct within the struct.
491  */
492 #define list_for_each_entry(pos, head, member)                          \
493     for (pos = list_entry((head)->next, typeof(*pos), member);          \
494          &pos->member != (head);                                        \
495          pos = list_entry(pos->member.next, typeof(*pos), member))
496 
497 /**
498  * list_for_each_entry_reverse - iterate backwards over list of given type.
499  * @pos:    the type * to use as a loop cursor.
500  * @head:   the head for your list.
501  * @member: the name of the list_struct within the struct.
502  */
503 #define list_for_each_entry_reverse(pos, head, member)                  \
504     for (pos = list_entry((head)->prev, typeof(*pos), member);          \
505          &pos->member != (head);                                        \
506          pos = list_entry(pos->member.prev, typeof(*pos), member))
507 
508 /**
509  * list_prepare_entry - prepare a pos entry for use in
510  *                      list_for_each_entry_continue
511  * @pos:    the type * to use as a start point
512  * @head:   the head of the list
513  * @member: the name of the list_struct within the struct.
514  *
515  * Prepares a pos entry for use as a start point in
516  * list_for_each_entry_continue.
517  */
518 #define list_prepare_entry(pos, head, member)           \
519     ((pos) ? : list_entry(head, typeof(*pos), member))
520 
521 /**
522  * list_for_each_entry_continue - continue iteration over list of given type
523  * @pos:    the type * to use as a loop cursor.
524  * @head:   the head for your list.
525  * @member: the name of the list_struct within the struct.
526  *
527  * Continue to iterate over list of given type, continuing after
528  * the current position.
529  */
530 #define list_for_each_entry_continue(pos, head, member)                 \
531     for (pos = list_entry(pos->member.next, typeof(*pos), member);      \
532          &pos->member != (head);                                        \
533          pos = list_entry(pos->member.next, typeof(*pos), member))
534 
535 /**
536  * list_for_each_entry_from - iterate over list of given type from the
537  *                            current point
538  * @pos:    the type * to use as a loop cursor.
539  * @head:   the head for your list.
540  * @member: the name of the list_struct within the struct.
541  *
542  * Iterate over list of given type, continuing from current position.
543  */
544 #define list_for_each_entry_from(pos, head, member)                     \
545     for (; &pos->member != (head);                                      \
546          pos = list_entry(pos->member.next, typeof(*pos), member))
547 
548 /**
549  * list_for_each_entry_safe - iterate over list of given type safe
550  *                            against removal of list entry
551  * @pos:    the type * to use as a loop cursor.
552  * @n:      another type * to use as temporary storage
553  * @head:   the head for your list.
554  * @member: the name of the list_struct within the struct.
555  */
556 #define list_for_each_entry_safe(pos, n, head, member)                  \
557     for (pos = list_entry((head)->next, typeof(*pos), member),          \
558          n = list_entry(pos->member.next, typeof(*pos), member);        \
559          &pos->member != (head);                                        \
560          pos = n, n = list_entry(n->member.next, typeof(*n), member))
561 
562 /**
563  * list_for_each_entry_safe_continue
564  * @pos:    the type * to use as a loop cursor.
565  * @n:      another type * to use as temporary storage
566  * @head:   the head for your list.
567  * @member: the name of the list_struct within the struct.
568  *
569  * Iterate over list of given type, continuing after current point,
570  * safe against removal of list entry.
571  */
572 #define list_for_each_entry_safe_continue(pos, n, head, member)         \
573     for (pos = list_entry(pos->member.next, typeof(*pos), member),      \
574          n = list_entry(pos->member.next, typeof(*pos), member);        \
575          &pos->member != (head);                                        \
576          pos = n, n = list_entry(n->member.next, typeof(*n), member))
577 
578 /**
579  * list_for_each_entry_safe_from
580  * @pos:    the type * to use as a loop cursor.
581  * @n:      another type * to use as temporary storage
582  * @head:   the head for your list.
583  * @member: the name of the list_struct within the struct.
584  *
585  * Iterate over list of given type from current point, safe against
586  * removal of list entry.
587  */
588 #define list_for_each_entry_safe_from(pos, n, head, member)             \
589     for (n = list_entry(pos->member.next, typeof(*pos), member);        \
590          &pos->member != (head);                                        \
591          pos = n, n = list_entry(n->member.next, typeof(*n), member))
592 
593 /**
594  * list_for_each_entry_safe_reverse
595  * @pos:    the type * to use as a loop cursor.
596  * @n:      another type * to use as temporary storage
597  * @head:   the head for your list.
598  * @member: the name of the list_struct within the struct.
599  *
600  * Iterate backwards over list of given type, safe against removal
601  * of list entry.
602  */
603 #define list_for_each_entry_safe_reverse(pos, n, head, member)          \
604     for (pos = list_entry((head)->prev, typeof(*pos), member),          \
605          n = list_entry(pos->member.prev, typeof(*pos), member);        \
606          &pos->member != (head);                                        \
607          pos = n, n = list_entry(n->member.prev, typeof(*n), member))
608 
609 /**
610  * list_for_each_rcu - iterate over an rcu-protected list
611  * @pos:  the &struct list_head to use as a loop cursor.
612  * @head: the head for your list.
613  *
614  * This list-traversal primitive may safely run concurrently with
615  * the _rcu list-mutation primitives such as list_add_rcu()
616  * as long as the traversal is guarded by rcu_read_lock().
617  */
618 #define list_for_each_rcu(pos, head)                            \
619     for (pos = (head)->next;                                    \
620          rcu_dereference(pos) != (head);                        \
621          pos = pos->next)
622 
623 #define __list_for_each_rcu(pos, head)          \
624     for (pos = (head)->next;                    \
625          rcu_dereference(pos) != (head);        \
626          pos = pos->next)
627 
628 /**
629  * list_for_each_safe_rcu
630  * @pos:   the &struct list_head to use as a loop cursor.
631  * @n:     another &struct list_head to use as temporary storage
632  * @head:  the head for your list.
633  *
634  * Iterate over an rcu-protected list, safe against removal of list entry.
635  *
636  * This list-traversal primitive may safely run concurrently with
637  * the _rcu list-mutation primitives such as list_add_rcu()
638  * as long as the traversal is guarded by rcu_read_lock().
639  */
640 #define list_for_each_safe_rcu(pos, n, head)            \
641     for (pos = (head)->next;                            \
642          n = rcu_dereference(pos)->next, pos != (head); \
643          pos = n)
644 
645 /**
646  * list_for_each_entry_rcu - iterate over rcu list of given type
647  * @pos:    the type * to use as a loop cursor.
648  * @head:   the head for your list.
649  * @member: the name of the list_struct within the struct.
650  *
651  * This list-traversal primitive may safely run concurrently with
652  * the _rcu list-mutation primitives such as list_add_rcu()
653  * as long as the traversal is guarded by rcu_read_lock().
654  */
655 #define list_for_each_entry_rcu(pos, head, member)                      \
656     for (pos = list_entry((head)->next, typeof(*pos), member);          \
657          &rcu_dereference(pos)->member != (head);                       \
658          pos = list_entry(pos->member.next, typeof(*pos), member))
659 
660 /**
661  * list_for_each_continue_rcu
662  * @pos:    the &struct list_head to use as a loop cursor.
663  * @head:   the head for your list.
664  *
665  * Iterate over an rcu-protected list, continuing after current point.
666  *
667  * This list-traversal primitive may safely run concurrently with
668  * the _rcu list-mutation primitives such as list_add_rcu()
669  * as long as the traversal is guarded by rcu_read_lock().
670  */
671 #define list_for_each_continue_rcu(pos, head)                           \
672     for ((pos) = (pos)->next;                                           \
673          rcu_dereference(pos) != (head);                                \
674          (pos) = (pos)->next)
675 
676 /*
677  * Double linked lists with a single pointer list head.
678  * Mostly useful for hash tables where the two pointer list head is
679  * too wasteful.
680  * You lose the ability to access the tail in O(1).
681  */
682 
683 struct hlist_head {
684     struct hlist_node *first;
685 };
686 
687 struct hlist_node {
688     struct hlist_node *next, **pprev;
689 };
690 
691 #define HLIST_HEAD_INIT { .first = NULL }
692 #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
693 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
INIT_HLIST_NODE(struct hlist_node * h)694 static inline void INIT_HLIST_NODE(struct hlist_node *h)
695 {
696     h->next = NULL;
697     h->pprev = NULL;
698 }
699 
hlist_unhashed(const struct hlist_node * h)700 static inline int hlist_unhashed(const struct hlist_node *h)
701 {
702     return !h->pprev;
703 }
704 
hlist_empty(const struct hlist_head * h)705 static inline int hlist_empty(const struct hlist_head *h)
706 {
707     return !h->first;
708 }
709 
__hlist_del(struct hlist_node * n)710 static inline void __hlist_del(struct hlist_node *n)
711 {
712     struct hlist_node *next = n->next;
713     struct hlist_node **pprev = n->pprev;
714     *pprev = next;
715     if (next)
716         next->pprev = pprev;
717 }
718 
hlist_del(struct hlist_node * n)719 static inline void hlist_del(struct hlist_node *n)
720 {
721     __hlist_del(n);
722     n->next = LIST_POISON1;
723     n->pprev = LIST_POISON2;
724 }
725 
726 /**
727  * hlist_del_rcu - deletes entry from hash list without re-initialization
728  * @n: the element to delete from the hash list.
729  *
730  * Note: list_unhashed() on entry does not return true after this,
731  * the entry is in an undefined state. It is useful for RCU based
732  * lockfree traversal.
733  *
734  * In particular, it means that we can not poison the forward
735  * pointers that may still be used for walking the hash list.
736  *
737  * The caller must take whatever precautions are necessary
738  * (such as holding appropriate locks) to avoid racing
739  * with another list-mutation primitive, such as hlist_add_head_rcu()
740  * or hlist_del_rcu(), running on this same list.
741  * However, it is perfectly legal to run concurrently with
742  * the _rcu list-traversal primitives, such as
743  * hlist_for_each_entry().
744  */
hlist_del_rcu(struct hlist_node * n)745 static inline void hlist_del_rcu(struct hlist_node *n)
746 {
747     __hlist_del(n);
748     n->pprev = LIST_POISON2;
749 }
750 
hlist_del_init(struct hlist_node * n)751 static inline void hlist_del_init(struct hlist_node *n)
752 {
753     if (!hlist_unhashed(n)) {
754         __hlist_del(n);
755         INIT_HLIST_NODE(n);
756     }
757 }
758 
759 /*
760  * hlist_replace_rcu - replace old entry by new one
761  * @old : the element to be replaced
762  * @new : the new element to insert
763  *
764  * The old entry will be replaced with the new entry atomically.
765  */
hlist_replace_rcu(struct hlist_node * old,struct hlist_node * new)766 static inline void hlist_replace_rcu(struct hlist_node *old,
767                                      struct hlist_node *new)
768 {
769     struct hlist_node *next = old->next;
770 
771     new->next = next;
772     new->pprev = old->pprev;
773     smp_wmb();
774     if (next)
775         new->next->pprev = &new->next;
776     *new->pprev = new;
777     old->pprev = LIST_POISON2;
778 }
779 
hlist_add_head(struct hlist_node * n,struct hlist_head * h)780 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
781 {
782     struct hlist_node *first = h->first;
783     n->next = first;
784     if (first)
785         first->pprev = &n->next;
786     h->first = n;
787     n->pprev = &h->first;
788 }
789 
790 /**
791  * hlist_add_head_rcu
792  * @n: the element to add to the hash list.
793  * @h: the list to add to.
794  *
795  * Description:
796  * Adds the specified element to the specified hlist,
797  * while permitting racing traversals.
798  *
799  * The caller must take whatever precautions are necessary
800  * (such as holding appropriate locks) to avoid racing
801  * with another list-mutation primitive, such as hlist_add_head_rcu()
802  * or hlist_del_rcu(), running on this same list.
803  * However, it is perfectly legal to run concurrently with
804  * the _rcu list-traversal primitives, such as
805  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
806  * problems on Alpha CPUs.  Regardless of the type of CPU, the
807  * list-traversal primitive must be guarded by rcu_read_lock().
808  */
hlist_add_head_rcu(struct hlist_node * n,struct hlist_head * h)809 static inline void hlist_add_head_rcu(struct hlist_node *n,
810                                       struct hlist_head *h)
811 {
812     struct hlist_node *first = h->first;
813     n->next = first;
814     n->pprev = &h->first;
815     smp_wmb();
816     if (first)
817         first->pprev = &n->next;
818     h->first = n;
819 }
820 
821 /* next must be != NULL */
hlist_add_before(struct hlist_node * n,struct hlist_node * next)822 static inline void hlist_add_before(struct hlist_node *n,
823                     struct hlist_node *next)
824 {
825     n->pprev = next->pprev;
826     n->next = next;
827     next->pprev = &n->next;
828     *(n->pprev) = n;
829 }
830 
hlist_add_after(struct hlist_node * n,struct hlist_node * next)831 static inline void hlist_add_after(struct hlist_node *n,
832                     struct hlist_node *next)
833 {
834     next->next = n->next;
835     n->next = next;
836     next->pprev = &n->next;
837 
838     if(next->next)
839         next->next->pprev  = &next->next;
840 }
841 
842 /**
843  * hlist_add_before_rcu
844  * @n: the new element to add to the hash list.
845  * @next: the existing element to add the new element before.
846  *
847  * Description:
848  * Adds the specified element to the specified hlist
849  * before the specified node while permitting racing traversals.
850  *
851  * The caller must take whatever precautions are necessary
852  * (such as holding appropriate locks) to avoid racing
853  * with another list-mutation primitive, such as hlist_add_head_rcu()
854  * or hlist_del_rcu(), running on this same list.
855  * However, it is perfectly legal to run concurrently with
856  * the _rcu list-traversal primitives, such as
857  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
858  * problems on Alpha CPUs.
859  */
hlist_add_before_rcu(struct hlist_node * n,struct hlist_node * next)860 static inline void hlist_add_before_rcu(struct hlist_node *n,
861                                         struct hlist_node *next)
862 {
863     n->pprev = next->pprev;
864     n->next = next;
865     smp_wmb();
866     next->pprev = &n->next;
867     *(n->pprev) = n;
868 }
869 
870 /**
871  * hlist_add_after_rcu
872  * @prev: the existing element to add the new element after.
873  * @n: the new element to add to the hash list.
874  *
875  * Description:
876  * Adds the specified element to the specified hlist
877  * after the specified node while permitting racing traversals.
878  *
879  * The caller must take whatever precautions are necessary
880  * (such as holding appropriate locks) to avoid racing
881  * with another list-mutation primitive, such as hlist_add_head_rcu()
882  * or hlist_del_rcu(), running on this same list.
883  * However, it is perfectly legal to run concurrently with
884  * the _rcu list-traversal primitives, such as
885  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
886  * problems on Alpha CPUs.
887  */
hlist_add_after_rcu(struct hlist_node * prev,struct hlist_node * n)888 static inline void hlist_add_after_rcu(struct hlist_node *prev,
889                                        struct hlist_node *n)
890 {
891     n->next = prev->next;
892     n->pprev = &prev->next;
893     smp_wmb();
894     prev->next = n;
895     if (n->next)
896         n->next->pprev = &n->next;
897 }
898 
899 #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
900 
901 #define hlist_for_each(pos, head)                                       \
902     for (pos = (head)->first; pos; pos = pos->next)
903 
904 #define hlist_for_each_safe(pos, n, head)                       \
905     for (pos = (head)->first; pos && ({ n = pos->next; 1; });   \
906          pos = n)
907 
908 /**
909  * hlist_for_each_entry    - iterate over list of given type
910  * @tpos:    the type * to use as a loop cursor.
911  * @pos:    the &struct hlist_node to use as a loop cursor.
912  * @head:    the head for your list.
913  * @member:    the name of the hlist_node within the struct.
914  */
915 #define hlist_for_each_entry(tpos, pos, head, member)                   \
916     for (pos = (head)->first;                                           \
917          pos &&                                                         \
918          ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;});       \
919          pos = pos->next)
920 
921 /**
922  * hlist_for_each_entry_continue - iterate over a hlist continuing
923  *                                 after current point
924  * @tpos:    the type * to use as a loop cursor.
925  * @pos:    the &struct hlist_node to use as a loop cursor.
926  * @member:    the name of the hlist_node within the struct.
927  */
928 #define hlist_for_each_entry_continue(tpos, pos, member)                \
929     for (pos = (pos)->next;                                             \
930          pos &&                                                         \
931          ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;});       \
932          pos = pos->next)
933 
934 /**
935  * hlist_for_each_entry_from - iterate over a hlist continuing from
936  *                             current point
937  * @tpos:    the type * to use as a loop cursor.
938  * @pos:    the &struct hlist_node to use as a loop cursor.
939  * @member:    the name of the hlist_node within the struct.
940  */
941 #define hlist_for_each_entry_from(tpos, pos, member)                    \
942     for (; pos &&                                                       \
943          ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;});       \
944          pos = pos->next)
945 
946 /**
947  * hlist_for_each_entry_safe - iterate over list of given type safe
948  *                             against removal of list entry
949  * @tpos:    the type * to use as a loop cursor.
950  * @pos:    the &struct hlist_node to use as a loop cursor.
951  * @n:        another &struct hlist_node to use as temporary storage
952  * @head:    the head for your list.
953  * @member:    the name of the hlist_node within the struct.
954  */
955 #define hlist_for_each_entry_safe(tpos, pos, n, head, member)           \
956     for (pos = (head)->first;                                           \
957          pos && ({ n = pos->next; 1; }) &&                              \
958          ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;});       \
959          pos = n)
960 
961 
962 /**
963  * hlist_for_each_entry_rcu - iterate over rcu list of given type
964  * @tpos:   the type * to use as a loop cursor.
965  * @pos:    the &struct hlist_node to use as a loop cursor.
966  * @head:   the head for your list.
967  * @member: the name of the hlist_node within the struct.
968  *
969  * This list-traversal primitive may safely run concurrently with
970  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
971  * as long as the traversal is guarded by rcu_read_lock().
972  */
973 #define hlist_for_each_entry_rcu(tpos, pos, head, member)               \
974      for (pos = (head)->first;                                          \
975           rcu_dereference(pos) &&                                       \
976           ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;});      \
977           pos = pos->next)
978 
979 #endif /* __XEN_LIST_H__ */
980 
981